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Abstract. Functional networks are a powerful extension of neural net-
works where the scalar weights are replaced by neural functions. This
paper concerns the problem of parametric learning of the associative
model, a functional network that represents the associativity operator.
This problem can be formulated as a nonlinear continuous least-squares
minimization problem, solved by applying a swarm intelligence approach
based on a modified memetic self-adaptive version of the firefly algorithm.
The performance of our approach is discussed through an illustrative ex-
ample. It shows that our method can be successfully applied to solve the
parametric learning of functional networks with unknown functions.
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1 Introduction

Models in science and engineering are usually expressed in the form of mathe-
matical equations representing the reality with a given quality level. In addition
to the free variables determining the degrees of freedom of the system, such equa-
tions usually involve some particular parameters accounting for the conditions of
the problem. Learning such parameters is of paramount importance for an accu-
rate and realistic description of the observed behavior of the system. This is also
a very challenging task, typically demanding a lot of expertise, time, and effort
from a human expert in order to get reliable results. Seeking to overcome this
limitation, several approaches and methodologies have been devised to address
this issue automatically. A classical example arises in neural networks, where
several methods for parametric learning have been reported in the literature.
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In this work, we focus our attention on the functional networks, which are a
powerful extension of the standard artificial neural networks (see our discussion
in Sect. 2 for further details).

In this paper, we consider the problem of parametric learning of a classical
model of functional networks, the so-called associative model, which is used to
represent the associativity operator. This problem can be formulated as a non-
linear continuous least-squares minimization problem. We solve it by applying a
swarm intelligence approach based on a modified memetic self-adaptive version
of the firefly algorithm. The paper is organized as follows: functional networks
and their main components are described in Sect. 2. Sections 3 and 4 discuss
the problem to be solved, and the firefly algorithm and its variants, respectively.
Sect. 5 describes the method used to solve this optimization problem. Sect. 6
discuss an illustrative example. The paper closes with the main conclusions and
a brief discussion about future work.

2 Functional networks

In short, functional networks can be regarded as a generalization of the standard
artificial neural network in which the classical scalar weights of the neural net-
works are replaced by neural functions. This methodology was firstly described
in 1998 by E. Castillo in [2] as a way to extend neural networks with new ca-
pabilities. Since then, they have been successfully applied to several problems
in science and engineering. The interested reader is referred to [3] for a detailed
explanation about functional networks, several examples and applications. Next
paragraphs describe the main components of a functional network as well as the
differences between neural networks and functional networks.

2.1 Components of a Functional Network

As the functional networks generalize the neural networks, they share several
common features, including a close graphical representation. Fig. 1(a) shows a
functional network called associative functional network (discussed in detail in
Section 3.1), which represents the associativity operator. Following this figure,
we can identify the main components of a functional network. They are:

1. Some layers of storing units: in Fig. 1(a), we can see a first layer of input
units, which contains the input information. In our example, this input layer
consists of the units ξ, ζ and υ. We also have some intermediate layers of
storing units. We point out that they are not neurons, but units storing some
intermediate information. This set is optional and it is used to allow more
than one neuron output to be connected to the same unit. For instance,
in Fig. 1(a),we can see one layer with 4 intermediate units, represented by
small circles in black. Finally, we have a layer of output units. In Fig. 1(a),
it consists only of the unit µ.
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Parametric Learning of Associative Functional Networks 3

Fig. 1. Associative functional network: (a) original network; (b) simplified network.

2. One or more layers of computing units called neurons. Each neuron receives
a set of input values, coming from the previous layer, makes some computa-
tions with them and returns a set of output values to the next layer. Neurons
are represented graphically by circles, with the name of the corresponding
neural function written inside. For example, in Fig. 1(a), we have 6 neurons
arranged in two layers, where Φ and I represent the associative operator and
the identity function, respectively.

3. A set of directed links, represented graphically by directional arrows. These
arrows connect the input layer (or any intermediate layer, in general) to
its adjacent layer of neurons, and neurons of one layer to its adjacent in-
termediate layers, or to the output layer. Note that the information flow is
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Fig. 2. Graphical differences between: (top) neural networks; (bottom) functional net-
works.

exclusively unidirectional: it always flows from the input layer to the output
layer.

