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Abstract. We extend the Physics-Informed Echo State Network (PI-
ESN) framework to reconstruct the evolution of an unmeasured state
(hidden state) in a chaotic system. The PI-ESN is trained by using (i)
data, which contains no information on the unmeasured state, and (ii) the
physical equations of a prototypical chaotic dynamical system. Non-noisy
and noisy datasets are considered. First, it is shown that the PI-ESN can
accurately reconstruct the unmeasured state. Second, the reconstruction
is shown to be robust with respect to noisy data, which means that
the PI-ESN acts as a denoiser. This paper opens up new possibilities for
leveraging the synergy between physical knowledge and machine learning
to enhance the reconstruction and prediction of unmeasured states in
chaotic dynamical systems.
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1 Introduction

In physical science experiments, it is often difficult to measure all the physical
states, whether it be because the instruments have a finite resolution, or because
the measurement techniques have some limitations. Consequently, we are typi-
cally able to infer only a few states of the system from the measured observable
quantities. The states that cannot be measured are hidden, that is, they may af-
fect the system’s evolution, but they cannot be straightforwardly measured. The
accurate reconstruction of hidden states is crucial in many fields such as cardiac
blood flow modelling [13], climate science [6], and fluid dynamics [2], to name
only a few. For example, in fluid dynamics, measurements of the velocity field
with particle image velocimetry may be limited to the in-plane two-dimensional
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velocity, although the three-dimensional velocity is the quantity of interest. The
reconstruction of unmeasured quantities from experimental measurements has
been the subject of recent studies, that used a variety of data assimilation and/or
machine learning techniques. For example, spectral nudging, which combines
data assimilation with physical equations, was used to infer temperature and
rotation rate in 3D isotropic rotating turbulence [3]. Alternatively, [5] recon-
structed the fine-scale features of an unsteady flow from large scale information
by using a series of Convolutional Neural Networks. Using a similar approach,
the reconstruction of the velocity from hydroxyl-radical planar laser induced flu-
orescence images in a turbulent flame was also performed [1]. Another approach
based on echo state networks has also been used for the reconstruction of time
series of unmeasured states of chaotic systems [9]. While effective in reconstruct-
ing the unmeasured states, these approaches required training data with both
the measured and unmeasured states. In this paper, we propose using physical
knowledge to reconstruct hidden states in a chaotic system without the need of
any data of the unmeasured states during the training. This is performed with
the Physics-Informed Echo State Network (PI-ESN), which has been shown to
be suited to the accurate forecasting of chaotic systems [4]. The PI-ESN, and
more generally Physics-Informed Machine Learning, relies on using the physical
knowledge of the system under study, in the form of its conservation equations,
and adding the computations of these conservation equations in the loss function
during the training of the machine learning framework [4,12]. These approaches,
which combine physical knowledge and machine learning, have been shown to
be efficient in improving the accuracy of neural networks [4, 12]. The PI-ESN
approach will be, here, applied to the Lorenz system, which is a prototypical
chaotic system [8].

The paper is organized as follows. The problem statement and the method-
ology based on PI-ESN are detailed in Sect. 2. Then, results are presented and
discussed in Sect. 3 and final comments are summarized in Sect. 4.

2 Methodology: Physics-Informed Echo State Network
for learning of hidden states

We consider a dynamical system whose governing equations are:

F(y) ≡ ẏ +N (y) = 0 (1)

where F is a non-linear operator, ˙ is the time derivative and N is a nonlinear
differential operator. Eq. (1) represents a formal ordinary differential equation,
which governs the dynamics of a nonlinear system. It is assumed that only a
subset of the system states can be observed, which is denoted z ∈ RNz , while
the hidden states are denoted h ∈ RNh . The full state vector is y ∈ RNy , which
is the concatenation of z and h, i.e., y = [z;h]. The vectors’ dimensions are
related by Ny = Nz +Nh. The objective is to train a PI-ESN to reconstruct the
hidden states, h. We assume that we have training data of the measured states
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z(n) only, where n = 0, 1, 2, . . . , Nt − 1 are the discrete time instants that span
from 0 to T = (Nt − 1)∆t, where ∆t is the sampling time. Thus, the specific
goal for the PI-ESN is to reconstruct the hidden time series, h(n), for the same
time instants. To solve this problem, the PI-ESN of [4], which is based on the
data-only ESN of [10], needs to be extended, as explained next.

