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Abstract. Porous media and conduit coupled systems are heavily used in a vari-
ety of areas such as groundwater system, petroleum extraction, and biochemical
transport. A coupled dual porosity Stokes model has been proposed to simulate
the fluid flow in a dual-porosity media and conduits coupled system. Data assim-
ilation is the discipline that studies the combination of mathematical models and
observations. It can improve the accuracy of mathematical models by incorporat-
ing data, but also brings challenges by increasing complexity and computational
cost. In this paper, we study the application of data assimilation methods to the
coupled dual porosity Stokes model. We give a brief introduction to the coupled
model and examine the performance of different data assimilation methods on
a finite element implementation of the coupled dual porosity Stokes system. We
also study how observations on different variables of the system affect the data
assimilation process.

Keywords: Data assimilation · Dual porosity · Stokes equation · Multiphysics.

1 Introduction

Hou et al. [6] has proposed the Coupling of dual porosity flow with free flow as a re-
placement of the widely used Stokes-Darcy family. The proposed model has a better
representation than the traditional Stokes Darcy model in modeling fractured porous
media with large conduits. Potential applications of this model include petroleum ex-
traction, hydrology, geothermal systems, and carbon sequestration. A finite element
implementation of this model using FEniCS has been developed and studied by the
authors [8]. Data assimilation is the discipline that studies the combination of mathe-
matical models and observations. In this paper, we will apply data assimilation methods
to the implementation of the coupled model to improve the accuracy of the model pre-
dictions [4,9].

In Section 2, we give an introduction to the mathematical model of the coupled dual
porosity Stokes model proposed by Hou et al. [6]. In Sections 3 and 4 we illustrate the
applications of data assimilation methods on the coupled dual porosity Stokes model.
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We set up a data assimilation context from our model in Section 3. We present the
numerical results based on synthetic data in Section 4. In Section 5 we draw conclusions
and discuss future works.

2 A Coupled Dual Porosity Stokes Model

The dual porosity Stokes model proposed by Hou et al. [6] consists of a dual porosity
porous subdomain and a conduit subdomain. An example is show in Fig. 1 where Ωd
represents the porous subdomain and Ωc represents the conduit subdomain. Each sub-
domain has its own set of boundary conditions, represented by Γd and Γc respectively in
the figure. The interface Γcd is the only place where the two subdomains communicate
with each other.

Γcd

Γd

Γd

ΓdΩd

Γc

Γc

ΓcΩc

Fig. 1. A simplified coupled model in 2D.

Barenblatt et al. [2] first proposed the dual porosity model in 1960. Later in 1963,
Warren and Root [16] studied the model thoroughly. In a dual porosity medium, two
subsystems are assumed. One is the matrix subsystem, which has high porosity and low
permeability, and the other is the microfracture subsystem, which has low porosity and
high permeability. The dual porosity equations governing the dual porosity subdomain
Ωd in our coupled dual porosity Stokes model are

φmCmt
∂ pm

∂ t
−∇ · km

µ
∇pm =−Q, (1)

φ fC f t
∂ p f

∂ t
−∇ ·

k f

µ
∇p f = Q+qp. (2)

The constant µ represents the dynamic viscosity. The constants km and k f represent the
intrinsic permeability, φm and φ f the porosities, Cmt and C f t the total compressibility,
of the matrix and the microfracture subsystems respectively. The variables pm and p f
are the flow pressure of the matrix and the microfracture subsystems respectively. The
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coefficient function qp is the sink/source term. The term Q denotes the mass transfer
rate per unit volume from the matrix subsystem to the microfracture subsystem and is
defined as

Q =
σkm

µ
(pm− p f ), (3)

where the parameter σ represents the characteristic of the fractured rock and is com-
monly known as the shape factor. Formulas for calculating σ can be found in Warren
and Root [16] and Mora and Wattenbarger [12].

We assume the flow in the conduit domain is Stokes flow and thus describe it using
the Stokes equation in (4) and (5). Note that the model can be extended to other free
flow models such as the incompressible Navier-Stokes model, as proposed in [4].

