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Abstract. Data assimilation (DA) is a key procedure that synchronizes a com-
puter model with real observations. However, in the case of overparametrized
complex systems modeling, the task of parameter-estimation through data assimi-
lation can expand exponentially. It leads to unacceptable computational overhead,
substantial inaccuracies in parameter matching, and wrong predictions. Here we
define a Supermodel as a kind of ensembling scheme, which consists of a few
sub-models representing various instances of the baseline model. The sub-models
differ in parameter sets and are synchronized through couplings between the most
sensitive dynamical variables. We demonstrate that after a short pretraining of the
fully parametrized small sub-model ensemble, and then training a few latent pa-
rameters of the low-parameterized Supermodel, we can outperform in efficiency
and accuracy the baseline model matched to data by a classical DA procedure.

Keywords: Data assimilation · Supermodeling · Dynamical systems.

1 Introduction

Classical data assimilation (DA) procedure, which synchronizes a computer model with
a real phenomenon through a set of observations, is an ill-posed inverse problem and
suffers from the curse of dimensionality issue when used to estimate model parameters.
That is, the time complexity of DA methods grows exponentially with the number of
parameters and makes them helpless in the face of multiscale and sophisticated models
such as models of climate&weather dynamics or tumor evolution (e.g. [30, 37, 38, 21,
12, 13]). Our idea is to assimilate data to a hierarchically organized Supermodel 5 in
which the number of trainable metaparameters is much smaller than the number of fixed
parameters in the sub-models, which themselves have to be trained in the usual schemes.
We define the Supermodel as an ensemble of M imperfect sub-models µ, µ = 1 . . .M ,
synchronized with each other through d dynamic variables and coupled to reality by
observed data. Each sub-model is described by a set of differential equations (ordinary
ones or parabolic partial ones) for the state vectors xµ = (x1µ, . . . , x

i
µ, . . . , x

d
µ), such

that:
ẋiµ = f iµ(xµ) +

∑
ν 6=µ

Ciµν(x
i
ν − xiµ) +Ki(xiGT − xiµ) (1)

5 See the the Chaos Focus Issue introduced in [11] for the origin and history of supermodeling.
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xs(t,C) ≡ 1

M

∑
µ

xµ(t,C), (2)

where the coefficients Ciµν of tensor C are the coupling factors synchronizing the sub-
models, K is a set of assimilation rates ”attracting” the synchronized Supermodel to the
ground truth (GT) observations xGT , and xs(.) is the Supermodel output calculated as
the ensemble average.

(a) (b)

Fig. 1. (a) A Supermodeling scheme in which the sub-models are explicitly pre-trained and the
inter-model couplings are trained without nudging the sub-models towards GT (as has been pro-
posed also e.g., in [32]). We have assumed that the sub-models are coupled through only a single,
the most sensitive, dynamical variable and the coupling factors Ciµν are matched to data by using
a classical DA procedure (Ki = 0). (b) The concept of data adaptation by Supermodeling.

Unlike some previous applications of Supermodeling in climatology [30, 29], used
for increasing the climate/weather forecast accuracy by relatively tight coupling (C is
dense) of a few very complex and heterogenous climate models, we propose to explore
Supermodeling from a somewhat different perspective. To this end, let us assume that
the Supermodel is an ensemble of a few (here M = 3) homogeneous instances of the
reference (baseline) model (see Fig.1a). The sub-models are represented by pretrained
(e.g., using a classical DA procedure) baseline models. This quick pretraining can be
performed: (1) independently for M sub-models, each starting from different initial
parameters or (2) exploiting M local minima of the loss function F (‖x−xGT‖) found
during initial phases of a classical DA procedure for a single, initially parametrized
sub-model. Though the second option is more elegant and efficient computationally,
we have chosen the first one to assure a greater diversity of the sub-models. Let us
also assume that the sub-models are coupled through only one - the most sensitive -
dynamical variable i.e., C is sparse and Ciµν 6= 0 only for i = 1 (see Fig.1a). In
addition, we refrain from attracting the Supermodel to GT via the assimilation rates Ki