The collection of all these features define the so-called network architecture or
topology of the functional network, which determines the functional capabilities
of the network.

2.2 Differences Between Neural Networks and Functional Networks

In spite of their similarities, there is a number of differences between neural
networks and functional networks. The most important ones are:

1. Each neuron of a standard neural network returns an output value y =
f(
∑

wikxk) that depends only on the value
∑

wikxk, where x1, x2, . . . , xn

are the received inputs (see Fig. 2 (top)). This means that each neural func-
tion is always univariate, as opposed to the case of functional networks, in
which the neural functions are multivariate, as shown in Fig. 2 (bottom).

2. The neural functions of the functional networks can be different (such as
functions f1, f2 and f3 in Fig. 2 (bottom)). In contrast, the neural functions
in neural networks are generally all identical.

3. The neural networks contain scalar values called weights, which must be
learned. This component is not part of the functional networks, where neural
functions have to be learned instead.
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4. The neuron outputs of the neural networks are usually different. On the
contrary, the neuron outputs of the functional networks can be coincident.
In such cases, we obtain a set of functional equations, which have to be
solved through specialized techniques, such as those reported in [2, 3]. As a
consequence, the neural functions in functional networks can be reduced in
dimension or can be expressed as functions of lower dimension.

All these differences and features show that functional networks are more
general and exhibit more interesting capabilities than the neural networks.

3 Problem to be Solved

3.1 The Associative Functional Network

In this paper we consider the associative functional network, which represents
the associativity operator Φ between two real numbers, given by:

Φ(Φ(ξ, ζ), υ) = Φ(ξ,Φ(ζ, υ)). (1)

Our goal is to learn the function Φ by using functional networks. To this pur-
pose, we consider the network topology shown in Fig. 1(a), which replicates the
mathematical structure of Eq. (1). Initially, it seems that a two-argument func-
tion Φ is to be learned. However, Eq. (1) puts some constraints on it. In fact, it
can be proved that the general solution of the functional equation (1) takes the
form (see [3] for details):

Φ(ξ, ζ) = ϕ−1[ϕ(ξ) + ϕ(ζ)] (2)

where ϕ(ξ) is a continuous and strictly monotonic (but otherwise arbitrary) func-
tion, which can only be replaced by η ϕ(ξ),with η being an arbitrary constant.
Replacing now Eq. (2) in Eq. (1), the two sides of Eq. (1) can be written as:

ϕ−1[ϕ(ξ) + ϕ(ζ) + ϕ(υ)] (3)

which means that the functional network in Fig. 1(a) is equivalent to the func-
tional network in Fig. 1(b), where only a one-argument function ϕ has to be
learned. This observation leads to two important conclusions:

1. This is the unique functional form for Φ that satisfies Eq. (1). So, the neurons
Φ cannot be replaced by any other neurons.

2. The initial two-dimensional function Φ is fully determined by a univariate
function ϕ. This means that the effect of the functional equation (1) is to
reduce the initial degrees of freedom of Φ from a bivariate function to a
univariate function ϕ.
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3.2 Parametric Learning of the Associative Functional Network

Suppose now that we are provided with a set of α data points {(ξj , ζj , υj)}j=1,...,α,
obtained from a certain unknown function υ = Φ(ξ, ζ). Let us also assume that
no information is available about the form of the function, but we still know that
it is associative, i.e., it follows Eq. (1). To learn this associative operator, we can
take pairs of numbers and their operated values as triplets (ξj , ζj , υj) such that
υj = Φ(ξj , ζj) = ξj ⊕ ζj , for j = 1, . . . , α. From Eq. (2) we get:

ω = Φ(ξj , ζj) ⇐⇒ ϕ(ω) = ϕ(ξ) + ϕ(ζ) (4)

an interesting relation to be exploited for learning ϕ(ξ). Therefore, learning the
associative functional network is equivalent to learning the function ϕ(ξ). To
this end, we can approximate ϕ(ξ) by a function:

