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Abstract. The total variation regularization of non-convex data terms
in continuous variational models can be convexified by the so called func-
tional lifting, which may be considered as a continuous counterpart of
Ishikawa’s method for multi-label discrete variational problems. We solve
the resulting convex continuous variational problem by the augmented
Lagrangian method. Application of this method to the dense depth map
estimation allows us to obtain a consistent normal field to the depth sur-
face as a byproduct. We illustrate the method with numerical examples
of the depth map estimation for rectified stereo image pairs.

Keywords: Consistent normal vector field · Point cloud · Augmented
Lagrangian method.

1 Introduction

Estimation of the depth map for a three-dimensional (3D) scene is a major task
of computer vision [18, 17]. For example, depth maps can be generated from
several two-dimensional (2D) color or grayscale images of a 3D scene taken by
one or more cameras positioned at different space locations. More specifically,
given a set of 2D images, which consists of rectified stereo pairs of images taken
by a stereo pair of cameras, we have to estimate depth maps for each stereo
pair of images and merge them into one 3D point cloud. The point cloud is used
afterwards to reconstruct a 2D surface of the scene.

Efficient surface reconstruction methods [4, 8, 10, 11], which produce 2D sur-
faces from 3D point clouds, most often use approximate normal vectors to the
reconstructed surfaces. Good surface reconstructions are obtained by means of
consistent normal maps [9, 2, 7], which respect edges and other feature points on
the reconstructed surface, i.e. the normal vectors are smooth within the smooth
parts of the surface but discontinuous across the edges and corners on the surface.

We estimate the depth map in the form of the global minimum of suitable
functionals, which are non-convex in general. The global variational approaches
to depth estimation can be more attractive than the faster local procedures
because they are more robust to various image corruptions and provide wider
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2 A. Malyshev

regularization conditions. However, finding global minima of non-convex func-
tionals may be very difficult or even not feasible in practice.

Our estimation of the depth map uses the continuous variational model

arg min
u

∫
Ω

α|ux(x)|dx+

∫
Ω

ρ(u(x), x)dx, (1)

where the first term is called the total variation (TV) regularization introduced
in [16]. The value |ux(x)| =

√
u2x1

+ . . .+ u2xn
denotes the Euclidean length of

the gradient vector ux = [ux1
, . . . , uxn

]. The function ρ(t, x) is supposed to be
not convex in variable t. Since the point-wise global minima of ρ(u(x), x) are
very noisy functions, the total variation times a well-chosen parameter α > 0
enforces necessary smoothness in the solution u(x) of (1).

The authors of [13] have proposed an elegant convexification procedure called
the functional lifting, which reduces the non-convex model (1) to a convex varia-
tional model but with an extra dimension. Further developments and extensions
are found in [14, 12]. A similar method for discrete variational models has been
earlier proposed by H. Ishikawa [5, 6]. The paper [13] also contains a detailed
comparison of the continuous functional lifting with Ishikawa’s method.

The present paper contributes to the estimation of the depth maps by ex-
tending the results from [13]. The numerical method of [13] is replaced by a
faster method, which is a variant of the augmented Lagrangian method (ALM);
cf. [19]. We point out that the convexification from [13] is not directly suitable
for ALM and must be refined as in Theorem 1. A consistent normal field to the
depth map surface is obtained as a byproduct of ALM; see formula (20).

2 Convex relaxation for continuous variational models

Similar to [13], the theoretical arguments below are not fully rigorous but rather
informal. For instance, the expression of the total variation, formally valid for
functions from the Sobolev space H1, is applied to functions, which are not
necessarily in H1, etc.

The variational model (1) defines an unknown real-valued function u : Ω →
[a, b] of bounded variation in the rectangular domain Ω = [0, L1]× [0, L2]×· · ·×
[0, Ln] ⊂ Rn. Note that the regularization parameter α > 0 is introduced for
convenience only.