so we assume that Ki = 0 for i = 1 . . . d in Eq.1. Instead, a classical DA algorithm
(here ABC-SMC) will be employed directly for adaption of only C (latent parameters)
to the GT data. Because of a small number of the coupling factors C, we have expected
that this training procedure will be very fast. We summarize our contribution as follows:
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1. We propose a novel modeling methodology, which uses the Supermodeling scheme
as a higher level of abstraction in the use of existing DA procedures. Our approach
radically speeds up the process of model training. That is, just as DA estimates
states and parameters by coupling the model to a ”real” system, supermodeling
allows a small set of different models to assimilate data from one another; only the
inter-model coupling parameters need be estimated.

2. For better synchronization of the sub-models, we propose their fast pretraining by
employing a classical DA scheme. In previous work [13], the arbitrary parametriza-
tion of the sub-models often caused their desynchronization.

3. Unlike in previous Supermodeling proofs-of-concept, a few C metaparameters can
be quickly adapted to data by a classical DA method without coupling to truth. In
the previous work (see, e.g. [37], [13]), non-vanishing matrices C andKi combined
inter-model synchronization with a nudging scheme attracting the model to GT
data.

In support of our modeling concept (see Fig.1b), we present a case study: the pro-
cess of parameter estimation in the Handy socio-economical model [25]. The model is a
dynamical system that is an extended version of the predator-prey scheme. We have se-
lected the Handy model due to its non-trivial behavior, reasonable computational com-
plexity and relatively large number of parameters. On the basis of training data we try to
predict the evolution of a “true” dynamical system. We compare the quality of the pre-
dictions for various time budgets for the classical ABC-SMC data assimilation method
on the one hand, and the Supermodeling scheme on the other. Finally, we summarize
and discuss the findings.

2 Classical data assimilation to the Handy model

2.1 Handy model

The Handy model is a substantial extension of the predator-prey system and is described
by the time evolution of four dynamical variables: Commoners, Elites as well as Nature
and Wealth (xC , xE , y, w). Their evolution is described by the following equations:

ẋC = βCxC − αCxC
ẋE = βExE − αExE
ẏ = γy(λ− y)− δxCy
ẇ = δxCy − CC − CE{
CC = min(1, w

wth
)sxC

CE = min(1, w
wth

)κsxE
(3)

{
αC = αm +max(0, 1− CC

sxC
)(αM − αm)

αE = αm +max(0, 1− CE

sxE
)(αM − αm)

wth = ρxC + κρxE
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In Tab.1 we have compiled a glossary of parameters and variables, and their ground
truth or initial values, respectively. In Fig.2 we illustrate the typical evolution of the
dynamical variables of the Handy model. The time evolution of the system is so vari-
able and its parameters so sensitive that prediction of the model behavior is sufficiently
difficult as to make data assimilation a non-trivial task.

Table 1. Parameters and initial values of dynamical variables of the Handy model.

Parameter Description Value
αm Normal (minimum) death rate 1.0× 10−2

αM Famine (maximum) death rate 7.0× 10−2

βC Commoners birth rate 3.0× 10−2

βE Elites birth rate 3.0× 10−2

s Subsistence salary per capita 5.0× 10−4

ρ Threshold wealth per capita 5.0× 10−3

γ Regeneration rate of nature 1.0× 10−2

λ Nature carrying capacity 1.0× 102

κ Inequality factor 1.0
δ Depletion (production) factor 3.34

Variable Description Initial Value
xC Commoners population 1.0× 102

xE Elites population 2.9× 101

y Nature 1.0× 102

w Accumulated wealth 5.0× 101

2.2 Ground truth data generation

To further the testing of the supermodel concept, we generated artificial data, assum-
ing that there exists a ground-truth “model” that simulates reality. Of course, because
neither reality nor observations of reality can be accurately approximated by any math-
ematical model, we should somehow disturb both observations and the whole model
as well. The comparison of the robustness of ABC and Supermodeling by using such
a stochastic model would need many extensive tests. Nevertheless, conducting such re-
search would make sense if the Supermodeling scheme outperforms a classical DA pro-
cedure for a much simpler ground truth model. Therefore, herein we have assumed that
reality follows exactly a given baseline mathematical model with a rigid and “unknown”
set of parameters. Our role is to guess them, having a limited number of observations,
i.e., samples from this GT system evolution.

