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Abstract. Next Point of Interest (POI) recommendation is an impor-
tant aspect of information feeds for Location Based Social Networks (LS-
BNs). The boom in LSBN platforms such as Foursquare, Twitter, and
Yelp has motivated a considerable amount of research focused on POI
recommendations within the last decade. Inspired by the success of deep
neural networks in many fields, researchers are increasingly interested
in using neural networks such as Recurrent Neural Network (RNN) to
make POI recommendation. Compared to traditional methods like Fac-
torizing Personalized Markov Chain (FPMC) and Tensor Factorization
(TF), neural network methods show great improvement in general se-
quences prediction. However, the user’s personal preference, which is
crucial for personalized POI recommendation, is not addressed well in ex-
isting works. Moreover, the user’s personal preference is dynamic rather
than static, which can guide predictions in different temporal and spatial
contexts. To this end, we propose a new deep neural network model called
Personal Dynamic Preference Neural Network(PDPNN). The core of the
PDPNN model includes two parts: one part learns the user’s personal
long-term preferences from the historical trajectories, and the other part
learns the user’s short-term preferences from the current trajectory. By
introducing a similarity function that evaluates the similarity between
spatiotemporal contexts of user’s current trajectory and historical tra-
jectories, PDPNN learns the user’s personal dynamic preference from
user’s long-term and short-term preferences. We conducted experiments
on three real-world datasets, and the results show that our model out-
performs current well-known methods.

Keywords: Point-of-interest Recommendation · User Personal Dynamic
Preference · Recurrent Neural Network.

1 Introduction

Due to the prevalence of smart mobile devices, people frequently use Location-
Based Social Networks (LBSNs) such as Foursquare, Twitter, and Yelp to post
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check-ins and share their life experiences. Point-of-interest (POI) recommen-
dation has become an important way to help people discover attractive and
interesting venues based on their historical preferences. Many merchants also
use POI recommendation as an important channel to promote their products.

POI recommendation has been extensively studied in recent years. In the lit-
erature, Markov Chains (MC) [1, 2], collaborative filtering [3–6], and Recurrent
Neural Networks [7–11] are three main approaches. These methods commonly
focus on capturing either the user’s short-term preferences or long-term pref-
erences. User’s short-term and long-term preferences are both important for
achieving higher accuracy of recommendation [12]. The short-term preference
is greatly influenced by time and POIs the user has visited recently, while the
long-term preference reflects the user’s personal habits thus all historically visited
POIs need to be considered. However, the user’s personal long-term preference,
which is crucial for personalized POI recommendation, is not addressed well in
existing work. Moreover, the user’s personal preference is dynamic rather than
static, which can guide predictions in different temporal and spatial contexts. To
this end, we propose a new deep neural network model called Personal Dynamic
Preference Neural Network (PDPNN). The core of the PDPNN model includes
two parts: one part learns the user’s personal long-term preferences from the his-
torical trajectories, and the other part learns the user’s short-term preferences
from the current trajectory. By introducing a similarity function that evaluates
the similarity between spatiotemporal contexts of user’s current trajectory and
historical trajectories, PDPNN learns the user’s personal dynamic preference
from user’s long-term and short-term preferences.

We summarize our contributions in this paper as follows:

– We propose a new approach to better model dynamic user preference for
their next POI from their current trajectory in conjunction with their tra-
jectory context. Based on the attention-enhanced Long Short-Term Memory
(LSTM) neural network model, we build a new neural network model named
PDPNN for next POI recommendation.

– To accelerate training of trajectory contexts, we propose inner epoch cache
mechanism to store the trajectory context output states during the process of
model training. This reduces the complexity of the user’s personal dynamic
preference module from O(n2) to O(n) in each training epoch.

– We conducted experiments on three real world datasets and the results show
that our model outperforms current well known methods.

