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Abstract. ​We developed a crawler to collect live malware distribution network           
data from publicly available sources including Google Safe Browser and          
VirusTotal. We then generated a dynamic graph with our visualization tool and            
performed malware attribution analysis. We found: 1) malware distribution         
networks form clusters rather than a single network; 2) those cluster sizes            
follow the Power Law; 3) there is a correlation between cluster size and the              
number of malware species in the cluster; 4) there is a correlation between the              
number of malware species and cyber events; and finally, 5) infrastructure           
components such as bridges, hubs, and persistent links play significant roles in            
malware distribution dynamics.  
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1   Introduction 
 
Similar to an epidemic virus spread, malicious files infect computer systems over a set              
of globally connected domains or IP addresses, which we call a malware distribution             
network (MDN). In this paper, we study temporal topological structures of an MDN             
with subsets of connected domains as a malicious cluster (M​-​Cluster). We created a             
novel dataset over an eight-month period by crawling the transparency report           
repository of Google Safe Browsing as well as collected URL and malware file hash              
scanning results from VirusTotal. We analyzed the topological structural evolution          
and malware hosted on various domain servers of the three largest M-Clusters in an              
eight-month period​. Our analysis revealed the layout of an M-Cluster as a ​hub and              
bridge structure. We further observed that the increase in size of an M-Cluster             
occured in parallel to an increase in discovered malware on the domain servers. One              
scenario in which the manifestation of an M-Cluster may occur is in conjunction with              
global events, for example, the 2017 Presidential Inauguration of the United States of             
America. Our M-Cluster analysis also revealed a consistent presence of multiple           
layers of URL redirection services, which, we believe, serves to obfuscate servers            
hosting malware. The contributions of this paper are: 1) observation and analysis of             
malware distribution networks as clusters with a bridge and hub construction; 2)            
correlation between size increases of M-Clusters and the presence of hosted malware;            
3) the significant roles of persistent bridges and hubs in malware distribution            
dynamics; and 4) development of algorithms to identify hubs and bridges. 
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3  Literature Review 
Dynamic graphs have been used in software engineering and operation research.           
Schiller and Strufe developed the framework for the analysis of dynamic graphs with             
DNA (Dynamic Network Analyzer) [2]. The topological properties of a dynamic           
graph include topological metrics of degree distribution (DD), connected components          
(C), assortativity (ASS), clustering coefficient (CC), rich-club connectivity (RCC),         
all-pairs-shortest paths (SP), and betweenness centrality (BC) [1]. Yu, et al. [26]            
studied the malware propagation dynamics of a single malware ConFlicker botnet.           
The authors tracked three top-domain layers and the growth of total compromised            
hosts by Android malware. The authors used the epidemic dynamics model to            
interpolate the malware distribution process. They discovered the Power Law          
distribution of ConFlicker botnet in the top three levers, i.e. ranking in botnet size of               
the malware versus probability of the distribution. This is perhaps the most            
comprehensive study of malware distribution at single botnet with a computational           
distribution model. 

Here, we define a malware distribution network (MDN) as a ​dynamic graph ​whose              
vertex (nodes) and edge (links) sets change over time. Here, we consider a dynamic              
graph at an initial state ​M​0 ​= (​V​0​, ​E​0​) and its development over time: ​M​0​, ​M​1​, ​M​2​,... The                  
transition between two states ​M​i ​and ​M​i+1 of the graph can be described by a set of                 
updates ​T​i+1​. The evolution of a dynamic graph over time is the result of a sequence of                 
transitions. 

 ….M 0 → M 1 → M 2 → M 3 →  
 
Given a malware distribution network (MDN), we have specific infrastructural          
measurements: ​Inbound Hub Node – a node that has more than m inbound links;              
Outbound Hub Node - a node that has more than n outbound links; ​Bridge Node               
(Center Node) – a node that connects to multiple hubs; ​Sink Node – a node that has                 
only inbound links. ​Root Node – a node that has only outbound links; ​Transition Node               
– a node that has both inbound and outbound links; ​Sink Node – a node that has only                  
inbound links. ​Root Node – a node that has only outbound links; ​Transition Node – a                
node that has both inbound and outbound links; Persistent Link - a link that stays               
active for a period of time ​p​. Figure 1 shows an example of infrastructural              
components of an MDN. 
 