As presented in Fig.2, the dynamical variables of the GT model evolve in a given
time interval in a smooth but variable and non-trivial way. We consider here only one
time interval (from T1 = 300 up to T2 = 750 timesteps) that was split into three
subintervals of the same length (A = [300, 450], B = [450, 600], C = [600, 750]).
The models (the baseline model, sub-models and Supermodel) will be trained on GT
data sampled in the middle part B of the plot, and accuracies of predictions will be
tested on A (backward forecasting), C (forward forecasting) and A ∪ C (overall) time
intervals. We have decided to use both sparsely and densely sampled data, i.e., in each
of the training subintervals we have generated “real” observations every ∆T1 = 10 or
∆T2 = 3 steps, respectively.
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In the rest of this paper we present the results from the case study of data assimila-
tion to the Handy model and arbitrarily selected fragments of its behavior (Fig.2). We
have tested our approach on other datasets, from which the same conclusions can be
drawn. Some results and all numerical details can be found in the MSc thesis [31].

Fig. 2. The behaviour of the Handy model as the ground-truth model in selected time intervals. A
fragment of the model time evolution is divided into three intervals (A,B,C), wherein the middle
one B is used for generation of the training data while the remaining two for the test data.

2.3 Sensitivity analysis

In many data assimilation tasks, knowledge of the most sensitive model parameters and
dynamic variables, can help to give a faster and more precise search of the parameter
space. This is particularly true if expert knowledge is unavailable. In the context of
Supermodeling, the most sensitive dynamic variable has to be identified for use in syn-
chronizing the sub-models. To determine the most significant dynamical variable, we
performed Sobol Sensitivity Analysis (SA) [34, 27]. Herein, we use the society quality
measure:

Q =
w

xC + xE
, (4)

to calculate the Sobol indices, where xC , xE are the populations of Commoners and
Elites respectively, and w is the society’s overall Wealth. We estimated that Elites is the
most sensitive dynamical variable, also because it is closely connected with the most
sensitive parameter, βE , the Elites’ birth rate. (see Tab.2). However, the SA procedure
might be skipped if the most sensitive variable is already known, e.g., due to a priori
possession of expert knowledge.

2.4 Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) is not a single algorithm, but rather a very
wide class of algorithms and methods that employ Bayesian inference for data assimi-
lation purposes [7, 14]. The main novelty of these methods is in their correct estimation
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Table 2. The Sobol sensitivity indices S1 and ST for the parameters and dynamical variables of
the Handy model (a greater value of the index means higher sensitvity).

Parameter Description S1 ST
αm Normal (minimum) death rate 2.4× 10−2 3.0× 10−1

αM Famine (maximum) death rate 1.6× 10−3 4.6× 10−2

βC Commoners birth rate 8.3× 10−2 4.6× 10−1

βE Elites birth rate 1.1× 10−1 4.8× 10−1

s Subsistence salary per capita 3.3× 10−3 3.1× 10−2

ρ Threshold wealth per capita 5.8× 10−4 2.1× 10−3

γ Regeneration rate of nature 2.5× 10−3 3.2× 10−2

λ Nature carrying capacity 5.8× 10−3 1.0× 10−1

κ Inequality factor 5.9× 10−2 4.2× 10−1

δ Depletion (production) factor 2.4× 10−2 2.7× 10−1

Variable
Description S1 ST(initial

value)
xC(0) Commoners population 1.9× 10−3 1.0× 10−2

xE(0) Elites population 4.5× 10−3 2.1× 10−2

y(0) Nature 4.5× 10−7 5.9× 10−9

w(0) Accumulated wealth 2.6× 10−3 3.2× 10−4

of parameters even when the likelihoods are intractable [36]. In ABC algorithms, the
functions of likelihood are not calculated, but the likelihood is approximated by the
comparison of observed and simulated data [36].