The function ρ(t, x) can be non-convex in variable t, which creates serious
difficulties when developing reliable numerical methods for solving (1). Fortu-
nately, the non-convex variational model (1) can be reformulated into a convex
form by adding an extra dimension, say t, to the available dimensions x1, x2,
. . . , xn. Such convexification uses special binary functions called the indicator
functions of superlevel sets. Namely, for a given function u(x), the indicator
function of superlevel sets φ : [a, b]×Ω → {0, 1} is defined as

φ(t, x) =

{
1, if u(x) ≥ t,
0, if u(x) < t.

(2)
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Depth map estimation with consistent normals from stereo images 3

The function φ(x, y) is binary and monotonically non-increasing with respect to
the variable t. Owing to monotonicity, the original function u(x) is reconstructed
from φ(t, x) via the formula

u(x) = a+

∫ b

a

φ(t, x)dt. (3)

Theorem 1 (Functional uplifting). If u(x) is a solution of the minimization
problem (1), then the indicator function of superlevel sets φ(t, x), constructed in
(2), is a solution to the following minimization problem:

arg min
φ∈Φ{0,1}

∫
Ω

∫ b

a

α|φx(t, x)| − ρ(t, x)φt(t, x)dxdt, (4)

Φ{0,1} = {φ | φ(t, x) : [a, b]×Ω → {0, 1}; φ(a, x) = 1 and φ(b, x) = 0 ∀x; (5)

φ(t1, x) ≥ φ(t2, x)) whenever t1 < t2}.

The converse is also true: if φ is the indicator function of superlevel sets associ-
ated with u and solves the minimization problem (4)-(5), then u solves (1).

Proof. Following [13], the co-area formula from [3] gives∫
Ω

|ux(x)|dx =

∫
Ω

∫ b

a

|φx(t, x)|dtdx,

where |φx(t, x)| =
√
φ2x1

+ . . .+ φ2xn
. The identity φt(t, x) = −δ(u(x)−t), where

δ(·) is the Dirac delta function, implies the equalities∫
Ω

ρ(u(x), x)dx =

∫
Ω

∫ b

a

ρ(t, x)δ(u(x)− t)dtdx =

∫
Ω

∫ b

a

−ρ(t, x)φt(t, x)dtdx.

Theorem 2 (Convex relaxation). If φ(t, x) is a solution of the relaxed (from
Φ{0,1} to Φ) minimization problem

arg min
φ∈Φ

∫ b

a

∫
Ω

α|φx(t, x)| − ρ(t, x)φt(t, x)dtdx, (6)

Φ = {φ | φ(t, x) : [a, b]×Ω → [0, 1]; φ(a, x) = 1 and φ(b, x) = 0 ∀x; (7)

φ(t1, x) ≥ φ(t2, x)) whenever t1 < t2},

then the binary function

φθ(t, x) =

{
1, if φ(t, x) ≥ θ,
0, if φ(t, x) < θ,

(8)

is a solution of (4)-(5) for all threshold values θ ∈ (0, 1).

Proof. The co-area formula∫
Ω

|φx(t, x)|dx =

∫
Ω

∫ 1

0

|φθx(t, x)|dθdx.
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4 A. Malyshev

and differentiation of the identity φ(t, x) =
∫ 1

0
φθ(t, x)dθ with respect to t as

φt(t, x) =

∫ 1

0

φθt (t, x)dθ

allow us to derive that the energy functional

E(φ) =

∫
Ω

∫ b

a

α|φx(t, x)| − ρ(t, x)φt(t, x)dtdx

satisfies the following identity for all φ ∈ Φ:

E(φ) =

∫ 1

0

{∫
Ω

∫ b

a

α|φθx(t, x)| − ρ(t, x)φθt (t, x)dtdx

}
dθ

=

∫ 1

0

E(φθ)dθ.