2 Related Work

Plenty of approaches have been proposed that focus on sequential data analy-
sis and recommendation. Collaborative filtering based models, such as Matrix
Factorization (MF) [3] and Tensor Factorization(TF) [4] are widely used for rec-
ommendation. These methods aim to cope with data sparsity and the cold start
problem by capturing common short-term preferences among users, but cannot
capture the user’s personal long-term preferences. Other existing studies employ
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the properties of a Markov chain to capture sequential patterns, such as Markov
Chain (MC) [1] and Factorizing Personalized Markov Chains (FPMC) [2]. FPMC
models user’s preference and sequential information jointly by combining factor-
ization method and Markov Chains for next-basket recommendation. However,
both MC and FPMC methods fall short in learning the long-term preference and
the periodicity of the user’s movement.

Recently, as a result of the success of deep learning in speech recognition, vi-
sion and natural language processing, Recurrent Neural Networks (RNNs) have
been widely used in sequential item recommendation [7–11]. Spatial Temporal
Recurrent Neural Networks (STRNN) [8] utilizes a RNN architecture and lin-
ear interpolation to learn the regularity of sequential POI transition. However,
traditional RNNs suffer from the issues of vanishing gradients and error prop-
agation when they learn long-term dependencies [13]. Therefore, special gating
mechanisms such as Long Short-Term Memory network (LSTM) [14] have been
developed and widely used in recent work [9–11]. By controlling access to mem-
ory cells, LSTMs can alleviate the problem of long-term dependencies.

Attention mechanism is a key advancement in deep learning in recent years,
and it shows a promising performance improvement for RNNs [15–17]. By intro-
ducing the attention mechanism, Attention-based Spatio-Temporal LSTM net-
work (ATST-LSTM) [9] can focus on the relevant historical check-in records in
a check-in sequence selectively using the spatiotemporal contextual information.
However, these models are designed to learn short-term preferences and are not
well suited to learning personal long-term preferences. They commonly add user
embedding to RNN outputs, and reduce the problem of user context learning
to the problem of learning a static optimal user embedding representation. It is
more difficult to learn long-term preferences with simple attention mechanisms,
especially for users with only a small set of historical trajectories.

3 Model Description

3.1 Problem Formulation

Let U = {u1, . . . , um} denote the user set and P = {p1, . . . , pj} denote the POI
set, where ‖U‖ and ‖P‖ are the total numbers of users and POIs, respectively.
Each POI pk is associated with a geographic location lk = (la, lo), where la and
lo denote the latitude and longitude of the POI location. For a user u ∈ U ,
a check-in behavior means ui visits a POI pk at time tk, which is denoted as
tuple (u, pk, tk). Any check-in sequence with all the time interval of successive
check-ins less than a threshold value Tdelta, is called a trajectory. Obviously, a
user’s historical check-ins will be segmented into many trajectories. We denote
Tu
i = {(u, p1, t1), . . . , (u, pn, tn)} as the i-th trajectory of the user u, with tk −
tk−1 ≤ Tdelta for neighbor check-ins of the trajectory, and ‖Tu

i ‖ is the total
number of check-ins. All the historical trajectories of the user u are denoted as
Tu = {Tu

1 , T
u
2 , . . . , T

u
n }.

When we are processing the i-th trajectory Tu
i , we need to take into account

the previous historical trajectories of user u, which is called the trajectory con-
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text. We denote Cu
i = {Tu

1 , T
u
2 , . . . , T

u
i−1} as the context of the current trajectory

Tu
i . When there is no ambiguity, we will omit the subscript u.

Formally, given a user u and all of their historical trajectories Tu = {Tu
1 , T

u
2 , . . . , T

u
n },

the problem of making the next POI recommendation is to predict the next POI
pn+1 that the user is most likely to visit.

3.2 PDPNN Model

Basic Framework The PDPNN model receives current trajectory Ti and its
trajectory context Ci as input. Ci is the previous trajectories of each trajectory Ti
of the same user. The model learns short-term preference mainly from current
trajectory Ti, and builds a personal dynamic preference from both Ti and its
trajectory context Ci. The architecture of our proposed model PDPNN is shown
in Figure 1 :

– (I) Attention-enhanced recurrent neural network (ARNN) module: We use
a LSTM network to capture short-term and long-term spatial-temporal se-
quence patterns. Additionally, an attention mechanism is introduced to cap-
ture the weight of all hidden states of the trajectory sequence. This compo-
nent is used as an important part of the personal dynamic preference and
the short-term preference learning module.