Let us assume, that θ ∈ Rn, n ≥ 1 is a vector of n parameters and p(θ) is a prior
distribution. Then the goal of ABC approach is to approximate the posterior distribution
p(θ|D) where D is the real data [1]. The posterior distribution is approximated in the
following way:

p(θ|D) ∝ f(D|θ)p(θ), (5)

where f(D|θ) is the function of likelihood of θ given the dataset D [35].
Among the variety of different approaches, one of the most useful is the ABC-SMC

algorithm that uses the sequential Monte Carlo (M-C) method [7]. The major novelty, in
comparison with previous methodologies (e.g., ABC-MCMC [24]), is the introduction
of a set of particles θ(1), . . . , θ(S)(parameter values sampled from a prior distribution
p(θ)), used to produce a sequence of intermediate distributions p(θ|d(D, D̃) ≤ εi) (for
i = 1, . . . , T − 1) [36]. The particles’ M-C propagation stops when a good representa-
tion of the target distribution (p(θ|d(D, D̃) ≤ εT )) is achieved. The set of error toler-
ance thresholds is chosen to be a decreasing sequence ε1 > · · · > εT ≥ 0 that ensures
the convergence of the intermediate probability distributions (of the parameters values)
to the target ones. In the ABC-SMC algorithm, the parameter perturbation kernel can
be simulated by the random walk procedure, with Gaussian or uniform functions [36].
Simultaneously, an adequately large set of particles will allow the Markov process to
avoid low-probability regions and local minima in the parameter space.
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2.5 ABC-SMC training results

For training the Handy model we use the ABC-SMC algorithm assuming that:

1. the number of particles, S = 100;
2. we fix the training time, tmax;
3. we set intervals of possible values of parameters to be±10% of exact (ground truth)

ones (see Tab.1);
4. the cost function is the root-mean-square error (RMSE).

Thus we assume that we know some approximate values of parameters. However, in
the future we should also investigate the robustness of ABC-SMC and Supermodel-
ing against prior selection of the values of the sub-models’ parameters. In Tab.3A, and
Tab.3B we present the training time (CPU time) and the RMSE errors of predictions for
the Handy model for two pre-defined training error goals: RMSE=50 and 100, respec-
tively. The timings were measured for the layout presented in Fig.2. We observe more
than a ten-fold increase of the computational time when RMSE training precision goes
from 100 to 50 (in dimensionless units) for sparsely sampled data. But for denser sam-
pling, this increase is only two-fold. We do not observe, in either case, any increase of
the overall prediction quality with training precision. Meanwhile, one can notice signs
of overfitting. A small increase is observed only for forward prediction (C). However,
this improvement does not compensate the substantial decrease in backward prediction
(A) quality. Summing up, both decreasing the training error and increasing the sampling
frequency may lead to overfitting, so careful design is needed.
Table 3. The averaged CPU times and the prediction accuracies for the ABC-SMC training, to
achieve given errors (RMSE = 50 and 100) with the ground truth training data. Results for
sparser ∆T1 = 10 and denser ∆T2 = 3 sampled data.

Sampling ∆T1 = 10 ∆T2 = 3

Training Training Overall Backward Forward Training Overall Backward Forward
error time prediction prediction prediction time prediction prediction prediction
[RMSE] [s] [RMSE] [RMSE] [RMSE] [s] [RMSE] [RMSE] [RMSE]
50.0 1894.89 1387.58 1337.08 1369.54 248.51 1402.46 1303.10 1436.00
100.0 162.29 1303.83 1012.57 1456.40 111.74 1335.02 915.79 1559.29

3 Supermodeling the Handy system

3.1 Supermodeling by data assimilation between models

The Supermodeling approach is described in detail in the Introduction. Below we enu-
merate the main steps.

1. Create a small number M of instances (the sub-models) of the baseline model,
initializing their parameters with a rule-of-thumb and/or using expert knowledge.

2. Pretrain every sub-model µ = 1, . . . ,M by using a classical DA procedure on
the samples from Fig.2B. New parameter sets will thus be generated for each sub-
model.
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3. Create the Supermodel by coupling the ODEs from Eqs.3 through the most sensitive
dynamical variable, as in Eq.1, but with Ki = 0 and Ciµν = 0 for i 6= 1 (Fig 1a).