∂u
∂ t
−∇ ·TTT (u, p) = f , (4)

∇ ·u = 0. (5)

The two variables, the flow velocity vector u and the flow pressure p, together describe
the state of the flow. The constant ν represents the kinematic viscosity. The vector
valued function f is a general body force term. The operator TTT (u, p) := 2ν DDD(u)− pIII
is the stress tensor and DDD(u) := 1

2 (∇u+∇T u) is the deformation tensor, where III is the
identity matrix.

Four interface conditions are imposed:

−km

µ
∇pm · (−ncd) = 0, (6)

u ·ncd =−
k f

µ
∇p f ·ncd , (7)

−nT
cd TTT (u, p)ncd =

p f

ρ
, (8)

−PPPτ(TTT (u, p)ncd) =
αν
√

N√
trace(ΠΠΠ)

(
u+

k f

µ
∇p f

)
, (9)

where ncd is the unit normal vector of the interface Γcd , pointing toward Ωd . The func-
tion PPPτ is the projection operator onto the local tangent plane of Γcd . The constant α is
dimensionless and depends on the properties of the fluid and the permeable material.
The constant ρ is the fluid density. The constant N is the space dimension. ΠΠΠ := k f III is
the intrinsic permeability of the microfracture subsystem.

Equation (6) represents the no mass exchange condition between the matrix subsys-
tem in Ωd and the conduit. This is an assumption based on of the huge difference in per-
meabilities between the matrix and the microfracture subsystems. Equation (7) imposes
conservation of mass exchange between the conduit and the microfracture subsystem
on the interface. Equation (8) balances the two forces on the interface: the kinetic pres-
sure in the microfracture subsystem and the normal component of the normal stress
in the free flow. Equation (9) is the empirical Beavers-Joseph interface condition [3],
which claims that the tangential component of the normal stress incurred by the free
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flow along the interface is proportional to the difference of the tangential component of
flow velocities at two sides of the interface.

By introducing test function [ψm,ψ f ,vT ,q]T , the coupled dual porosity Stokes PDE
system defined by (1)–(9) has the variational form,

∫
Ωd

(
φmCmt

∂ pm

∂ t
ψm +

km

µ
∇pm ·∇ψm +

σkm

µ
(pm− p f )ψm

)
dΩ

+
∫

Ωd

(
φ fC f t

∂ p f

∂ t
ψ f +

k f

µ
∇p f ·∇ψ f +

σkm

µ
(p f − pm)ψ f

)
dΩ

+η

∫
Ωc

(
∂u
∂ t
· v+2ν DDD(u) :DDD(v)− p∇ · v

)
dΩ

+η

∫
Γcd

(
1
ρ

p f v ·ncd +
αν
√

N√
trace(ΠΠΠ)

PPPτ

(
u+

k f

µ
∇p f

)
· v

)
dΓ

+η

∫
Ωc

∇ ·uqdΩ −
∫

Γcd

u ·ncdψ f dΓ

= η

∫
Ωc

f · vdΩ +
∫

Ωd

qpψ f .

(10)

A finite element implementation using the automated partial differential equation
(PDE) solving platform FEniCS [1,11] has been developed by the authors [8]. The
backward Euler time stepping scheme was used for time discretization.

3 A Data Assimilation Problem Based on the Coupled Model

In order to apply data assimilation methods to the coupled dual porosity Stokes model,
we first convert the dual porosity Stokes model into a discrete dynamical system, and
define the observations on it.