– (II) Personal dynamic preference learning module: The user’s personal pref-
erences is important for personalized POI recommendation, which is implicit
in their historical trajectories. This module obtains a representation of per-
sonal dynamic preference from the user’s current trajectory and trajectory
context Ci. We first utilize the ARNN module to calculate the output hidden
states of all trajectories in the trajectory context. Obviously, not every state
can help to predict a POI, and the historical trajectories that are highly cor-
related with the current trajectory are supposed to have greater weight. To
this end, we introduce attention mechanism into the module to measure the
spatial temporal context similarity of the trajectory context and the current
trajectory, and aggregate all the hidden states of the trajectory context as
the personal dynamic preference representation.

– (III) Short-term preference learning module: The short-term preference, which
is usually referred to as sequential preference, is commonly learned from the
current trajectory. We simply apply the ARNN module described above to
get the hidden state of the current trajectory Ti .

– (IV) Classifier: This is the final output component which unifies the user
embedding output, the last hidden state from current trajectory and the ag-
gregated attention from historical trajectories into a feature representation;
after this it predicts the next POI. The output of this module is the proba-
bility vector of every POI that the user is likely to visit next. Cross-entropy
loss and L2 regularization is used to measure the total loss in this module.
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Figure 1. The architecture of PDPNN model.

ARNN : ARNN is an attention-enhanced recurrent neural network, which re-
ceives a trajectory Tu as input and outputs the weighted sum of the hidden
states of the user’s trajectory via a attention mechanism. The ARNN model
consists of an embedding layer, a recurrent layer and an attention layer.

Each input trajectory contains a sequence of POI identifier (id) p, time inter-
val ∆s, geographic distance ∆t, longitude lo and latitude la. The input POI id
is then transformed into a latent space vector epi by the embedding layer. Input
data It can be described as follows:

It = [ept ;∆st;∆tt; lat; lot] (1)

where ∆s =
√

(lat − lat−1)2 − (lot − lot−1)2, and ∆t = tt − tt−1, the subscript
t ∈ [2, ‖Tu‖]

We utilize a Long Short-Term Memory (LSTM) network in the recurrent
layer. A LSTM neuron unit consists of an input gate it, an input gate ft, and
an output gate ot. These parameters are explained in detail below:

ft = δ(Wf · [ht−1; It] + bf ) (2)

it = δ(Wi · [ht−1; It] + bi) (3)
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c̃t = δ(Wc · [ht−1; It] + bc) (4)

ct = ft � ct−1 + ic � c̃t (5)

ot = δ(Wo · [ht−1; It] + bo) (6)

ht = ot � tanh(ct) (7)

The attention mechanism aims to capture the importance of all the state
sequences. Two kinds of attention mechanism have been proposed, known as
additive attention [16] and dot-product attention [15]. Considering that an op-
timized matrix multiplication operation is much faster and more space-efficient
in practice than an alignment calculation through hidden layer [15], we chose
dot-product attention to calculate the attention weight of the state in the at-
tention layer. Following the work of [15], we introduce Zu as the user context,
which can be learned during training. We get the weight of each hidden state βt
with a softmax function:

βt =
exp(ht · Zu)∑n
j=1 exp(hj · Zu)

(8)

We can get the weighted sum of all state sequences as the overall output.
The overall trajectory state output On is the weighted sum of all state se-

quences, which is described as follows:

On =

n∑
t=1

βt � ht (9)

For the convenience of subsequent references, we summarize equations (1)-(9)
as function ARNN(·):

On = ARNN(Tu) (10)

Personal dynamic preference learning module : Unlike routine RNN mod-
els that treat each separate trajectory as input, PDPNN attaches to each tra-
jectory Ti the trajectory context Ci = {T1, T2, . . . , Ti−1} of the same user to
produce the input.