4. Train the coupling factorsCiµν of the Supermodel on the sampled data from Fig.2B,
according to the scheme sketched below, until either the RMS error relative to GT
falls below a designated value or the elapsed training time reaches tmax.

5. The Supermodel trajectory is defined by averaging the sub-models states (Eq.2).

3.2 Training details

Unlike the classical DA training scheme described in Section 2.5, we fix not only the
maximum time tmax but also the time needed for pretraining each of the sub-models
tsub. We pretrain M = 3 sub-models with ABC-SMC (one by one, each for a time
tsub) and couple them via the most sensitive variable xE , to form the Supermodel. We
also restrict the coupling coefficients to a fixed interval [0, 0.5] (as in [12]). Further-
more, to speed-up the DA process, we divide the training data from Fig.2B into five
subintervals (mini batches) of the same length. Finally, we train the Supermodel with
the ABC-SMC algorithm on the sequence of mini batches one after another for the
estimated time tsumo = tmax − tsub (where tsub is the mean time of pretraining the
sub-models). Because the processes of pretraining the sub-models are independent, we
have assumed that they are calculated in parallel. Then the normalized time for the
Supermodel training will be equal to tmax.

We have performed the computations on the Prometheus supercomputer located
in the ACK Cyfronet AGH UST, Krakow, Poland. We have used just one node, that
consists of 8 CPUs (Intel Xeon E5-2680 v3, 2.5 GHz) with 12 cores each, giving 96
computational cores in total.

3.3 Results

Here we compare the Supermodeling scheme with the ABC-SMC DA algorithm with
four different time budgets tmax: 14, 50, 100 and 250 seconds. Toward this end, we
have constructed several Supermodels, each consisting of M=3 differently initialized
sub-models. Each sub-model was pretrained for a given short time period tsub < tmax.
We have selected several combinations, constructing four Supermodels which differ in
the sub-models’ pretraining time. We have repeated Supermodel training and testing
procedure ten times for each pair (tmax, tsub) and for various parameter initializations.
Next, we have removed zeroth and tenth 10-quantiles from the results. The RMSE val-
ues on the test set (backward prediction, forward prediction and overall prediction)
were averaged and the standard deviation was calculated. We present these averages for
both sparsely (∆T1 = 10) (see Tab.4A) and densely (∆T2 = 3) sampled datasets (see
Tab.4B). .

As shown in Tab.4A and Tab.4B, the forward prediction RMSE error is a few times
smaller for two-stage Supermodeling than for the classical parameter estimation with
the ABC-SMC algorithm, for both sparse and denser datasets, and for all time regimes.
Furthermore, with the ABC-SMC algorithm, longer learning appears to cause overfit-
ting. It is important to mention that the ABC-SMC algorithm reaches the minimum
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Table 4. RMS errors for the ABC alogorithm and for the supermodel, for sparser (A) ∆T1 =
10, and denser (B) ∆T2 = 3 datasets. Supermodel {X} is the Supermodel with the sub-model
pretraining time tsub set to X seconds. The better result for each case is shown in bold.

Sampling ∆T1 = 10 ∆T2 = 3

Time
Method

Overall Backward Forward
Method

Overall Backward Forward
regime prediction prediction prediction prediction prediction prediction
[s] [RMSE] [RMSE] [RMSE] [RMSE] [RMSE] [RMSE]

14 s
ABC-SMC 4586.38 4273.77 4879.00 ABC-SMC 5708.75 5181.07 6191.62
Supermodel 10 1897.73 2497.55 982.33 Supermodel 12 2453.95 3128.33 1502.42

50 s
ABC-SMC 1238.31 1213.21 1262.92 ABC-SMC 2543.26 2436.65 2645.58
Supermodel 35 1710.62 2350.98 570.37 Supermodel 20 1959.12 2652.73 799.61

100 s
ABC-SMC 1153.41 947.22 1327.96 ABC-SMC 1315.0 930.0 1510.0
Supermodel 70 665.46 762.62 551.45 Supermodel 60 855.24 1098.18 506.83