Following the finite element analysis with backward Euler scheme, at timestep t
we solve the following equation system for the four variables in four finite functional
spaces,

A


p(t)m

p(t)f
u(t)

p(t)

= C


p(t−∆ t)

m

p(t−∆ t)
f

u(t−∆ t)

p(t−∆ t)

+b.
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The matrix A is assembled from the bilinear form

a




p(t)m

p(t)f
u(t)

p(t)

 ,


ψ
(t)
m

ψ
(t)
f

v(t)

q(t)




=
∫

Ωd

(
φmCmt

p(t)m

∆ t
ψm +

km

µ
∇pm ·∇ψm +

σkm

µ
(pm− p f )ψm

)
dΩ

+
∫

Ωd

φ fC f t
p(t)f

∆ t
ψ f +

k f

µ
∇p f ·∇ψ f +

σkm

µ
(p f − pm)ψ f

dΩ

+η

∫
Ωc

(
u(t)

∆ t
· v+2ν DDD(u) :DDD(v)− p∇ · v

)
dΩ

+η

∫
Γcd

(
1
ρ

p f v ·ncd +
αν
√

N√
trace(ΠΠΠ)

PPPτ

(
u+

k f

µ
∇p f

)
· v

)
dΓ

+η

∫
Ωc

∇ ·uqdΩ −
∫

Γcd

u ·ncdψ f dΓ .

The vector b is assembled from the linear form

L




p(t−∆ t)
m

p(t−∆ t)
f

u(t−∆ t)

p(t−∆ t)


= η

∫
Ωc

f · vdΩ +
∫

Ωd

qpψ f .

The matrix C is assembled from the bilinear form

c




p(t−∆ t)
m

p(t−∆ t)
f

u(t−∆ t)

p(t−∆ t)

 ,


ψ
(t)
m

ψ
(t)
f

v(t)

q(t)


=

∫
Ωd

φmCmt
p(t−∆ t)

m

∆ t
ψm +φ fC f t

p(t−∆ t)
f

∆ t
ψ f

dΩ

+η

∫
Ωc

u(t−∆ t)

∆ t
· vdΩ ,

and thus has the form

C =


φmCmt

∆ t IIIdm
φ f C f t

∆ t IIId f

IIIdu

0dp

 ,
where dm,d f ,du, and dp are the degrees of freedoms of pm, p f ,u, and p, respectively,
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If we let the state variable

vt =


p(t)m

p(t)f
u(t)

p(t)

 ,
the dynamical system can be expressed as

vt+∆ t =Ψ(vt)+ξt , (11a)

Ψ(vt) = A−1Cvt +A−1b, (11b)

where ξt ∼N (0,Σ) represents the model error. This dynamical system is linear. Note
that the coefficient matrix C is singular as is A−1C, the Jacobian of Ψ defined in (11).
Since some smoothing algorithms involve in inverting the Jacobian of the dynamical
system, we need to avoid singularities.

In general we can use the singular value decomposition to get around with singular-
ities. In our case, we let our state variable

v∗t =

p(t)m

p(t)f
u(t)

 .
The dynamical system becomes

v∗t+∆ t =Ψ
∗(v∗t )+ξt , (12a)

Ψ
∗(v∗t ) = (A−1)

∗C∗v∗t +(A−1)∗b∗, (12b)

where M∗ represents the matrix generated by removing the last dp rows and columns
from a matrix M, and b∗ is the vector from removing the last dp components of a vector
b. In fact (12) can also be formed from applying singular value decomposition to A−1C
in (11). Note that p(t) can still be calculated from p(t−∆ t)

m , p(t−∆ t)
f and u(t−∆ t), which in

turn can be calculated from p(t)m , p(t)f and u(t).
Similarly, the Dirichlet boundary conditions will also cause singularities as they do

not depend on previous boundary values. We remove all Dirichlet boundary values from
the state variable vt using the same technique.

We base the dynamical model on a two dimensional dual porosity Stokes model
shown in Figure 2. Let Ω = [−0.5,0.5]× [0,1] be a shifted unit square, Ωc = {(x,y) ∈
Ω | x≤ 0}, and Ωd = {(x,y) ∈Ω | x≥ 0}. The interface is Γcd = {(x,y) ∈Ω | x = 0}.
The domain is partitioned uniformly into 1

16 ×
1
16 squares.

Dirichlet boundary conditions on Γc and Γd , initial conditions for all variables, and
coefficients qp and f are constructed such that

pm = cos(πt)cos(x(−y+1))

p f =
(
(x2 + y2−2y+2)cos(πt)−10π sin(πt)

)
cos(xy− x)

u =

[
2xcos(πt)

2xcos(πt)−2ycos(πt)

]
p =−10π sin(πt)+

(
x2 +2x+ y2−2y+6

)
cos(πt)
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is the solution to our problem.

