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Abstract. The TV-Stokes denoising model for a vectorial image defines
a denoised vector field in the form of the gradient of a scalar function. The
dual formulation naturally leads to a Chambolle-type algorithm, where
the most time consuming part is application of the orthogonal projector
onto the range space of the gradient operator. This application can be
efficiently executed by the fast cosine transform taking advantage of the
fast Fourier transform. Convergence of the Chambolle-type iteration can
be improved by Nesterov’s acceleration.
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1 Introduction

Let ũ(x) be a scalar function, or a continuous grayscale image, defined in a do-
main Ω ⊂ R2, which is corrupted with an additive noise, i.e., ũ = u+ η, where
u(x) is an unknown true function, or image, and η(x) is noise. A classical varia-
tional model for image denoising is the Rudin-Osher-Fatemi (ROF) variational
model introduced in [8],

min
u

∫
Ω

|∇u|+ 1

2λ
‖u− ũ‖22, (1)

where ∇u = (ux1
, ux2

) is the gradient of u(x) and |∇u| =
√
u2x1

+ u2x2
. The term∫

Ω
|∇u| is called the total variation of u(x) in Ω. The term ‖u−ũ‖22 =

∫
Ω

(u−ũ)2

is the data fitting term. A suitable regularization parameter λ > 0 depends on
statistical properties of the noise η. Solution of (1) gives an approximation to the
true function such that sufficiently large discontinuities available in u(x) are well
preserved. A classical numerical method for solving (1) is Chambolle’s algorithm
from [2]. A recent survey of the most efficient numerical algorithms for solving
(1) is found in [3]. These algorithms belong to the class of local methods.

Modern image denoising techniques are dominated by the non-local patch-
based algorithms; see survey in [6]. Nevertheless, the ROF model should not be
entirely discarded because the model and its special variants can be useful in
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2 A. Malyshev

some cases, for example, when smoothing an image until a cartoon-looking result
or when denoising an image subject to geometric constraints. Our study below
is devoted to the latter case.

The model (1) is trivially extended to the case, when ũ(x) and u(x) are vector
functions, by applying the model (1) separately to each component of ũ(x) and
u(x). Since the trivial extension is not always satisfactory, other approaches
to the vectorial images have been proposed. For example, the so called TV-
Stokes model, which is restricted to two-dimensional vectorial images v(x) =
(v1(x), v2(x)), satisfies the Stokes constraint div v = ∂v1/∂x1 +∂v2/∂x2 = 0 and
reads

min
v: divv=0

∫
Ω

λ|∇v|+ 1

2
‖v − ṽ‖22, (2)

where |∇v| =
√

(v1)2x1
+ (v1)2x2

+ (v2)2x1
+ (v2)2x2

; see [7, 10, 4] for more details
and a great deal of numerical illustrations.

The present note introduces a multidimensional TV-Stokes model and de-
rives its dual formulation similar to that of [4]. The dual formulation allows us
to propose a Chambolle-type algorithm for numerical solution of the TV-Stokes
model. Most of the arithmetical work at each iteration of this algorithm is re-
quired for application of the orthogonal projector to the linear subspace defined
by the Stokes constraint. We propose an efficient implementation of this oper-
ation via the fast Fourier transform. We also note that the original Chambolle
algorithm can be improved by means of Nesterov’s acceleration as in [1], and
similar acceleration may be applied to the Chambolle-type algorithm following
the recipes given in [3].

2 TV-Stokes model for multidimensional images and its
dual formulation

We consider real-valued functions defined in Ω = [0, L1] × · · · × [0, Ln] ⊂ Rn
for arbitrary n = 1, 2, . . .. The gradient operator ∇ is applied only to func-
tions with homogeneous Neumann boundary conditions. First of all, we use the
gradient field of a scalar function u(x), x ∈ Ω, which is the vector function

∇u(x) = [ux1(x), ux2(x), . . . , uxn(x)]
T

. We also apply the gradient operator to
n-dimensional vector fields v(x) = [v1(x), v2(x), . . . , vn(x)] in Ω and label it with
the bar as ∇̄v(x) in order to distinguish from the scalar case. The object ∇̄v(x)
is the tensor field ∂vi(x)/∂xj , i, j = 1, 2, . . . , n.