 
Fig. 1. ​Infrastructural Components of an MDN 
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2   Semantic Graph Model 
 
In this study, we embed semantic information into the dynamic graph of malware             
distribution networks. Graphs are represented by an augmented adjacency list data           
structure that is designed to capture both the dependencies of graph links and the              
mode of linkage types. We describe this data structure as a list of key–value pairs,               
whose keys are the top level domain of a website, denoted as a source, and key values                 
are a pair <mode, destination> whereby destination is the top-level domain which is             
reported as being affected by the source. To place all of the top-level domains on the                
visualization, we used a Dynamic Behavioral Graph [22] to incorporate event           
frequencies, protocol types, packet contents and data flow information into one graph.            
In contrast to a typical Force-Directed Graph such as D3 [16], our model goes beyond               
the aesthetic layout of a graph to reveal the dynamic sequential patterns in a              
three-dimensional virtual space. In the model, the attraction force between a pair of             
nodes is calculated using the formula: 
 

                                                    ​                                                       (1)f  a =  αT
||x −x ||j i

2

  
 

                                                                                                    ​(2)f  r =  β
||x −x ||j i

2
 

 

 
where: ​i and ​j are distinct nodes, ​α ​is the value of elasticity where a greater value                 
increases the length of the edge. is the coefficient for repulsion force. ​T is equal to       β           
the average time between each nodes’ timestamps and is the distance        |x ||| i − xj     
between two nodes. 

We use a gradient arc for displaying the direction of edges. The decrease of alpha                
value indicates the direction, with 1 at the source and 0 at the end. This novel visual                 
representation also enables us to add the attributes to the edges.  

Here, we enable digital pheromone deposit and decay on the edges of a network.               
The digital pheromones are stored on the connected edges over time. The digital             
pheromones also decay at a certain rate. The amount of pheromones at an edge at time                
t​ is: 

Deposit: (t) in  ( (t), M ) D = m ∑
N

i=0
ui     ​(3) 

Decay:      (t) ax( u (t) rt, L )D = m i −        ​(4) 

 
where, is the current pheromone level at a particular edge ​i between two nodes. (t)D               
M and ​L ​are the upper and lower bound limits to it. ​is an individual pheromone            (t)ui      
deposit at time ​t, and ​N is the total number of deposits on that particular edge. ‘​r​’ is                  
the linear decay rate. See Figure 2. 
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Fig. 2. Pheromone deposit and decay representation of persistency of the malware distribution             
channels (connected edges in the graph). 

3  Data Collection and Malware Attribution 
 
The MDN and M-Clusters were built from our dataset collected from Google Safe             
Browsing (GSB) and VirusTotal.com (VT). The data set spans a period of eight             
months from 19 January to 25 September 2017. The collection start date was             
specifically chosen to capture data related to the 2017 U.S. Presidential Inauguration.            
The end date, unfortunately, resulted from the unavailability of GSB API services.            
The GSB service has been used to warn users not to visit potentially unsafe URLs.               
The GSB Transparency Report is an online resource providing statistics from the            
collected data repository. An API set was made available to automate the retrieval of              
data from the repository for any submitted URL. The API requires a URL as input and                
returns a report including the timestamp of the last visit, the source, and the              
destination of the transmission. However, the report does not contain specific           
malware information.  

VirusTotal (VT), on the other hand, provides a scanning service to detect the              
presence of malicious code in files and URLs. VT provides specific malware            
information. However, it does not contain the source-destination data. Scanning is a            
combination of multiple commercial anti-malware products providing both static and          
heuristic-based data analysis. In this study, we used the academic API service to             
automate submission and result retrieval for large data sets.  

The site ​vk.net was selected as the seed website based on a four-month observation               
of the site reliably appearing on GSB. The report, in JSON format, consisted of              
various statistics. The statistics of interest to us were labeled: ​name​,           
sendsToAttackSites​, ​receivesTrafficFrom​, ​sendsToIntermediary-Sites​, ​lastVisitDate​,    
and ​lastMaliciousDate​. An MN with no incoming edges for the current collection was             
relabeled to a Root Malicious Node (RMN). This node is unique to our MDN graphs               
as it cannot be determined from the GSB reports alone. It is revealed only if the MDN                 
graph is completed. 
 