When φ is a minimizer of the functional E in Φ, the inequality E(φθ) ≥ E(φ)
holds for all θ ∈ (0, 1) because φθ ∈ Φ. If the measure of the set of all θ for

which E(φθ) > E(φ) is larger than 0, then E(φ) =
∫ 1

0
E(φθ)dθ > E(φ). Hence

the measure equals zero.
An argument similar to those in [1, 14] can be used to include θ belonging to

the exceptional set of zero measure.

3 The augmented Lagrangian method

Let us introduce a dual function p(t, x) such that p = (p0, p1) = ∇φ, where
∇φ = (φt, φx) is the full gradient of φ(t, x) and |p1| = ‖p1‖2 is the Euclidean
norm of p1. Then the problem (6)-(7) is equivalent to the following constrained
convex minimization problem

min
φ,p

∫
[a,b]×Ω

α|p1(t, x)| − ρ(t, x)p0 dtdx, (9)

p0 =φt, p1 = φx; p0 ≤ 0, φ(a, x) = 1, φ(b, x) = 0. (10)

The convex variational problem (9)-(10) can be solved by means of the aug-
mented Lagrangian method (cf. [19]) with the augmented Lagrangian

L(φ, p, λ) =

∫
[a,b]×Ω

[
α|p1| − ρp0 + 〈λ, p−∇φ〉+

c

2
‖p−∇φ‖22

]
dtdx, (11)

where p = (p0, p1) and λ = (λ0, λ1). The inner product 〈λ, p−∇φ〉 is Euclidean.
The constant c > 0 is sufficiently large but is not required to tend to infinity.

Each iteration of the ALM method consists of alternative minimizations with
respect to φ and p and special updates of λ.
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Algorithm ALM
1. Set k = 0 and initialize p0 = 0 and λ0 = 0.
2. Find the solution φk+1 of the minimization problem

φk+1 = arg min
φ

φ(a,x)=1
φ(b,x)=0

L(φ, pk, λk)

3. Find the dual variable pk+1 by solving the minimization problem

pk+1 = arg min
p=(p0,p1)
p0≤0

L(φk+1, p, λk)

4. Update multiplier λ in accordance with the augmented Lagrangian method

λk+1 = λk + c(pk+1 −∇φk+1)

5. Set k = k + 1 and go to step 2.

Let us consider Steps 2 and 3 in detail.

Minimization with respect to φ. Step 2 of the ALM algorithm concerns the
optimization problem

min
φ

∫
[a,b]×Ω

[
−〈λ,∇φ〉+

c

2
‖p−∇φ‖22

]
dtdx

where φ(t, x) satisfies the boundary conditions φ(a, x) = 1, φ(b, x) = 0. Standard
arguments from the variational calculus yield the Poisson equation

φtt +

n∑
i=1

φxixi
= (p0 + λ0/c)t +

n∑
i=1

((p1)i + λi/c)xi
(12)

with the Dirichlet and Neumann boundary conditions

φ(a, x) = 1, φ(b, x) = 0, (13)

φxi
(t, x) = ((p1)i + λi/c)(t, x) if xi = 0 or xi = Li. (14)

Minimization with respect to p. Step 3 of the ALM algorithm requires solution
to the pointwise minimization problem

arg min
p0,p1 : p0≤0

α‖p1‖2 − ρp0 + 〈λ, p−∇φ〉+
c

2
‖p−∇φ‖22 (15)

= arg min
p0,p1 : p0≤0

2α

c
‖p1‖2 −

2ρ

c
p0 + ‖p− (∇φ− λ/c)‖22.

Let us denote
q0 = φt − λ0/c and q1 = φx − λ1/c. (16)
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6 A. Malyshev

Solution to minp0≤0−
2ρ
c p0 + |p0 − q0|2 is p0 = min(q0 + ρ/c, 0).

A simple geometric argument reveals that the minimum point of the function
2α
c ‖p1‖2 + ‖p1− q1‖22 must have the form p1 = rq1 with 0 ≤ r ≤ 1. For r ∈ (0, 1)

the necessary condition for extremal points is satisfied when

d

dr

[
2α

c
r + (r − 1)2‖q1‖2

]
=

2α

c
+ 2(r − 1)‖q1‖2 = 0.