ψ(ξ) =

β
∑

i=1

δiψi(ξ), (5)

where the {ψi(ξ)}i1,...,β is a given set of linearly independent functions, with
the ability to approximate ϕ(ξ) to the desired accuracy, and the coefficients δi
are the parameters of the functional network. Note that this means that they
assume the role played by the weights in a neural network.

in order to estimate the coefficients {δi}i=1,...,β , we use the available data in
the form of triplets (ξj , ζj , υj). According to Eq. (4) we must have

ϕ(υj) = ϕ(ξj) + ϕ(ζj) (6)

for j = 1, . . . , α. Then, the error of the approximation can be measured as:

χj = ψ(ξj) + ψ(ζj) − ψ(υj) (7)

To estimate the coefficients {δi}i=1,...,β , we minimize the sum of squared errors:

α
∑

j=1

χ2
j =

α
∑

j=1

(

β
∑

i=1

δi [ψi(ξj) + ψi(ζj) − ψi(υj)]

)2

(8)

subject to ϕ(ξκ) ≡
α
∑

i=1

δiψi(ξκ) = λ, where λ is an arbitrary but given real con-

stant, required to identify the constant η discussed above.
To summarize, learning the associative functional network finally reduces to

perform parametric learning on this approximation function ψ(ξ). This requires
to solve a least-squares minimization problem:

Λ = minimize
{δi}i,λ





α
∑

j=1

(

β
∑

i=1

δi [ψi(ξj) + ψi(ζj) − ψi(υj)]

)2

+

(

α
∑

i=1

δiψi(ξκ) − λ

)2




(9)
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Unfortunately, this is a difficult multivariate nonlinear continuous optimiza-
tion problem. In this paper, we address this issue by applying a swarm intelli-
gence approach based on a modified memetic self-adaptive version of the firefly
algorithm. The original firefly algorithm and the modifications introduced in this
paper are briefly explained in next section.

4 The Firefly Algorithm

4.1 Original Algorithm

In this work we rely on the firefly algorithm, a bio-inspired computational al-
gorithm for optimization [14, 15]. The basic inspiration for the algorithm is the
observed flashing behavior of fireflies in nature; in particular, the variation of
the intensity of light and the concept of attractiveness, which is assumed to be
related with the encoded target function. The interested reader is referred to [16]
for further details on the firefly algorithm. See also [4] for an updated review on
bio-inspired computation at large.

The firefly algorithm is a population- based method in which the individuals
(fireflies) are randomly distributed over the search space and perform exploration
searching for the best location, related to the quality of the solution. The motion
at iteration t+1 of a firefly i which is attracted by a more attractive (i.e., brighter)
firefly j is governed by the following evolution equation:

Xt+1
i = Xt

i + β0e
−γr

µ

ij(Xt
j − Xt

i) + α

(

σ − 1

2

)

(10)

where the three terms on the right-hand side of the equation account respectively
for the current position of the firefly, the attractiveness of the firefly to light
intensity seen by neighbor fireflies, and a random movement of the firefly if
it is the brightest one. Coefficients α and σ are random numbers uniformly
distributed on the interval [0, 1].

Since its appearance, the firefly algorithm has been successfully applied to
several problems in many different fields (see, for instance, [1, 6–9] for some
illustrative applications). Also, several modifications and enhanced versions on
the original algorithm have been developed [10, 11, 13]. We refer the reader to the
paper in [5] for a review and taxonomic classification of several firefly algorithms
and its variants and applications.