The PI-ESN is composed of three main parts (Fig. 1): (i) an artificial high
dimensional dynamical system, i.e., the reservoir, whose neurons’ (or units’)
states at time n are represented by a vector, x(n) ∈ RNx , representing the
reservoir neuron activations; (ii) an input matrix, Win ∈ RNx×(1+Nu), and (iii)
an output matrix, Wout ∈ RNy×(Nx+Nu+1). The reservoir is coupled to the input
signal, u ∈ RNu , via Win. A bias term is added to the input to excite the reservoir
with a constant signal. The output of the PI-ESN, ŷ, is a linear combination of
the reservoir states, inputs and an additional bias:

ŷ(n) = [ẑ(n); ĥ(n)] = Wout[x(n);u(n); 1] (2)

where [; ] indicates a vertical concatenation and ·̂ denotes the predictions from
the PI-ESN. The PI-ESN outputs both the measured states, ẑ, and the hidden
states, ĥ (Eq. (2)). The reservoir states evolve as:

x(n) = tanh (Win[u(n); 1] + Wx(n− 1)) (3)

where W ∈ RNx×Nx is the recurrent weight matrix and the (element-wise)
tanh function is the activation function for the reservoir neurons. Because we
wish to predict a dynamical system, the input data for the PI-ESN corresponds
to the measured system state at the previous time instant, u(n) = z(n − 1),
which is only a subset of the state vector. In the ESN approach [10], the input
and recurrent matrices, Win and W , are randomly initialized once and are not
trained. Only Wout is trained. The sparse matrices Win and W are constructed
to satisfy the Echo State Property [10]. Following [11], Win is generated such that
each row of the matrix has only one randomly chosen nonzero element, which
is independently taken from a uniform distribution in the interval [−σin, σin].
Matrix W is constructed with an average connectivity 〈d〉, and the non-zero
elements are taken from a uniform distribution over the interval [−1, 1]. All
the coefficients of W are then multiplied by a constant coefficient for the largest
absolute eigenvalue of W , i.e. the spectral radius, to be equal to a value Λ, which
is typically smaller than (or equal to) 1. To train the PI-ESN, hence Wout, a
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Fig. 1. Schematic of the ESN. 1© indicates the bias.
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combination of the data available and the physical knowledge of the system is
used: the components of Wout are computed such that they minimize the sum
of (i) the error between the PI-ESN prediction and the measured system states,
Ed, and (ii) the physical residual, F(ŷ(n)), on the prediction of the ESN, Ep:

Etot =
1

Nt

Nt−1∑
n=0

1

Nz

Nz∑
i=1

||ẑi(n)− zi(n)||2︸ ︷︷ ︸
Ed

+
1

Nt

Nt−1∑
n=0

1

Ny

Ny∑
i=1

||F(ŷi(n))||2︸ ︷︷ ︸
Ep

(4)

where || · || is the Euclidean norm. The training of the PI-ESN for the recon-
struction of hidden states is initialized as follow. Matrix Wout is split into two
partitions Wz,out and Wh,out, i.e. Wout = [Wz,out;Wh,out], which are responsi-
ble for the prediction of the observed states, ẑ = Wz,out[x(n);u(n); 1], and the

hidden states, ĥ = Wh,out[x(n);u(n); 1], respectively. Wz,out is initialized by
Ridge regression of the data available for the measured states

Wz,out = ZXT
(
XXT + γI

)−1
(5)

where Z and X are respectively the horizontal concatenation of the measured
states, z(n), and associated ESN states, inputs signals and biases, [x(n);u(n); 1]
at the different time instants during training; γ is the Tikhonov regularization
factor [10]; and I is the identity matrix. Matrix Wh,out is randomly initialized to
provide an initial guess for the optimization of Wout. The optimization process
modifies the components of Wout to obtain the hidden states, while ensuring that
the predictions on the hidden states satisfy the physical equations. The optimiza-
tion is performed with a stochastic gradient method (the Adam-optimizer [7])
with a learning rate of 0.0001.