Obviously, the length of the current trajectory processed by the padding
operation is fixed, while the trajectory context can not be filled or truncated
due to the large length changes. This represents a difficult problem in model
training. To solve this problem, we separate the processing of trajectory context
from the processing of the current trajectory. For each trajectory context Ci ,
we use the ARNN model to calculate the hidden state output of each trajectory
Tj in Ci:

O
(i)
j = ARNN(Tj), j ∈ [1, i− 1] (11)

Trajectories that are highly relevant to the current trajectory are considered
to play a more important role in guiding POI predictions for all historical trajec-
tories in the trajectory context. To this end, we introduce a correlation function
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f(·) to calculate the weight of each historical trajectory, and use softmax to
calculate the weight of all historical trajectory states:

wij =
exp(f(Tu

i , T
u
j ))∑i−1

j=1 exp(f(Tu
i , T

u
j ))

, j ∈ [1, i− 1] (12)

Function f(·) here can be any function used to measure the correlation of
trajectories. We use the Jaccard Similarity of the POI set of the trajectory to
measure the similarity between the trajectories in the paper:

f(Tu
i , T

u
j ) =

|Pi ∩ Pj |
|Pi ∪ Pj |

), j ∈ [1, i− 1] (13)

where Pi and Pj are the POI sets of Tu
i and Tu

j , respectively.
Then we multiply the weight of the context trajectories and their corre-

sponding output latent states. The user’s personal dynamic preference Hi is
represented as the weighted sum of the products above:

Hi =

i−1∑
j=1

wij ·O(i)
j (14)

Short-term preference learning module : The short-term preference learn-
ing module is mainly used to capture the sequential POI transition preferences
of users. The module consists of a user embedding layer and an ARNN model,
and receives a user and trajectories as input. Each trajectory is represented by
a sequence of POI identifier, time interval, geographic distance, longitude and
latitude as desribed in equation (1). Users are represented by a user identifier u
in real world data, which can not precisely reflect the similarities and differences
between users. The appropriate representation of a user can accurately measure
the similarities between users, so that the model can learn the similarity of user
behavior preferences according to degree of similarity between users. To this end,
we use a fully connected network to embed user identifiers into latent space.

eu = tanh(Wu · u+ bu) (15)

where parameter Wu ∈ R‖U‖×du and bu ∈ R1×du .
The output of the short-term preference learning module can be described

as follows:

Oi = ARNN(Ti) (16)

Classifier : We consider the next POI recommendation as a multiclass clas-
sification problem. The classifier module concatenates the user embedding, the
user’s personal dynamic preference and the current trajectory state as the input:

Q = [Hi;Oi; eu] (17)
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Then, we feed Q into a fully connected layer with softmax function to calculate
the probability of each POI:

ŷt = softmax(sigmoid(Ws ·Q+ bs)) (18)

where parameter Ws ∈ R‖P‖×dp and bs is the bias parameter.
We adopt the cross-entropy loss between the ground truth POI yt and the

predicted POI ŷt. The loss function can be calculated as follows:

L(I
(1)
1 , · · · I(T

(1)−1)
1 · · · , I(1)N , I

(T (N)−1)
N , θ) =

− 1

N

N∑
n=1

ytlog(ŷt) + (1− yt)log(1− ŷt) +
λ

2

∥∥Θ2
∥∥ (19)

where Θ denotes the parameter set of PDPNN, and λ is a pre-defined hyper
parameter for the L2 regularization to avoid overfitting. To optimize the above
loss function, we use Stochastic Gradient Descent to learn the parameter set Θ.

3.3 Model Training

Training the model with short-term preference and personal dynamic preference
jointly is time-consuming, so we use pre-trained model and inner epoch cache
method to accelerate the training process.

Pre-trained Model : The ARNN is the core component of the PDPNN model,
and it takes most of the time required by the training process. In other words,
if the ARNN component could be trained as quickly as possible, the training
speed of the whole model would be accelerated. To this end, we try to pre-train
the ARNN component in a more simple model, which connects the output of
the ARNN and the classifier directly. Then, we load the pre-trained model and
modify its network structure to adapt to our current model in training.