4.2 Modified Memetic Self-Adaptive Firefly Algorithm

A promising line of research nowadays is given by the so-called memetic algo-

rithms. Basically, they consist of the hybridization of a global search method
with a local search procedure. In agreement with this, we consider here a mod-
ified version of the firefly algorithm that enhances the original algorithm with
three additional features: the use of self-adaptation schemes on some control pa-
rameters, a new elitist population model, and the hybridization with a heuristics
for local search.
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The first modification consists of the application of self-adaptation schemes
on some control parameters; in our particular case, this strategy is applied on
the randomization parameter α, the attractiveness β, and the light absorption
coefficient γ. For parameter α it is convenient to consider relatively large values
at initial stages, thus promoting the explorative ability at the beginning of the
simulation. Consequently, we apply a self-adaptive perturbation driven by:

αt+1 = αt

(

1 − t− 1

Tmax

)2

with α0 = 0.9. This means that we start with a high randomization parameter
value, e.g. α = 0.9, which corresponds to a system where fireflies are affected by
a relatively large perturbation leading to a wide-range exploration, and slowly
reduce it to lower values near to 0, where the system intensifies the exploitation
around the local optima.

At their turn, parameters β and γ undergo a process of uncorrelated mutation
where each control parameter is perturbed additively according to the normal
distribution modulated by the mutation strength of that parameter, as:

βt+1 = βt + ζt
βN(0, 1) ; γt+1 = γt + ζt

γN(0, 1) (11)

where the mutation strength ζt
i , i = β, γ, also undergoes mutation determined

by a characteristic time called the learning rate:

ζt+1
i = ζt

i exp [τ ′N(0, 1) + τNi(0, 1)] (12)

where τ ′ ∝ 1/
√

2d and τ ∝ 1/
√

2
√
d.

The second modification concerns the population model. In the original firefly
algorithm, the population of NP individuals is entirely replaced in each genera-
tion. Consequently, it misses some valuable features typically found in the evo-
lutionary algorithms, such as the selection pressure for survival of individuals.
As a matter of fact, even the best firefly in each generation is not preserved for
the next generation. In our approach, at each generation we select a percentage
p of the best fireflies to be preserved unaltered to the next generation. Similarly,
we select a percentage q of the worst fireflies of the swarm and split it up into
two subgroups of the same size, formed respectively by fireflies that are replaced
by random solutions to increase the exploratory capacity of the swarm, and by
fireflies that are copies (clones) of the best members of the swarm but then un-
dergo mutation through an additive single-point, inductive uniform mutation at
a single coordinate while all other coordinates remain unaltered.

Finally, this modified firefly algorithm is enhanced by its hybridization with
a local search heuristics. In this work we apply the Luus-Jaakola local search
method, a heuristic proposed in 1973 to solve nonlinear programming problems
[12]. The method begins with an initialization step, in which random uniform
values are chosen within the search space. This is achieved by computing the
upper and lower bounds for each dimension. Then, a random uniform value
within these bounds is sampled for each component. This value is additively
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added to the current position of the firefly location to generate a new candidate
solution. This new solution replaces the current one if and only if this leads to a
improvement of the fitness at the new position. Otherwise, the sampling space is
multiplicatively decreased by a factor, freely chosen by the user. This workflow
is repeated iteratively. With each iteration, the size of the neighborhood of the
point is reduced, until eventually collapsing to a point.

5 Our Method

The modified firefly algorithm described in previous section has been applied to
solve the parametric learning optimization problem described in Sect. 3.2. To
this purpose, we need to determine some important choices. First of all, we need
an adequate representation of the unknowns of the problem. The fireflies in our
method correspond to real-coded vectors of length β+1 corresponding to the free
variables, {δi}i=1,...,β and λ, of the least-squares minimization problem in Eq.
(9). All individuals (fireflies) are initialized with uniformly distributed random
numbers on the parametric domain for each coordinate. On the other hand, the
fitness function corresponds to the evaluation of the least-squares function, given
by Eq. (9).

Regarding the modified memetic self-adaptive firefly algorithm, some control
parameters should be determined. As is is usual in the field of metaheuristic
techniques, the choice of suitable values for the control parameters becomes an
important issue, as it affects the performance of the method at large extent.
It is also a challenging problem, since it is strongly problem-dependent. In this
work, our choice is mainly based on a large collection of empirical results. These
control parameters and their values for this work are:

– the number of fireflies, nf : we set this value to nf = 100 fireflies in this paper.
We also tested larger populations of fireflies (up to 300 individuals) at the
expense of higher computation times, without any significant improvement,
so we found this value to be appropriate in our simulations.