250 s
ABC-SMC 1380.90 1511.72 1236.32 ABC-SMC 1410.4 1355.1 1401.0
Supermodel 70 466.33 548.09 366.78 Supermodel 70 600.08 795.76 294.87

RMSE after about 70 seconds of training. (The minimum is flat up to 120 seconds and
afterwards RMSE grows due to overfitting.) Therefore, for Supermodel 70, composed
of sub-models pretrained in 70 seconds, we obtain a radically lower RMSE, as com-
pared to that for ABC-SMC, as total training time increases.

Turning attention to backward prediction, we note that although the Supermodeling
approach is still convincingly better for overall prediction (except in one case) than the
classical DA algorithm, the advantage for backward prediction is not so radical as for
forward prediction. This bias can be clearly seen in Fig.3 and Fig.4, particularly, for
the normalized RMSE plot. This behviour is not seen with the ABC-SMC algorithm.
It is the result of the specific training procedure we employed for the Supermodeling
algorithm. The algorithm is trained in five mini-batches starting from the left-hand side
of the training interval (Fig.2B). Consequently, the fitting accuracy is highest at the
right-hand side of the B interval. At the last training point (t = 600) the standard
deviation is equal to 0, while at the first point (t = 450) it is distinctly greater.

In summary, we conclude that the Supermodeling scheme results in predictions
closer to the actual time series and with lower uncertainties, especially, for the for-
ward prediction task. We have observed similar effects for other data, as presented in
[31].

4 Discussion and Related Work

Classical data assimilation procedures were formulated on the basis of variational and
Bayesian frameworks [2, 26]. The existing DA algorithms can be divided onto two main
groups: (1) sequential-Monte-Carlo-based (e.g., [3]) and (2) Kalman-filter-based meth-
ods (e.g., [28]) 6, which have formed the core of many other DA algorithms (e.g., [5]).
Over the years, the majority of research in this direction was focused primarily on the
improvement of the predictions’ accuracy on tasks ranging from small-scale problems

6 Kalman filtering is equivalent to the popular 4D-Var algorithm, for a perfect model
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Fig. 3. The results for sparsely (∆T1 = 10) sampled data and tmax = 14 seconds. Comparison
between the value of Commoners predicted by the ABC-SMC method (grey), the Supermodeling
(blue) and the ground truth (points), where lines are averaged predictions, while the boundaries
of the shaded areas are at mean ± one standard deviation for each ground truth point: (Top)
actual; (Bottom) normalized to the value of the ground truth.

(e.g. [20]) to weather prediction [18]. Recently, more and more studies have attempted
to speed-up data assimilation methods and to enable their use with extremely complex
multi-scale models (e.g., [26, 19]).

The greatest challenge that arises with sequential Monte-Carlo-based methods (i.e.,
the ABC-SMC algorithm), is the requirement that a very large number of simulations
need be performed, especially for the inverse problem of estimating parameters. That
is, parameters can be adjoined to the model state and treated as variable quantities to
be estimated - the second level of abstraction in the use of DA. But the number of re-
quired simulations increases exponentially with the number of model parameters (see
e.g. [17]). To outperform the classical DA schemes, the current studies usually intro-
duce either small algorithmic nuances (i.e. [6, 15]) or algorithm implementations that
support parallelization (i.e. [19]). For Kalman-filter-based data assimilation, the studies
propose faster implementations of the algorithms [26] or hybridization with the ABC-
SMC method (e.g. [8]). However, the aforementioned optimization approaches do not
change the basic paradigms or improve DA performance radically.

In the era of deep learning, formal predictive models are often replaced (or supple-
mented) with faster data models for which the role of data assimilation in estimating
parameters is played by the learning of black box (e.g., neural network) parameters. In
general, learning a black box is a simpler procedure than data assimilation to a formal
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Fig. 4. The results for densely sampled data and tmax = 14 seconds. Comparison between the
value of Elites predicted by the ABC-SMC method (grey), the Supermodeling (green) and the
ground truth (points), plotted as in Fig. 3

model. A very interesting data modeling concept, very competitive with formal models
in the prediction of spatio-temporal patterns in chaotic systems, is that of Echo State
Machines [16, 22], particularly the Reservoir Computing (RC) approach [23]. No prior
model based on physics or other knowledge is used.

