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Abstract. Performance evaluation in Internet of Things (IoT) networks
is becoming more and more important due to the increasing demand for
quality of service (QoS). In addition to basic statistical properties based
on the distribution of interarrival times of packets, actual network traf-
fic exhibits correlations over a wide range of time scales associated with
long-range dependence (LRD). This article focuses on examining the
impact of both LRD and number of nodes that transmit packets in a
typical IoT wireless local network, on performance of the backhaul link.
The analysis of latency and packet loss led to an interesting observation
that the aggregation of packet streams, originating from single nodes,
lowers the importance of LRD, even causing an underestimation of per-
formance results when compared to the queueing system with Markovian
input.
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1 Introduction and related work

Internet of Things (IoT) wireless networks integrate many physical devices and
sensors that send data through wire or wireless connections and have different
architectures (e.g. fog, edge, cloud). Because of the heterogeneity of IoT sys-
tems it is not easy task to design reliable and efficient communication systems
[8]. One of the big issue is energy consumption, which depends on: incorrect
selection of the microcontroller, energy-inefficient software [3] or communication
protocol parameters [12]. Another big issue is the impact of offered load on qual-
ity of service (QoS) and quality of experience (QoE), especially for interactive
or streaming services. There are two main measures in terms of QoS that re-
late to end-to-end connection performance: packet loss and latency. This article
presents the results of these measures for different scenarios, taking into account
long-range dependent (LRD) feature of the traffic.

Wireless communication in IoT networks is usually based on one of the
Medium Access Control (MAC) protocols: Time Division Multiple Access (TDMA)
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or Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA). In
TDMA protocol each node is assigned a time slot for data transmission in a
predetermined order. The main disadvantage of this system is that it requires
accurate synchronization, which reduces the efficiency of the entire system. The
second MAC protocol widely used in IoT systems is well known CSMA/CA
(example use: IEEE 802.11 family, IEEE 802.15.4, etc.), that was extensively
studied in many articles. Comprehensive study on the throughput, delay and
stability performance of CSMA networks was presented in [6]. The problem of
stable throughput and bounded mean delay was discussed in [24]. Another in-
teresting contribution in the area of CSMA/CA protocols was a proposition of
Handshake Sense Multiple Access with Collision Avoidance (HSMA/CA) pro-
tocol [19], which protects a densely deployed network from the classical hidden
and exposed terminal problems. This idea was developed using Markov mod-
eling and simulations. Recently, authors of [9] considered maximum effective
throughput and suggested that that the minimum mean access delay parameter
of CSMA/CA system is of great practical interest.

Network traffic affects the reliability and performance of a network. Infor-
mation on the statistical distribution of interarrival times of packets is not suffi-
cient for evaluation of network performance, since actual network traffic exhibits
second-order properties associated with long-range dependence (LRD) [1, 20]. It
is very important to consider LRD, because of the impact on queueing per-
formance [16]. Many models were developed from the properties of fractional
Gaussian noise [17] or fractional autoregressive moving average process [4]. One
of the most popular model that incorporates LRD properties is on/off source,
recently analyzed in [25]. There is also a modified version of the Pareto on/off
model [13], which is used further in this article.

Network traffic analysis and modeling is crucial for design and implementa-
tion of efficient and reliable transmission networks. It helps explain possible prob-
lems before they occur. The simulation results can be used to identify anomalies
[5, 10, 7] or detect Distributed Denial of Service flood attacks [11, 15]. Further-
more, most of the symptoms that lead to congestion and high level of packet
loss rate can be detected in the simulation process of network traffic [2, 23].

Experimenting with physical devices is uneconomical in the first phase of the
project, especially if the number of devices is large. Therefore, the simulation
approach is optimal in developing new methods and testing new scenarios. For
the purposes of this article, all simulations were carried out using OMNeT++
framework [22, 21], which is a powerful open-source discrete event simulation
tool. In fact, it is component-based C++ simulation library and framework, but
instead of providing components specifically for computer networks, it includes
generic component architecture to create any simulation.

The article is organized as follows. Next section characterizes basic properties
of long-range dependence and introduces estimation methods used in further
sections of this paper. Section 3 presents considered network structure as well as
the model of network traffic generated by single node. In addition, it contains all
the statistics for the reference queueing system, which are further studied from
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the point of view of performance evaluation. In section 4, the results obtained
for the analyzed network are then compared with the corresponding statistics of
a commonly used queueing model described in section 3.3.