3 Results and Discussions

The approach described in Sect. 2 is tested for the reconstruction of the chaotic
Lorenz system, which is described by [8]:

φ̇1 = σ(φ2 − φ1), φ̇2 = φ1(ρ− φ3)− φ2, φ̇3 = φ1φ2 − βφ3 (6)

where ρ = 28, σ = 10 and β = 8/3. The size of the training dataset is Nt = 20000
with a timestep between two time instants of ∆t = 0.01. An explicit Euler
scheme is used to obtain this dataset. We assume that only measurements of
φ1 and φ2 are available for the training of the PI-ESN and the state φ3 is to
be reconstructed. The parameters of the reservoir of the PI-ESN are taken to
be: σin = 1.0, Λ = 1.0 and 〈d〉 = 20. For the initialization of Wz,out via Ridge
regression, a value of γ = 10−6 is used for the Tikhonov regularization. These
values of the hyperparameters are taken from previous studies [9], who performed
a grid search.
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3.1 Reconstruction of hidden states

In Fig. 2 where the time is normalized by the largest Lyapunov exponent, λmax =
0.934, the reconstructed φ3 time series is shown for the last 10% of the training
data for PI-ESNs with reservoirs of 50 and 600 units. (The dominant Lyapunov
exponent is the exponential divergence rate of two system trajectories, which are
initially infinitesimally close to each other.) The small PI-ESN (50 units) can
satisfactorily reconstruct the hidden state, φ3. The accuracy slightly deteriorates
when φ3 has very large minima or maxima (e.g., λmaxt = 202). However, the
large PI-ESN (600 units) shows an improved accuracy. The ability of the PI-ESN
to reconstruct φ3, which is not present in the training data, is a key-result. The
reconstruction is enabled exclusively by the knowledge of the physical equation,
which is constrained into the training of the PI-ESN. This constraint allows the
PI-ESN to deduce the evolution of φ3 from φ1 and φ2. Conversely, with neither
the physical equation nor training data for φ3, a data-only ESN cannot learn
and reconstruct φ3 because it has no information on it.

True
PI-ESN 50
PI-ESN 600

Fig. 2. Reconstruction of φ3.

3.2 Effect of noise

As the ultimate objective is to work with real-world experimental data, the
effect of noise on the results is investigated. The training data for φ1 and φ2
are modified by adding Gaussian noise to the original signal to imitate additive
measurements noise. Two Signal-to-Noise Ratios (SNRs) of 20 dB and 40 dB
are considered. The results of the reconstructed φ3 time series from the PI-
ESN trained with the noisy training data are presented in Fig. 3. Despite the
presence of noise in the training data, the PI-ESN well reconstructs the non-
noisy φ3 signal. This means that the physical constraints in Eq. (4) act as a
physics-based smoother (or denoiser) of the noisy data. This can be appreciated
also in the prediction of measured states. Figure 3b shows the prediction of state
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φ1: the non-noisy original data (full black line) and the prediction from the PI-
ESN (dashed red line) overlap. This means that the PI-ESN provides a denoised
prediction after training. Finally, Fig. 4 shows the root mean squared error of

(a) (b)

True
PI-ESN (SNR=20dB)
PI-ESN (SNR=40dB)

True (non-noisy)
Noisy data (SNR=20dB)
PI-ESN

Fig. 3. (a) Reconstruction of φ3 with PI-ESN of 600 units trained from noisy data
(with zoomed inset). (b) Prediction of φ1.

the reconstructed hidden state φ̂3, RMSE =
√

1
Nt

∑Nt−1
n=0 (φ3(n)− φ̂3(n))2, for

PI-ESNs of different reservoir sizes and noise levels, where φ3(n) is the reference
non-noisy data, which we wish to recover. For the non-noisy case, there is a large
decrease in the RMSE when the PI-ESNs has 300 units (or more). With noise,
the performance between the non-noisy and low-noise (SNR = 40 dB) cases are
similar, whereas for a larger noise level (SNR = 20 dB), a larger reservoir is
required to keep the RMSE small, as it may be expected. This suggests that the
PI-ESN approach may be robust with respect to noise.

No noise

SNR=40dB

SNR=20dB

Fig. 4. RMSE of the reconstructed φ3 time series in the training data.

4 Conclusions and future directions

We extend the Physics-Informed Echo State Network to reconstruct the hidden
states in a chaotic dynamical system. The approach combines the knowledge of
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the system’s physical equations and a small dataset. It is shown, on a prototyp-
ical chaotic system, that this method can (i) accurately reconstruct the hidden
states; (ii) accurately reconstruct the states with training data contaminated
by noise; and (iii) provide a physics-based smoothing of the noisy measured
data. Compared to other reconstruction approaches, the proposed framework
does not require any data of the hidden states during training. This has the po-
tential to enable the reconstruction of unmeasured quantities in experiments of
higher dimensional chaotic systems, such as fluids. This is being explored in on-
going studies. Future work also aims at assessing the effect of imperfect physical
knowledge on the reconstruction of the hidden states.

This paper opens up new possibilities for the reconstruction and prediction
of unsteady dynamics from partial and noisy measurements.
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