Inner Epoch Cache : Each input of the PDPNN model contains the current
trajectory and the trajectory context, which makes the training process time con-
suming. For a certain user u with n trajectories {T1, T2, . . . , Tn}, the PDPNN
needs to process all of the n trajectories and the corresponding trajectory con-
texts. For each trajectory Ti , the PDPNN learns a short-term preference from
Ti, and learns the user’s personal dynamic preference from its trajectory context
Ci = {T1, T2, . . . , Ti−1}, which means the PDPNN needs to calculate the output
state of Ci with ARNN component i times. So, the whole training complexity of
the n trajectories user u is O(n2).

As a part of trajectory contexts of Ti+1, Ti+2, . . . , Tn, the i-th trajectory Ti is
repeatedly calculated for n−i times during each training epoch. The optimization
we can intuitively think of is to eliminate the repeated calculations. However,
trajectory context state values are updated during training synchronously, which
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means we can not simply cache the state value in the whole training process.
Considering the increment of state value updates between batches is very small
in each training epoch, if the trajectory context output states can be cached
within one training epoch and updated between epochs, a large number of ap-
proximately repeated calculations can be eliminated. To this end, we apply the
inner epoch cache to store the trajectory context output state value during model
training, and the calculation of each user’s personal dynamic preference can be
reduced to linear complexity.

4 Experiment Analysis and Evaluation

4.1 Experiment Settings

Datasets : We conducted experiments on three publicly available LBSN datasets,
NYC, TKY and CA. NYC and TKY [18] are two datasets collected from users
sharing their check-ins on the Foursquare website in New York and Tokyo, re-
spectively. CA is a subset of a Foursquare dataset [19], which includes long-term,
global-scale check-in data. We chose the check-ins of users in California for the
dataset in this paper. The check-in times of above datasets range from 2012 Apr
to 2013 Sep. Each record contains an anonymous user identifier, time, POI-id,
POI category, latitude and longitude of the check-in behavior. In order to alle-
viate the problem of data sparsity, following previous work [12], we expand the
set of trajectories by adding the sub-trajectories of the original trajectories. For
all datasets, we choose 90% of each user’s trajectories as the training set, and
the remaining 10% as testing data.

Table 1. The statistics of datasets.

Dataset #Users #check-ins #location #trajectories

LA 1,083 22,7428 38,333 31,941
TKY 2,293 57,3703 61,858 66,663
CA 4,163 48,3805 2,9529 47,276

Comparing Methods : We compare PDPNN with several representative meth-
ods for location prediction:

– RNN [7]: This is a basic method for POI prediction, which has been success-
fully applied in word embedding and ad click prediction.

– AT-RNN: This method empowers the RNN model with an attention mecha-
nism, which has been successfully applied in machine translation and vision
processing.

– LSTM [14]: This is a variant of the RNN model, which contains a memory
cell and three multiplicative gates to allow long-term dependency learning.
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– ATST-LSTM [9]: This is a state-of-the-art method for POI prediction, which
applies an attention mechanism to a LSTM network.

– PDPNN: This is our approach, which learns a user’s personal dynamic pref-
erence base on the current spatial and temporal context.

Parameter Settings : The key hyper parameters in PDPNN include: (1) the
embedding dimension for POI and user, namely du and dp; (2) the dimension
dh for the hidden state; (3) the regularization parameter λ. In general, the per-
formance of the PDPNN increases with the above dimensions and gradually
stabilizes when dimensions are large enough. In our experiments, we finally set
du = dp = dh = 200. For the regularization parameter λ, we tried values in
{1,0.1,0.01,0.001} and λ = 0.01 turns out to have the best performance.

Table 2. Prediction performance comparison on three dataset.