ΓcdΓc

Γc

Γc

Ωc

Γd

Γd

ΓdΩd

(−0.5,0)

(−0.5,1)

(0,0) (0.5,0)

Fig. 2. The 2D example model with a shifted unit square domain Ω = [−0.5,0.5]× [0,1], conduit
subdomain Ωc = {(x,y) ∈Ω | x≤ 0} and dual porosity subdomain Ωd = {(x,y) ∈Ω | x≥ 0}.

Also, we let ∆ t = 0.01, ξt ∼N (0,5III), v∗0 ∼N (0,100III). The large variance of v∗0
indicates that we have little knowledge about the initial condition.

For the observations, we assume we have direct observations to every 4 components
of v∗t at time t:

yt = h(v∗t )+ηt , (13a)
h(v∗t ) = Hv∗t , (13b)

ηt ∼N (0,5III), (13c)

where

H =


1 0 0 0 0 0 0 0 0 . . .
0 0 0 0 1 0 0 0 0 . . .
0 0 0 0 0 0 0 0 1 . . .
. . .

 .
We observe every 0.01 time unit starting at t = 0.01. Equations (12) and (13) together
defines the data assimilation problem we are solving. Data are generated synthetically.

4 Numerical Results

We run the model against the three dimensional variational method (3DVAR), the strong
constraint four dimensional variational method (s4DVAR) with a time window with
length 0.04, the extended Rauch-Tung-Striebel smoother (ExtRTS) [15], the extended
Kalman Filter (ExtKF) [10], the ensemble Kalman Fitler (EnKF) [7,5] with 100 par-
ticles, and ensemble Rauch-Tung-Striebel smoother (EnRTS) [13] with 100 particles.
Note that since we have a linear data assimilation problem, the extended methods Ex-
tRTS and ExtKF are just the Rauch-Tung-Striebel smoother (RTS) and the Kalman
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Filter (KF). We also use a baseline filtering method Forward that only uses the math-
ematical model Ψ and ignores all data. It starts at v∗0 = 0 and then applies Ψ ∗ to get
an approximation for v∗t . Since the model is linear, we expect an optimal solution by
ExtKF for filtering and ExtRTS for smoothing.

All numerical experiments were run with the data assimilation package DAPPER
[14] on the Teton computer cluster at the Advanced Research Computing Cluster (ARCC)
at the University of Wyoming.

The results of filtering on the model with such observations are in Table 1 and
the results of smoothing are in Table 2. Since we have a linear system with Gaussian
errors, the Kalman Filter and the Kalman Smoother are expected to have optimal data
assimilation solutions for filtering and smoothing, respectively, which is in accordance
with our numerical results. We see that the Kalman Filter, the Kalman Smoother and
3DVAR are efficient in our small linear model while ensemble methods and s4DVAR
are relatively slow.

Table 1. Average root mean square error for filtering (rmse f) and elapsed time

Forward 3DVAR ExtKF EnKF

rmse f 0.4717 0.2824 0.2604 0.2651
elapsed time 5s 1s 5s 56s

Table 2. Average root mean square error for smoothing (rmse s) and elapsed time

s4DVAR ExtRTS EnRTS

rmse s 0.3 0.1907 0.2033
elapsed time 121s 32s 62s

The error of different data assimilation methods over time are shown in Figures 3
and 4. Since Forward, 4DVAR, ExtKF, and EnKF all start with an initial guess ṽ0 = 0,
they all have the same predictions at t = 0.01. This is why they all have the same er-
ror at t = 0.01 for forecasting as shown in Figure 3. The predictions are made every
0.01 time units. ExtKF has a smaller forecasting error than all the other methods ex-
cept for 3DVAR. Our 3DVAR implementation utilizes all true states to approximate the
background covariance Bt . The exposure to the true states enables the 3DVAR imple-
mentation to surpass the theoretical optimal solution from the Kalman Filter. EnKF has
a result very similar to that of ExtKF. In EnKF, the calculations of mean and variance
of the states are approximated using the Monte Carlo method. Since the states follows a
Gaussian process, the approximations converge to the truths as the number of particles
increases. We can also see in Figure 4 that by utilizing all observations, the smoothing
error at t = 0.01 is reduced by half, comparing to the forecasting error in Figure 3. Note
that the Kalman Smoother ExtRTS achieves the best result at all time, and the ensem-
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ble Kalman Smoother EnRTS has a very similar result as ExtRTS, but consumes much
more computation time as shown in Table 2.