4 Topological Dynamic Clusters 
 
The malware distribution network is not a giant web. Instead, there are many clusters              
of subnetworks. Some are large; others are small. All of the clusters are dynamic.              
They formed for a period of time and then dissolved gradually. Figures 3 through 5               
are the top three clusters in size. Figure 6 shows an overview of the 8-month dataset                
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of cluster sizes (nodes) evolved over time, where each curve represents a cluster             
whose nodes are more than 5 nodes. The first blue line between 19 January, 2017 and                
1 April, 2017 was the biggest cluster. 
 

 

Fig. 3. ​The biggest cluster on 01/30/2017 from the visualization 

 

 

Fig. 4.​ The second biggest cluster on 03/09/2017 

 

 

Fig. 5.​ The third biggest cluster on 04/06/2017 
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Fig. 6：​The overview of the 9-month (1/19/2017 - 9/25/2017) dataset of cluster sizes (nodes)              
evolved over time, where each curve represents a cluster whose nodes are more than 5 nodes.                
The first blue line between 19 January, 2017 and 1 April, 2017 was the biggest cluster 
 
Statistical data analysis shows that the sizes of the clusters versus their ranks fits              
Power Law for most months, especially the first two months of 2017. See Figure 7.               
This trend indicates that the MDN is a scale-free network: a very small number of               
nodes have more persistent edges than others. The topological patterns help the            
analysts to pay attention to the largest clusters, rather than many, many smaller             
clusters. In our case, this would include the clusters after May. Besides, we found that               
during volatile cyber attack seasons, the Power Law effect becomes stronger in terms             
of the slopes of the curves. 

Fig. 7. ​The relationship between cluster sizes and rank fits the Power Law 
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4  Correlation of Events and Malware Clusters 
Our dataset shows a correlation between major events and surge of malware            
distribution nodes. For example, the largest cluster formed after US Presidential           
Inauguration Day, between January 20 and February 13, 2017. Studies show the            
co-occurrence of bonets on social media and political events, such as national            
elections, inaugurations, and the controversial “Muslim Ban” [3]. After the election,           
the active bot accounts continued and increased by a certain amount. After the             
Inauguration, the active bot accounts increased even more. Our dataset only captured            
one of the significant events in 2017. The causal relationship between botnets and             
events is to be further explored. The number of nodes and malware can be fitted by: 

                                                    ​ ​ Y = 9.027X + 125       (5) 

The correlation coefficient between the number of nodes and malware is 0.60​. ​We             
detected the most popular single malware within our clusters by submitting the            
domains to VirusTotal. Next, VirusTotal responded to us with all of the malware             
downloaded from that domain with the last scanned date. We collected all of the              
malware whose last scanned date was the same as our collection date of the domain.               
The red nodes are those domains containing the single malware, and the other nodes              
are domains that send or receive traffic between red nodes. The single malware             
appears 17 times in the top three biggest clusters. The rest of the detected malware in                1

the three biggest clusters were discovered present on a server no more than two times               
with several appearing only once. Seven malware events occurred twice and the            
remaining 102 malware appeared only once. 

Fig. 8. ​The linear relation between species of malware and cluster size  

1 ​The SHA-256 of M is 

2eea543c86312c0fd361c31cba8774d2d6020c5ebcc1ce1a355482de74ed9863  

 

 

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50433-5_5

https://dx.doi.org/10.1007/978-3-030-50433-5_5


8 

 

 

Fig. 9. The biggest cluster evolved over time in terms of size (nodes) and attributed               
malware. The red line is the number of malware in the cluster.  

 

 

Fig. 10. ​The second big cluster evolved over time in terms of size (nodes) and attributed                
malware. The red line is the number of malware in the cluster.  

 

 

Fig. 11. The third big cluster evolved over time in terms of size (nodes) and attributed                
malware. The red line is the number of malware in the cluster.  
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5  Cyber Attribution from Topological Patterns 

The topological attributes help us determine the impact of the nodes in a malware              
distribution network (MDN). Visualization provides an intuitive tool to find the           
critical hubs and bridges, which are illustrated in Figure 1. However, it is not efficient               
to identify those nodes when the dataset is so large. Here, we present the pseudo code                
for automatically searching for and labeling hubs and bridges. The algorithm is fast             
and can be used for tracking particular hubs and bridges over time. Eventually, the              
visual analytic process would be automated once human analysts have had successful            
experiences. In addition, humans and machines can always team up to discover new             
patterns and correlations based on graphic abstraction and visualization.  