Dataset Method Recall@1 Recall@5 Recall@10 Recall@20

LA

RNN 0.7901% 3.0536% 5.2317% 9.4597%

AT-RNN 1.9218% 7.4098% 14.4352% 24.685%

LSTM 6.8332% 25.71% 39.0562% 50.5659%

ATST-LSTM 7.9650% 26.009% 39.9317% 51.5909%

PDPNN 8.5629% 28.2084% 41.0634% 52.0606%

TKY

RNN 2.5639% 7.2056% 9.4411% 11.8282%

AT-RNN 4.0859% 16.8172% 26.8203% 36.9498%

LSTM 2.6271% 7.2182% 9.8958% 13.5965%

ATST-LSTM 4.4143% 18.5475 28.9233% 38.8317%

PDPNN 4.8058% 18.5665% 28.2918% 37.0445%

CA

RNN 0.5711% 2.4112% 4.3993% 8.0795%

AT-RNN 6.5144% 17.8299% 24.6616% 32.0643%

LSTM 2.0093% 7.0008% 10.7445% 15.4399%

ATST-LSTM 6.6836% 17.7453% 24.4078% 32.1489%

PDPNN 7.1912% 18.6548% 25.5499% 32.9315%

Metrics : To evaluate the performance of all methods for the POI recommen-
dation problem, we employ a commonly used metric known as recall@N. The
recall@N metric is popular in ranking tasks, which evaluates where the ground
truth next POI appears in a ranked prediction list. A larger metric value indi-
cates better performance.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50433-5_4

https://dx.doi.org/10.1007/978-3-030-50433-5_4


PDPNN for Next Point-of-Interest Recommendation 11

4.2 Comparison of Recommendation Performance

We conducted experiments on a machine with Intel a Xeon CPU and a NVIDIA
Tesla P4 GPU. The performance comparison of methods on three datasets is
illustrated in Table 2. The RNN has a lower baseline performance than other
methods with no extra optimization. The AT-RNN improves the performance
greatly by 2 or 3 times over the RNN on all three datasets, which shows that
the attention mechanism can alleviate the problem of long-term dependencies
with gradient descent of RNN. The LSTM outperforms the RNN largely because
of its memory and forget gate design, but fails to outperform the AT-RNN for
the TKY and CA datasets. ATST-LSTM turns out to be the strongest baseline
and shows significant improvement on the TKY and CA datasets. The reason is
that ATST-LSTM works better at learning long-term dependencies through the
gate and attention mechanisms. This shows that the attention mechanism is an
effective supplement to LSTM models.

PDPNN outperforms the above baseline methods in almost all of the recall
metrics. Compared with ATST-LSTM, the PDPNN obtains recall@1, recall@5
and recall@10 improvements of 7-10% on LA and CA, and recall@1 and re-
call@5 improvements of 5-7% on TKY. By creating an elaborate modeling of
users’ personal dynamic preference, the PDPNN can capture the intentions of
user activities more accurately. This enables the PDPNN to achieve better per-
formance in next POI recommendation. It is worth noting that the PDPNN
has lower performance in recall@10 and recall@20 than the ATST-LSTM on
the TKY dataset. The reason is that the PDPNN treats POI recommendation
as a classification problem, and the objective function is to optimize the accu-
racy of recall@1. Besides, there may be another interesting reason that people’s
preferences vary widely from country to country.

4.3 Inner epoch cache evaluation

To evaluate the efficiency of the inner epoch cache, we compare the average time
consumption of models with and without the inner epoch cache during one epoch
training. Figure 2 shows that the PDPNN with an inner epoch cache trains 45x,
38x and 30x faster than the model without a cache on LA, TKY and CA dataset,
respectively. By introducing the inner epoch cache optimization in training, the
per-epoch training time is reduced from more than one day to one hour on the
TKY data set. It shows that the inner epoch cache can greatly accelerate the
model training process.

5 Conclusion

In this paper, we have proposed a new approach to better model the user’s per-
sonal dynamic preference of next POI from current trajectory supplemented with
a trajectory context. Based on an attention empowered LSTM neural network,
we build a new neural network model named PDPNN for next POI recommen-
dation. Moreover, to accelerate the training of trajectory contexts, we proposed
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Figure 2. Time-consuming comparison in one training epoch.

an inner epoch cache to store the trajectory context output state value dur-
ing model training, and reduce the complexity of the user’s personal dynamic
preference module from O(n2) to O(n) in each training epoch. We conduct ex-
periments on three real world data set and show that our model outperforms
current well-known methods.
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