– the number of iterations, niter . Through numerical simulations, we found
that niter = 5000 is a suitable value, as convergence is achieved in all our
simulations and higher values for niter do not lead to any improvement in
our results.

– the initial attractiveness, β0: some theoretical results indicate that β0 = 1 is
a suitable value for many optimization problems. Accordingly, we consider
this value in this paper, with positive results, as shown in next section.

– the absorption coefficient, γ: its value is set up to γ = 0.5 in this work, since
it provides a quick convergence of the algorithm to the optimal solution.

– the potential coefficient, µ: in principle, any positive value can be used for
this parameter. However, it is noticed that the intensity of light varies ac-
cording to the inverse square law. Therefore, we decided to choose µ = 2
accordingly.

– the randomization parameter, α. This parameter, which varies on the in-
terval [0, 1], is used to decide the degree of randomization introduced in
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the algorithm, which, in turn, is used in order to generate new solutions and
avoid to getting stuck in a local minimum. However, it has been noticed that
larger values introduce strong perturbations on the evolution of the firefly
and, eventually, delay convergence to the global optima. Consequently, it is
preferable to select values between these extreme ends of the spectrum. In
this work, we select α = 0.5.

– the percentage p of best solutions selected for elitism: it is set to p = 0.1,
with the meaning that 10% of the best solutions are preserved to the next
generation unaltered.

– the percentage q of worst solutions for replacement: it is taken as q = 0.2,
meaning that 20% of the worst solutions are replaced in our population for
each generation. Among them, 10% are replaced by random fireflies to pro-
mote exploration, while the rest are replaced by copies of the best individuals
selected for elitism and then further mutated, as explained in Sect. 4.2.

After the selection of suitable values for its parameters, the modified firefly
algorithm is executed iteratively for the given number of iterations. With the
purpose to remove the stochastic effects, and also to avoid premature conver-
gence, 30 independent executions have been exectued for each experiment. Then,
the firefly with the best (minimum) fitness value is taken as the best solution to
the problem.

6 Computational Simulations and Experimental Results

6.1 Computational Simulations

To check the performance of our approach, it has been applied to a practical
example of an associative model with functional networks. The corresponding
benchmark is given by the collection of data points shown in Table 1. The table
displays a collection of 100 training points applied to learn the functional net-
work. The parametric learning is achieved by solving the minimization problem
in Eq. (9) through the method described in Sect. 5.

For the learning process in Eq. (5), we consider the family of Bernstein poly-
nomials of degree ρ (which are linearly independent), given by:

ψi(ξ) = Bρ
i (ξ) =

(

ρ

i

)

ξi (1 − ξ)ρ−i ; i = 0, . . . , ρ

used to approximate the neuron function ϕ in Eq. (2), and perform parametric
learning of the functional network.

6.2 Experimental Results

We have tested our results for different values of the polynomial degree ρ, starting
with the simplest case (ρ = 1). The best solution obtained for the approximating
function is given by the expression:

ϕ(ξ) = 0.234B1
0(ξ) +B1

1(ξ)
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Table 1. Benchmark used for parametric learning of the associate functional network.

ξ ζ Φ(ξ, ζ) ξ ζ Φ(ξ, ζ) ξ ζ Φ(ξ, ζ) ξ ζ Φ(ξ, ζ)