In contrast, the Supermodeling paradigm, unlike the purely data-based RC and DA
approaches, relies on the knowledge already encoded in formal models and on the par-
tial synchronization of the chosen imprecise sub-models to supplement the knowledge
contained in any one sub-model. The original type of supermodel relied on synchroniza-
tion of the sub-models by nudging them to one another, while simultaneously nudging
them to the GT data [4]. The inter-model nudging effectively gives inter-model data
assimilation, with nudging coefficients that can be estimated based on overall error
relative to truth. Thus standard DA methods, having been employed first to estimate
states, then to adjust a model itself by estimating its parameters, are now used to esti-
mate inter-model couplings in a suite of models - an even higher level of abstraction
in the application of DA [9, 10]. This type of Supermodeling was successfully used for
ensembling toy dynamical models [4, 10] like Lorenz systems (Lorenz 63, Lorenz 84)
and for combining simplified climate models (see e.g., [37]).

Recent results showed that the Supermodeling approach can also be applied in
modeling complex dynamical biological processes such as tumor evolution. In [13]
we demonstrated that in a Supermodel of melanoma the tumor evolution can be con-
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trolled by the sub-models’ coupling factors C, producing a few qualitatively different
tumor evolution patterns observed in reality. Recently, we have successfully assimi-
lated ground truth data to the supermodel, using genetic algorithms [33]. However, due
to computational complexity and the need for heavy High-Performance Computing, we
are now implementing the more efficient procedure described in this paper.

5 Conclusions and Future Work

Herein we propose a novel metaprocedure for computational modeling, rooted in an
extended use of data assimilation. It leads to a radical decrease in the number of free
parameters, as compared to those in the source dynamical model, by ensembling a few
imperfect sub-models - i.e., inaccurate and weak solutions of a classical DA-based pre-
training scheme – within a single Supermodel. The case study demonstrates that due
to the sub-models’ synchronization, a small number of the Supermodel metaparame-
ters can be estimated, based on assimilated observations, much faster than the full set
of parameters in the overparametrized source model. Consequently, “effective param-
eter estimation” based on Supermodeling can produce more accurate predictions than
those that could be obtained using traditional data assimilation methods to estimate a
single model’s parameters in reasonable time. It is crucial to mention that DA-based
Supermodeling can be used with any given data assimilation procedure. The ABC-
SMC algorithm was used here as the baseline classical DA method. Supermodeling
plays only the role of the meta-framework dedicated to accelerating the modeling pro-
cess.

We realize that our results can be treated as preliminary. A specific model was con-
sidered, and data assimilation was run on optimally selected working regimes and syn-
thetic data. However, taking into account previous experience and more complicated
phenomena simulated successfully by Supermodeling, one can expect that this proce-
dure has wider prospects. Of course, there are still many unresolved issues, for example:
how to generate efficiently the best sub-models and how many? How robust is the Super-
model against variations in noise, uncertainity and number of data samples? Herein we
have assumed that the sub-models were generated in parallel because the pretraining of
each can be performed independently. However, the total CPU time still increases pro-
portionally with the number of sub-models. One can imagine that the sub-models could
instead be generated by a single ABC-SMC procedure during the pretraining phase,
by selecting more than one of the best solutions along the way. We plan to check this
strategy in the very near future. We have taken as the ground truth the exact results
from the reference (baseline) model. It would be worthwhile to check the quality of
Supermodel predictions for disturbed data, which better simulate real observations. We
are also considering a case study where the sub-models are simplfied versions of the
baseline model (preliminary results can be found in [31]). This way, the differences
between the Supermodel and the ground-truth simulator, could better reflect the dif-
ferences between the computational model and reality. Summarizing, the application
of Supermodeling can be an effective remedy to the curse of dimensionality problem,
caused by model overparameterization.
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