Note that the baseline method Forward also has a decreasing error with respect to
time. This is caused by the characteristics of our dynamical system. Because of the
essential boundaries in our coupled model, solutions to the PDE system with different
initial conditions all converge to each other as t→∞. This can also be explained by the
linear dynamical system. Consider a linear dynamical system with Ψ(vt) = Mvt where
‖M‖< 1. Then Ψ (n)(vt)→ 0 as t→ 0.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
time

0.0

0.5

1.0

1.5

2.0
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g 

ro
ot

 m
ea

n 
sq

ua
re

 e
rr

or
 (r

m
se

_f
)

Forward
3DVAR
4DVAR
ExtKF
EnKF

Fig. 3. Forecasting error of different filtering algorithms

The results of smoothing at t = 0.01 from s4DVAR and ExtRTS are shown in Fig-
ure 5. The results of filtering at t = 0.02 from 3DVAR and ExtKF are shown in Figure 6.
We can see from Figure 5 that by using limited observations, 4DVAR and ExtRTS are
able to recover the state close to true state. Also in Figure 6, we see that by using only
data at t = 0.01, 3DVAR and the Kalman Filter are able to predict a state at t = 0.02
that is much closer to true state comparing to the Forecast baseline method.

We also explore the importance of observations on different variables. With the
same settings on the dynamical system, we apply the Kalman Filter (ExtKF) to obser-
vations on pm, p f , and u separately. We still observe from t = 0.01 and observe every
0.01 time unit, but on all grid points. The results are presented in Figure 7

We can see from Figure 7 that the data on the flow pressure pm in the matrix sub-
system in the dual porosity subdomain provides most of the information while the other
two variables provide little improvement over the Forward baseline method, which uses
no observation at all. This behavior exists in all our test models with different boundary
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Fig. 4. Smoothing error of different smoothing algorithms

conditions, source terms and geometries. This phenomenon needs further investigation.
Here we conclude that in our limited test cases, observations on pm provide significant
information about the true states while observations on p f and u do not.

Lastly we show the result of the Kalman Filter and the Kalman Smoother on a 3D
coupled dual porosity Stokes model introduced in [8], with the mesh size h = 1/8 and
observations on pm only. All the other settings are the same as in the 2D model. The
results in Figure 8 validate the Kalman Filter and the Kalman Smoother on our 3D
models and real world applications.

5 Conclusions and Future Work

In this paper, we introduced the coupled dual porosity Stokes model. We set up a data
assimilation problem based on the coupled model and applied different data assimi-
lations to solve the problem. Due to the linearity of the coupled dual porosity Stokes
model, the Kalman Filter and the Kalman Smoother achieve optimal solutions for filter-
ing and smoothing, respectively, as expected. From our numerical experiments we have
seen that observations of pressures in the matrix subsystem contain most of the useful
information for data assimilation.

Future work includes exploring different data assimilation methods on the nonlin-
ear coupled dual porosity Navier-Stokes model, applying data assimilation methods
with experiment data and investigating the reason behind the uneven distribution of
information in different variables.
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p
m

Forecast 4DVAR ExtRTS Truth

p
f

u

Fig. 5. Results of smoothers at time t = 0.01 in the 2D model.
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p
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p
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Fig. 6. Results of filters at time t = 0.02 in the 2D model.
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Fig. 7. Forecasting error of Kalman Filter with different observations.
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Fig. 8. Forecasting and smoothing error of ExtKF and ExtRTS on the 3D model.
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