Given an n-dimensional vector field ṽ(x) ∈ Rn corrupted with an additive
noise, a constrained variant of the ROF model defines the gradient field v(x) =
[v1(x), v2(x), . . . , vn(x)] ∈ Rn satisfying the variational problem

min
v=∇u

(
|∇̄v|1 +

1

2λ
‖v − ṽ‖22

)
, (3)
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Multidimensional TV-Stokes model 3

where λ > 0 is a suitable scalar parameter and ‖v− ṽ‖22 =
∫
Ω

∑n
i=1(vi− ṽi)2(x).

The seminorm |∇̄v|1 is the total variation

|∇̄v|1 =

∫
Ω

|∇̄v| =
∫
Ω

√√√√ n∑
i,j=1

(∂vi(x)/∂xj)2.

The inner product of vector functions v, w ∈ Rn is

〈v, w〉 =

∫
Ω

n∑
i=1

vi(x)wi(x)

so that the norm ‖v‖2 satisfies ‖v‖22 = 〈v, v〉.
Solution v(x) of the variational model (3) is constrained to the linear subspace

V = {v ∈ Rn : v = ∇u, where u(x) is a scalar function}. When n = 2, the
constraint v = ∇u is equivalent to the constraint div v = 0, which participates
in the 2D TV-Stokes model from [7, 10, 4]. Following this observation, we will
call (3) the TV-Stokes model too. More specifically, (3) is a primal formulation
of the multidimensional TV-Stokes model.

Note that the continuous functional F(v) = |∇̄v|1 + 1
2λ‖v − ṽ‖

2
2 is strictly

convex. Therefore, its minimum in V is unique and attained in the closed ball
{v : ‖v − ṽ‖2 ≤ ‖ṽ‖2}.

Let us equip tensor fields p(x) having the components pij(x), i, j = 1, 2, . . . , n,
with the two norms

‖p‖∞ =

∥∥∥∥∥∥
√√√√ n∑
i,j=1

p2ij(x)

∥∥∥∥∥∥
∞

, ‖p‖2 =

∥∥∥∥∥∥
√√√√ n∑
i,j=1

p2ij(x)

∥∥∥∥∥∥
2

.

The total variation can be rewritten in the form

|∇̄v|1 = max
‖p‖∞≤1

〈∇̄v, p〉 (4)

using the tensor p(x) as a dual variable; see arguments in [3]. Thus, the model
(3) is equivalently reduced to the primal-dual formulation

min
v∈V

max
||p||∞≤1

F (v, p), where F (v, p) = 〈∇̄v, p〉+
1

2λ
〈v − ṽ, v − ṽ〉. (5)

The order of the operations min and max in (5) may be interchanged due to

Theorem 1 ([9]). Let X be a convex subset of a linear topological space, Y be
a compact convex subset of a linear topological space, and f : X × Y → R be
lower semicontinuous on X and upper semicontinuous on Y . Suppose that f is
quasiconvex on X and quasiconcave on Y . Then

inf
x∈X

max
y∈Y

f(x, y) = max
y∈Y

inf
x∈X

f(x, y).

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50426-7_43

https://dx.doi.org/10.1007/978-3-030-50426-7_43


4 A. Malyshev

Owing to Theorem 1, minv∈V max|p|≤1 F (v, p) = max|p|≤1 minv∈V F (v, p), and
we arrive at the primal-dual max-min formulation

max
||p||∞≤1

min
v∈V

[
〈∇̄v, p〉+

1

2λ
〈v − ṽ, v − ṽ〉

]
. (6)

Further derivations make use of the conjugate to ∇ operator denoted by ∇∗.
In particular, 〈∇̄v, p〉 = 〈v, ∇̄∗p〉 and

F (v, p) = 〈v, ∇̄∗p〉+
1

2λ
〈v − ṽ, v − ṽ〉. (7)

Replacing v by ∇u in (7) and further rearrangements yield

F (v, p) = 〈∇u, ∇̄∗p〉+
1

2λ
〈∇u− ṽ,∇u− ṽ〉

= 〈u,∇∗∇̄∗p〉+
1

2λ
[〈∇∗∇u, u〉 − 2〈u,∇∗ṽ〉+ 〈ṽ, ṽ〉] .

The necessary condition for minv=∇u F (v, p) in terms of the first variation of u
is the equality

λ∇∗∇̄∗p+∇∗∇u−∇∗ṽ = 0. (8)

Solution of (8) is not unique because of the homogeneous Neumann boundary
conditions. However, all solutions differ only by a constant, i.e. if uI(x) and
uII(x) are two solutions, then uI − uII ≡ const.