0.376 0.608 1.240 0.869 0.981 1.660 0.934 0.897 1.650 0.566 0.641 1.350
0.230 0.811 1.300 0.174 0.291 0.984 0.439 0.848 1.400 0.911 0.858 1.620
0.569 0.860 1.460 0.244 0.173 0.960 0.714 0.106 1.200 0.952 0.163 1.365
0.240 0.682 1.230 0.093 0.742 1.210 0.170 0.075 0.876 0.816 0.606 1.460
0.762 0.778 1.510 0.305 0.997 1.450 0.686 0.089 1.170 0.116 0.293 0.959
0.377 0.138 1.010 0.337 0.565 1.201 0.938 0.101 1.340 0.184 0.684 1.210
0.598 0.152 1.150 0.355 0.867 1.380 0.903 0.041 1.301 0.951 0.412 1.460
0.995 0.468 1.501 0.140 0.189 0.916 0.190 0.669 1.202 0.818 0.512 1.421
0.907 0.521 1.470 0.960 0.687 1.570 0.252 0.199 0.976 0.517 0.541 1.269
0.726 0.714 1.461 0.739 0.274 1.280 0.710 0.527 1.360 0.296 0.724 1.280
0.073 0.649 1.151 0.402 0.607 1.252 0.619 0.964 1.541 0.031 0.512 1.050
0.471 0.121 1.061 0.518 0.882 1.462 0.902 0.983 1.681 0.835 0.373 1.368
0.123 0.292 0.962 0.145 0.057 0.854 0.426 0.199 1.071 0.299 0.331 1.060
0.144 0.206 0.926 0.437 0.888 1.432 0.032 0.050 0.794 0.383 0.070 0.988
0.371 0.172 1.031 0.696 0.754 1.471 0.192 0.241 0.967 0.767 0.012 1.200
0.558 0.791 1.420 0.543 0.852 1.450 0.793 0.762 1.521 0.797 0.382 1.350
0.928 0.192 1.372 0.208 0.819 1.301 0.182 0.858 1.319 0.397 0.285 1.089
0.883 0.427 1.421 0.472 0.984 1.499 0.641 0.755 1.440 0.664 0.146 1.180
0.001 0.126 0.818 0.468 0.397 1.181 0.703 0.884 1.539 0.723 0.187 1.230
0.425 0.718 1.330 0.694 0.623 1.401 0.905 0.348 1.398 0.480 0.956 1.482
0.454 0.719 1.341 0.261 0.490 1.131 0.181 0.250 0.966 0.331 0.516 1.172
0.628 0.314 1.230 0.352 0.681 1.269 0.823 0.388 1.370 0.357 0.442 1.151
0.570 0.698 1.381 0.894 0.434 1.429 0.832 0.831 1.570 0.826 0.324 1.350
0.555 0.755 1.402 0.283 0.612 1.209 0.431 0.427 1.180 0.185 0.892 1.340
0.742 0.178 1.240 0.248 0.191 0.971 0.536 0.584 1.299 0.471 0.121 1.061

Table 2. RMSE and maximum errors for five different approximate models.

Training phase Testing phase

β par. RMSE Max. RMSE Max.

2 3 1.93 × 10−1 4.57 × 10−1 1.98 × 10−1 5.16 × 10−1

3 4 1.49 × 10−2 4.33 × 10−2 1.51 × 10−2 7.63 × 10−2

4 5 1.28 × 10−3 3.47 × 10−3 1.51 × 10−3 5.72 × 10−3

6 7 7.56 × 10−6 2.81 × 10−5 8.38 × 10−6 4.56 × 10−5

11 12 4.98 × 10−8 1.09 × 10−7 5.71 × 10−8 2.63 × 10−7

Proceeding in the same way, we also tested our method for larger values of
η. The approximate models associated with ρ = 2 and ρ = 3 are given by:

ϕ(ξ) = 0.423B2
0(ξ) + 0.521B2

1(ξ) +B2
2(ξ)

and

ϕ(ξ) = 0.395B3
0(ξ) + 0.5276B3

1(ξ) + 2.06B3
2(ξ) + 1.049B3

2(ξ),
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respectively. The performance of these models can be better measured in terms

of the RMSE (root mean squared error), given by: RMSE =

√

Λ

α+ 1
, which

takes into account not only the approximation error but also the sample size
used for training.

Table 2 reports our experimental results. The table shows (in columns): the
number of approximating functions, ρ, the number of free parameters, α + 1,
and the averaged RMSE and maximum error values for the 100 training points
(columns 3 and 4) and testing points (coumns 5 and 6) in Table 1. As the
reader can see, the RMSE shown in third column decreases as the number of
approximating functions increases. We also performed cross-validation of our
results to check for over-fitting. To this aim, we predicted the values of 500 data
points and computed the prediction errors. The results for the RMSE are shown
in columns 5 and 6 of Table 2. We can see that the RMSE and the maximum
errors for the training and testing data are comparable. As a result, we can
conclude that no over-fitting happens and our results can be safely validated.