Hence r = 1 − α/(c‖q1‖2) if ‖q1‖2 − α/c > 0. Otherwise, r = 0. As a result,
solution to (18) is given by the pointwise formulas

p0 = min(q0 + ρ/c, 0), (17)

(p1)i =

{
[1− α/(c‖q1‖2)](q1)i, ‖q1‖2 − α/c > 0,
0, otherwise.

(18)

By Theorem 2, an approximation to u(x) can be obtained in the form

u(x) = a+

∫ b

a

φ1/2(t, x)dt. (19)

The normal field to the surface t − u(x) = 0 in the space with coordi-
nates (t, x) is the set of the gradient vectors n(t, x) = [1,−ux1 , . . . ,−uxn ]T .
We use formula (19) to express the derivatives of u(x) in terms of φ1/2(t, x)

as uxi
=
∫ b
a
φ
1/2
xi (t, x)dt. Since the derivatives φxi

(t, x) in the AL method are
approximated by (p1)i, the normal field can be approximated as

n(t, x) =
v

‖v‖2
, where v(t, x) =

[
1,−

∫ b

a

(p1)1(t, x)dt, . . . ,−
∫ b

a

(p1)n(t, x)dt

]T
.

(20)
Formula (20) is one of the main contributions of the paper.

4 Numerical experiments

The meaning of the variable x is changed in Section 4. Instead of the points
x = (x1, ..., xn) ∈ Rn, we deal with the pixels (x, y) ∈ R2.

4.1 Depth map from stereo pairs of images

Our numerical experiments deal with estimation of the dense depth map; see,
e.g., [17, 18] for more detail about depth estimation. Suppose that two functions
L(x, y) and R(x, y) represent a pair of left and right 2-dimensional grayscale
images with the horizontal coordinates 0 ≤ x ≤ Lx and vertical coordinates
0 ≤ y ≤ Ly. We assume that the images L and R are rectified so that one
can define the disparity map t = t(x, y) as the parallel translation along the
horizontal direction such that a point (x, y) in the left image L matches the
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Depth map estimation with consistent normals from stereo images 7

point (x − t(x, y), y) in the right image R. The disparity map is converted into
the depth map via the simple formula depth = focus ·baseline/disparity, where
baseline is the distance between the two camera positions, from which the images
L and R have been taken. We assume that both cameras are identical, have focal
length focus and equally oriented in 3D space.

In order to estimate the disparity map for grayscale images, we use the sim-
plest dissimilarity function

ρ(t, x, y) = |L(x, y)−R(x− t(x, y), y)|. (21)

The range of the variable t in (21) for fixed variables x and y is the interval
max(x − Lx, a) ≤ t ≤ min(x, b) because the first argument x − t of R must
satisfy 0 ≤ x − t ≤ Lx . The function ρ(t, x, y) equals zero outside this range.
More sophisticated dissimilarity functions can be found in [17, 18].

The dissimilarity function for RGB images can be constructed as the sum of
absolute differences of intensities for all three color channels

ρ(t, x, y) =
∑

C={R,G,B}

|LC(x, y)−RC(x− t(x, y), y)|.

4.2 About solving the Poisson equation in rectangular domains

The Poisson equation (12) with the Dirichlet boundary conditions (13) and the
Neumann boundary conditions (14) can be solved by several numerical methods.

When the size N of the discretized function φ(t, x, y) is not very large, the
Poisson equation can be solved by means of the fast discrete sine and cosine
transforms. The arithmetic complexity of the fast Poisson solver is O(N logN ).

For very large N , the Poisson equation can be efficiently solved by the multi-
grid method, which has the linear arithmetic complexity O(N ).