Let us choose the linear least squares solution

u = (∇∗∇)†∇∗
(
ṽ − λ∇̄∗p

)
, (9)

where † denotes the Moore-Penrose pseudoinverse, i.e. the solution of (8) with
the minimum 2-norm. The vector field v = ∇u is determined uniquely as

v = ∇(∇∗∇)†∇∗ (ṽ − λ∇∗p) = Π (ṽ − λ∇∗p) . (10)

Recall that the symmetric operator Π = ∇(∇∗∇)†∇∗ is an orthogonal projector,
i.e., Π2 = Π and Π∗ = Π.

In order to find max|p|≤1 F (v, p) subject to (10), we insert the representation

v = Π
(
ṽ − λ∇̄∗p

)
into (7) and perform equivalent transformations:

F (v, p) =
1

2λ

[
2〈Π

(
ṽ − λ∇̄∗p

)
, λ∇̄∗p〉+ 〈Π

(
ṽ − λ∇̄∗p

)
− ṽ, Π

(
ṽ − λ∇̄∗p

)
− ṽ〉

]
=

1

2λ

[
2〈Π

(
ṽ − λ∇̄∗p

)
, λ∇̄∗p〉+ 〈Π

(
ṽ − λ∇̄∗p

)
, Π
(
ṽ − λ∇̄∗p

)
〉

− 2〈Π
(
ṽ − λ∇̄∗p

)
, ṽ〉+ 〈ṽ, ṽ〉

]
=

1

2λ

[
〈ṽ, ṽ〉 − 〈Π

(
ṽ − λ∇̄∗p

)
, Π
(
ṽ − λ∇̄∗p

)
〉
]

=
1

2λ
‖ṽ‖22 −

1

2λ
‖Π(ṽ − λ∇̄∗p)‖22.
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Multidimensional TV-Stokes model 5

Therefore, the problem max|p|≤1 F (v, p) subject to (10) is equivalently reduced
to the constrained minimum distance problem

max
||p||∞≤1

‖Π(∇̄∗p− ṽ/λ)‖2. (11)

We formulate the above proven facts in the form of

Theorem 2 (Dual formulation of the TV-Stokes model). The unique
solution to the TV-Stokes variational problem

min
v=∇u

(
|∇̄v|1 +

1

2λ
‖v − ṽ‖22

)
is the vector field

v = Π (ṽ − λ∇∗p) ,
where Π = ∇(∇∗∇)†∇∗ is an orthogonal projector, and the tensor field p(x)
solves the dual variational problem

max
||p||∞≤1

‖Π(∇̄∗p− ṽ/λ)‖2.

3 The Chambolle-type iteration

Following the derivation of Chambolle’s algorithm in [2], we write the Karush-
Kuhn-Tucker conditions for (11) as the equation

∇̄Π
(
∇̄∗p− ṽ/λ

)
+ ‖∇̄Π

(
∇̄∗p− ṽ/λ

)
‖∞p = 0. (12)

Hence the solution of (11) can be approximated by the projected gradient iter-
ation

p0 = 0, pk+1 =
pk − τ∇̄Π

(
∇̄∗pk − ṽ/λ

)
max(1,

∥∥pk − τ∇̄Π (∇̄∗pk − ṽ/λ)∥∥∞)
. (13)

where τ > 0 is a step parameter.
Nesterov’s acceleration for the iteration (13) and other numerical methods

such as the primal-dual methods can be found in [1, 3].

4 The singular value decomposition of the differentiation
matrix

We approximate the partial differentiation operators ∂/∂xd by the N × N dif-
ferentiation matrices of order N = Nd:

D =


−1 1
−1 1

. . .
. . .

−1 1
0

 . (14)
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6 A. Malyshev

The discrete cosine transform is defined by the orthogonal N×N matrix C with
the entries

C1j =

√
1

N
, Cij =

√
2

N
cos

π(i− 1)(2j − 1)

2N
, i = 2, . . . , N, j = 1, . . . , N.

The discrete sine transform is defined by the orthogonal (N − 1) × (N − 1)
symmetric matrix S with the entries

Sij =

√
2

N
sin

πij

N
, i, j = 1, . . . , N − 1.

The singular value decomposition (SVD) of D is

D = −
[

0 S
1 0

]
ΣC,

where the diagonal matrix Σ has the entries Σii = 2 sin π(i−1)
2N , i = 1, . . . , N .