All the computational work in this paper has been carried out on a 3.4
GHz Intel Core i7 processor, with 16 GB of RAM. The programming code has
been implemented by the authors in the programming language of the popular
scientific program Matlab, particularly on its version 2018b.

7 Conclusions and Future work

In this paper we addressed the parametric learning problem of functional net-
works by considering a classical model: the associative functional network, which
represents the associativity operator. We showed that learning this functional
network for an unknown functions can be transformed into the problem of learn-
ing the parameters of an approximating function, leading to a multivariate non-
linear continuous minimization problem. We solved it by applying a modified
memetic self-adaptive version of the firefly algorithm. The experimental results
on an illustrative example used as a benchmark show that the method performs
well and is able to obtain the learn all parameters of the model and hence, repli-
cate the approximating model with good accuracy. Our results also show that
the accuracy increases with the number of approximating functions. We also
performed cross-validation by using two sets of data for training and testing,
respectively. Since the obtained results are comparable, we concluded that no
over-fitting occurs.

Our future work includes extending this methodology to other types of func-
tional networks and to more sophisticated approximating functions. For instance,
it is still an open problem to determine whether or not the method improves for
other choices of the basis functions, such as shifted step functions, logistic func-
tions, or the like. Applying this approach to some practical problems in different
domains of science and engineering is also included in the plans for future work
in the field.
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ization. Journal of Applied Mathematics. 2013, Article ID 237984, 9 pages (2013).

7. Gálvez, A., Iglesias, A.:Firefly algorithm for explicit B-spline curve fitting to data
points. Mathematical Problems in Engineering. 2013, Article ID 528215, 12 pages
(2013).

8. Gálvez, A., Iglesias, A.: Modified memetic self-adaptive firefly algorithm for 2D
fractal image reconstruction. Proc. of IEEE 42nd Annual Computer Software and
Applications Conference, IEEE COMPSAC 2019. IEEE Computer Society Press,
Los Alamitos, CA, 165–170 (2018).

9. Gálvez, A., Fister, I., Osaba, E., Del Ser, J., Iglesias, A.: Hybrid modified firefly
algorithm for border detection of skin lesions in medical imaging. Proc. of IEEE
Congress on Evolutionary Computation, IEEE CEC 2019. IEEE Computer Society
Press, Los Alamitos, CA, 111–118 (2019).

10. Iglesias, A., Gálvez, A.: Memetic firefly algorithm for data fitting with rational
curves. In: Proc. of IEEE Congress on Evolutionary Computation, CEC’2015. IEEE
Computer Society Press, Los Alamitos, CA, 507–514 (2015).

11. Iglesias, A., Gálvez, A.: New memetic self-adaptive firefly algorithm for continuous
optimisation. Int. Journal of Bio-Inspired Computation, 8(5), 300–317 (2016).

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50426-7_42

https://dx.doi.org/10.1007/978-3-030-50426-7_42


14 A. Gálvez. A. Iglesias, E. Osaba, J. Del Ser

12. Luus, R. Jaakola, T.H.I.: Optimization by direct search and systematic reduc-
tion of the size of search region. American Institute of Chemical Engineers Journal
(AIChE),19(4), 760–766 (1973).

13. Tilahun, S.L., Ong, H.C.: Modified firefly algorithm. Journal of Applied Mathe-
matics, (2012) Article ID 467631.

14. Yang, X.S.: Firefly algorithms for multimodal optimization. Lectures Notes in Com-
puter Science, 5792 (2009) 169-178.

15. Yang, X.S.: Firefly algorithm, stochastic test functions and design optimisation.
Int. Journal of Bio-Inspired Computation, 2(2) (2010) 78-84.

16. Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms (2nd. Edition). Luniver
Press, Frome, UK (2010).

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50426-7_42

https://dx.doi.org/10.1007/978-3-030-50426-7_42