4.3 Synthetic dataset

In order to demonstrate behaviour of the proposed method, we use a synthetic
dataset, where all functions are constant along the axis y. This dataset is conve-
nient for visualization because it is enough to plot only sections of such functions
for a fixed y. These sections are the horizontal lines of the images displaying the
functions. The depth function d(x, y) = 10 + sin(mod(x, π)) of the synthetic
dataset is defined for |x| ≤ 5π and defines the surface z = d(x, y). Two identical
cameras with focus equal to 1 are located at the points (x, y) = (−2, 0) and
(x, y) = (2, 0). The coordinate axes x, y and z of both cameras are oriented in
parallel to the axes x, y and z of the surface z = d(x, y). The left and right
digital images L(x, y) and R(x, y) have size 128 × 10. The horizontal lines of L
and R for a fixed y are shown in Fig. 1. Note that the most left 15 pixels of L
and the most right 15 pixels of R on each horizontal line are outside the scene.
The horizontal lines of the true disparity are shown on the right side of Fig. 2.

The augmented Lagrangian method has been implemented with the fast Pois-
son solver, which is based on the fast Fourier transform. The following parameters
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Fig. 1. Horizontal lines of the rectified stereo images L and R

20 40 60 80 100 120
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Fig. 2. The true disparity and its horizontal lines

have been used for computation by this method: a = 13, b = 14.35, α = 0.7,
c = 0.1. The number of nodes along the coordinate directions t, x and y are
respectively 129, 128, and 16. The grid steps are ht = (b− a)/128, hx = hy = 1.
We have run 100 iterations of the augmented Lagrangian method. However, a
sufficiently good convergence is achieved much earlier, say after 30 iterations.

Fig.3 displays the computed disparity versus the true disparity. The com-
puted disparity is plotted using the blue solid line, and the true disparity using
the red dash-dot line. We recall that the displayed disparity is defined in the
coordinate system of the left image L. Note also that the most left 15 pixels lie
outside the scene, i.e. the parts of both lines for x = 1, 2, . . . , 15 are fictitious.

20 40 60 80 100 120

13

13.5

14

14.5

Fig. 3. Disparity computed by the AL method vs. true disparity

This section of the paper aims to justify numerically that the augmented
Lagrangian method produces consistent normals to the surfaces. The surface of
the synthetic example is the disparity map d(x, y), which is constant along y. The
computed solution u(x, y) turns out to be also constant along y. The computed
function (p1)2(x, y) is zero everywhere. We recall that the normal field n(x, y) is
computed by the formulas

n(x, y) = v(x, y)/‖v(x, y)‖2, where v(x, y) = [1,−ht(p1)1,−ht(p1)2].

Fig. 4 displays the normals along the horizontal line of the disparity map com-
puted by the augmented Lagrangian method.
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Fig. 4. Normals to the disparity surface computed by the AL method

4.4 Comparison with the numerical method of [13]

Apart from introducing the functional lifting for convexification, the authors
of [13] propose an efficient numerical method for solving the resulting convex
variational problem. Provided that ρ(t, x, y) ≥ 0, they consider the convex model

arg min
φ∈D

∫ b

a

∫
Ω

[
α
√
φx(t, x, y)2 + φy(t, x, y)2 + ρ(t, x, y)|φt(t, x, y)|

]
dtdxdy,

(22)

D = {φ | φ(t, x, y) : [a, b]×Ω → [0, 1]; φ(a, x, y) = 1 and φ(b, x, y) = 0}, (23)

which is equivalently transformed into the primal-dual formulation

min
φ∈D

max
p∈C

∫ b

a

∫
Ω

(
φxp1 + φyp2 +

ρ

α
φtp0

)
dxdydt, (24)

where

C = {p(t, x, y) | p(t, x, y) = (p0, p1, p2)(t, x, y) : [a, b]×Ω → [0, 1]; (25)

|p0(t, x, y)| ≤ ρ(t, x, y)

α
;
√
p21(t, x, y) + p22(t, x, y) ≤ 1}.

Such a transformation is obtained by using the vectors [p1(t, x, y), p2(t, x, y)]

coinciding with the normalized vectors [φx, φy]/
√
φ2x + φ2y. Apparently, this rep-

resentation does not lead to formula (20) for a consistent normal field.