 ​Algorithm 1​ ​Hub​ and ​Bridge ​detection algorithm 

 

 ​Input: 

    The directed network, ​G1 

    The node set of the network, ​M1 

    The edge set of the network,​ E1​(​M​s​, M ​d​) 

Output: 

    Hub nodes, ​H​n 

    Bridge nodes, ​B​n 

 ​   for​ ​M1​1​→ M1​n​ ​do 

       ​if ​OutDegree​(​M1​i​)​ ​> 0 & ​InDegree​(​M1​i​)​ ​> 0​ then 

          ​if ​ ​Degree​(​M1​i​)​ ​> ​p​ then 

M1​i​  H​n∈   

         ​ end if  

       end if 

   end for 

   Create new directed network G2, with nodes set M2 

  ​ for​ ​E1​(​M​a​, M​d​)​1​→E1​(​M​a​, M​d​)​n​ ​do 

     ​ if​ ​N​s H ​n​ ​&​ M ​d​  H ​n​ ​then∈ ∈  

         ​ M​s M2∈  

          M​d​ M2∈  

       ​end if  
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    end for 

   ​ for​ ​M2​1​→ M2​n​ ​do 

       ​if ​OutDegree​(​M2​i​) > 0 & ​InDegree​(​M2​i​) > 0 ​then 

         ​ if ​ ​Degree​(​M2​i​)​ ​> ​q​ ​then 

M2​i​  B​n∈   

          ​end if  

       end if 

   end for 

 

 

Figure 12 shows the infrastructural evolution of the malware distribution network           
between Jan. 19, 2017 and April 4, 2017. We found that there were several hubs in the                 
biggest cluster, including ​bit.ly​, ​dlvr.it​, ​smarturl.it​, ​adf.ly​, ​wp.me​, and ​zip.net​, a bridge            
bit.ly​, and a root node ​brandnewbrand.br. Amazingly, five out of six hubs are utility              
sites for shortening URL addresses: ​bit.ly, adf.ly, smarturl.it, and ​wp.me. ​Those sites            
redirect traffic to the malware host site. 

    

Fig. 12.​ Dynamic graph of the infrastructure of the biggest cluster between Jan 19, 2017 and 
Feb 13, 2017 

 

With the visualization and analytic model, we are able to track single Top Level              
Domain (TLD) nodes and reveal their “life cycle” in the malware distribution            
network, when the TLD address has been captured by both Google Safe Browsing             
(GSB) and VirusTotal (VT). Figure 12 shows the dynamics of the TLD ​adf.ly node              
and its inbound and outbound edges in the 9-months period. The plot shows that the               
node had persistent malware inbound and outbound traffic before January 19 through            
May 17. There are multiple recurrences during that period. The malware did not die              
out until May 17, 2017. It reached its peak between Feb 19 and March 19, in                
correlation with the cyber activities during that period. 
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We are also able to track a single malware from Jan 28 through March 9 based on                  
the GSB and VT attributed dataset. Coincidentally, the single malware passed through            
the popular TLD address node adf.ly during Feb 6 and March 3. The multiple              
modality tracking enables us to cross-reference, discover new patterns, and ultimately           
to lead more accurate cyber attributions. 
 
 

 

Fig. 13. ​The dynamics of a single TLD​ adf.ly 

 

  

 

Fig. 14. ​The development of the single malware within clusters with time. 
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6  Conclusions 

We developed a crawler to collect live malware distribution network data from            
publicly available sources including Google Safe Browser and VirusTotal. We then           
generated the graph with our visualization tool and performed malware attribution.           
We have discovered: 1) malware distribution networks form clusters; 2) those cluster            
sizes follow the Power Law; 3) there is a correlation between cluster size and the               
number of malware species in the cluster; 4) there is also a correlation between              
number of malware species and cyber events; and finally, 5) the infrastructure            
components such as bridges, hubs, and persistent links play significant roles in            
malware distribution dynamics.  
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