5 Discrete gradient operators

Discretization of a scalar function u(x) on a rectangular grid, which is equidistant
along each of n dimensions, is given by the components uα1α2...αn , 1 ≤ αd ≤ Nd.
The set of components is often called the grid function. The r-norm of a grid

function u is defined as ‖u‖r =
(∑

α1α2...αn
|uα1α2...αn

|r
)1/r

.
The product of an Nd×Nd matrix A with a grid function u along dimension

d is denoted by A×du such that the product w = A×du has the components

wα1...αd−1βαd+1...αn =
∑Nd

γ=1Aβγuα1...αd−1γαd+1...αn .
The discrete gradient operator ∇ is defined by means of the differentiation

matrices D introduced in the previous section. For example, the gradient of a
scalar grid function u is the set of n grid functions

∇u = {D×1u,D×2u, . . . ,D×nu}.

The discrete gradient ∇̄ is defined for a vectorial grid function v = [v1, v2, . . . vn]
as the set of n× n grid functions D×jvi, i, j = 1, 2, . . . , n.

It is rather straightforward to introduce discrete analogs of the norms ‖∇u‖2,
‖∇̄v‖2, seminorms |∇̄v|1 and so on.

The singular value decomposition of D allows us to prove that

‖∇̄‖2 = ‖∇‖2 < 2
√
n. (15)

Let us consider the iteration (13) for grid functions and with the discrete
gradient operators. The following lemma determines the range of steps τ , for
which the iteration (13) is stable.

Lemma 1. The iteration (13) is 1-Lipschitz if

τ ≤ 2/‖∇̄Π∇̄∗‖2. (16)
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Multidimensional TV-Stokes model 7

Proof. Each step of (13) consists of two mappings: p 7→ p − τ∇̄Π
(
∇̄∗p− ṽ/λ

)
and q 7→ q/max(1, ‖q‖∞). The first mapping is linear and 1-Lipschitz if and
only if ‖I − τ∇̄Π∇̄∗‖2 ≤ 1, where I is the identity transformation. The second
mapping is always 1-Lipschitz.

The estimate (15) implies that stability of (13) holds when τ ≤ 1/(2n). The
fastest convergence occurs for τ = 1/(2n).

6 Computation of (∇∗∇)† by the fast cosine transform

Using the differentiation matrices D of order Nd along each dimension d, a
discretization of the operator ∇∗∇ is applied to a grid function u as follows,

∇∗∇u = (DTD)×1u+ (DTD)×2u+ . . .+ (DTD)×nu.

By the aid of the SVD of each differentiation matrix D, the discretized equation
∇∗∇u = f is equivalently reduced to the diagonal system of linear equations

Σ2
×1û+Σ2

×2û+ . . .+Σ2
×nû = f̂ ,

where û = C×n . . . C×2C×1u and f̂ = C×n . . . C×2C×1f . Recall that C×d are the
matrices of the discrete cosine transform of order Nd. The components of û and
f̂ are related by the equalities

ûα1···αn
Ψα1α2...αn

= f̂α1···αn
, αd = 1, . . . , Nd,

where Ψα1α2...αn = Σ2
α1α1

+Σ2
α2α2

+ . . .+Σ2
αnαn

Note that Ψα1α2...αn = 0 if and
only if α1 = . . . = αn = 1 and is positive otherwise. Hence the least squares
solution of ∇∗∇u = f has the components

û1···1 = 0, ûα1···αn = f̂α1···αn/Ψα1α2...αn if α1 + . . .+ αn > n.

Recall that u = CT×1C
T
×2 · · ·CT×nû. Note that multiplication of grid functions

by the matrices C and CT can be efficiently implemented by means of the fast
Fourier transform (FFT); see, e.g. [12].

Alternatively, fast application of the operator (∇∗∇)† can also be computed
by the multigrid method [11].

7 Conclusion

In this note, we propose the variational model (3) for denoising of multidimen-
sional vectorial images satisfying the Stokes constraint. Theorem 2 gives the dual
formulation of this model. The dual formulation is used for construction of the
Chambolle-type iteration (13), which solves the problem (3). Faster convergence
is achieved by applying Nesterov’s acceleration to (13) as in [1].

While the potential applicability of the new model (3) is not wide, we hope
that the TV-Stokes model will become a useful instrument for denoising of im-
ages of hydrodynamical flows and for image inpainting.
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