The numerical algorithm for solving (24), proposed in [13], is called a primal-
dual proximal point (PDPP) method and iteratively minimizes the functional
in (24) with respect to the primal variable φ and then maximizes the same
functional with respect to the dual variable p. Each iteration consists of the
following two steps:

primal step φk+1 = PD(φk + τpdivpk),

dual step pk+1 = PC(pk + τd∇φk+1).

The operator PD denotes the projection onto the set D, which can be computed
by a simple truncation of φk+1 to the interval [0, 1] and setting φ(a, x, y) = 1
and φ(b, x, y) = 0. The operator PC denotes the projection onto the set C, which
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10 A. Malyshev

can be computed via the formulas

pk+1
1 = pk+1

1 /max

(
1,

√
(pk+1

1 )2 + (pk+1
2 )2

)
pk+1
2 = pk+1

2 /max

(
1,

√
(pk+1

1 )2 + (pk+1
2 )2

)
pk+1
0 = pk+1

0 /max

(
1,
α|pk+1

0 |
ρ

)
.

The parameters τp and τd must guarantee stability of the method. The authors
of [13] propose the choice τp = τd = 1

√
3. For the synthetic dataset, sufficient

convergence is observed after 1000 iterations.

20 40 60 80 100 120

13

13.5

14

14.5

Fig. 5. Disparity computed by the PDPP method vs. true disparity

To get the plot on the upper level of Fig.6, the PDPP method was iterated
2000 times, which is much longer than necessary for convergence. The normals
have been computed by the formula n(t, x, y) = [1,−ux,−uy]T , where u(x, y) is
the computed solution of (22).

20 40 60 80 100 120
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15

20

20 40 60 80 100 120
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15

20

Fig. 6. Normals computed by the PDPP method are shown on on the upper level;
normals computed by the AL method are shown on the lower level

The comparison of the normal fields in Fig. 6 demonstrates that both the
augmented Lagrangian method and the PDPP method produce normal fields of
similar visual quality.
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4.5 Tsukuba dataset

Let us use the dataset Tsukuba from http://vision.middlebury.edu/stereo

in order to demonstrate the working capacity of the AL method for calculation of
a consistent normal field. The rectified stereo image pair Tsukuba of the smallest
size 384 × 288 consists of two RGB images. The image from the left camera is
shown as the left image in Fig. 7.

Fig. 7. The left image and the true disparity for the Tsukuba dataset

The corresponding image of the true disparity is also available at the Mid-
dlebury repository [15]; see the right image in Fig.7. The disparity map has 256
gray levels but it can be scaled to the interval [0, 15] of integer numbers with-
out any loss. The scaled image has only the following gray values (or labels):
0, 5, 6, 7, 8, 10, 11, 14. The interval (measured in pixels) containing all disparity
values is [a, b] = [0, 16].

The suitable parameters in the augmented Lagrangian (14) are α = 0.1
and c = 0.1. The label space [a, b] is divided into 32 subintervals of the length
ht = (b−a)/32. We have run only 100 iterations of the AL method. Fig.8 shows
the computed disparity map and consistent normals for the Tsukuba rectified
stereo pair.

5 Conclusion

We have developed a variant of the augmented Lagrangian method for a convex
relaxation of the continuous variational problem with the total variation regu-
larization. The most time consuming part of this method is solving a boundary
value problem for the 3D Poisson equation. We solve it by the fast Poisson solver.
The augmented Lagrangian method has a significantly faster convergence than
the primal-dual proximity point method from [13].

An additional benefit of the augmented Lagrangian method consists in pro-
ducing a consistent normal vector field to the solution surface as a byproduct.
Numerical differentiation of the solution computed by the method from [13]
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Fig. 8. Computed disparity and consistent normals for the Tsukuba dataset

seems to produce a normal vector field of similar quality. However, thorough
verification of these properties requires further investigation.
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