2 Long-range dependence

2.1 Basic properties

In order to explain the concept of long-range dependence (LRD), one needs to
take a closer look at the stochastic process for different time scales. Let Y (t) be
the stationary stochastic process. The following simple equation describes the
relationship for the process that is rescaled in time:

Y (at)
d
= aHY (t), a > 0, (1)

where a is a stretching factor and H is the Hurst exponent and
d
= denotes

equality in distributions. If 0.5 < H < 1 then second-order properties associated
with correlation structure are preserved regardless of scaling in time and the
process becomes LRD. The higher value of H the stronger dependence. The
autocorrelation function for the incremental process X(i) = Y (i) − Y (i − 1),
i = 1, 2, ..., which reflects the similarity between X(i) and X(i + k), has the
following form:

rk =
σ2

2

(
(k + 1)2H − 2k2H + |k − 1|2H

)
, k = 0, 1, ... (2)

and for H > 0.5 is not summable:

∞∑
k=0

rk →∞ . (3)

The value of autocorrelation function decays slowly for LRD processes. In case
of no-LRD processes, there is no dependency (H = 0.5) and rk = 0 for k ≥ 1.

2.2 Estimation

In order to evaluate Three methods of estimation of Hurst exponent were used.
First one is variance-time method, which is based on the aggregated process of
X(n) for discrete times n = 0, 1, ..., N that corresponds to fixed-length intervals:

X(m)(n) = m−1
m(n+1)−1∑
t=mn

X(t), n = 0, 1, ..., bN/mc − 1, (4)

where m denotes the level of aggregation, i.e.:

X(m) = m−1
m∑
t=1

X(t) = mH−1X (5)
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The variance of the aggregated random variable in (5) is:

V ar
(
X(m)

)
= σ2m2H−2, (6)

where σ2 is the variance of X. It can be easily seen that if one performs log-
arithmic operation on both sides of (6) then Hurst exponent can be estimated
from the slope of linear regression (2H−2) for all aggregated samples according
to (4).

The next, similar method of estimation is Index of Dispertion for Counts
(IDC). It is defined as a relation of variance-to-mean ratio of the sum of random
variable X for period L:

IDC(L) = V ar

(
L∑
n=1

X(n)

)/
E

(
L∑
n=1

X(n)

)
≈ cL2H−1, (7)

where c is a positive value. As with the variance-time method, one can use the
linear regression to get the estimated H̃ from the slope (2H − 1).

Another method of estimation is periodogram based on the approximated
value of spectral density of LRD processes:

f(λ,H) ≈ sin(πH)Γ (2H + 1)|λ|1−2H , (8)

where λ is the frequency value for analyzed random variable X. Although the
estimation operation is done in the frequency domain, the Hurst exponent can
also be calculated from linear regression. In this case, the FFT values should
be taken as the regression points. LRD refers to the lowest frequencies, which is
reflected in the formula (8), where most of the energy concentrates near 0. For
that reason, only 10% of the lowest frequencies is considered in the periodogram
estimation method.

3 Framework

3.1 Network

In order to analyze network traffic in a typical and commonly used structure
for IoT devices shown in fig. 1, a simple and efficient non-persistent CSMA/CA
protocol is assumed. This protocol was chosen because it can be easily imple-
mented even in basic and cheap microcontrollers and does not consume much
power during wireless operation, which is crucial for IoT wireless sensors. In
non-persistent version of CSMA protocol waiting node does not listen to the
channel continuously until it becomes idle (like in 1- or p-persistent versions),
which reduces energy consumption.

The network consists of nNodes wireless nodes and two stations: st0 and st1.
Each node can transmit packets to the station st0 and can sense transmission
from another node to avoid collisions. All nodes can hear each other, so there is
no hidden node problem [14]. When the channel is busy, because another node is
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Fig. 1. Schematic diagram of analyzed IoT wireless network, example for 5 nodes.

transmitting, the node that wants to send packets must wait a period of time and
then listen (sense) again. If the channel is idle, the node starts its transmission
immediately.

Wireless station st0 receives packets from all nodes and tries to send them all
across the long range radio link to the station st1. All packets must pass through
the wireless network interface of st0 that connects this station to another one
(st1). The output interface at st0 actually incorporates the queueing system that
has K places for packets (including the one being transmitted) and the trans-
mission circuit limited by the bandwidth of the radio link. Therefore, because
all the cumulative traffic from the nodes goes there, all interesting performance
statistics, associated with the impact of LRD traffic, can be found at the radio
link network interface of station st0. Before the packet leaves st0, either it is im-
mediately processed (if the queue is empty) or goes to the queue buffer. If there
is not enough buffer space, packet is dropped (buffer overflow). By changing the
bandwidth of this radio link channel, one can examine the impact of the local
traffic on queueing performance, and thus on the level of packet loss and latency.

3.2 Source node

Every node sends fixed length packets to the np-CSMA channel according to
Pareto Modulated Poisson Process (PMPP) [13]. This model was chosen because
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it is versatile, efficient and introduces long-range dependence to the traffic while
maintaining a constant level of packet rate. In addition, it resembles the behavior
of variable-bit-rate services or protocols that transmit packets in batches. The
PMPP source consists of two Poisson sources with alternating traffic intensities
λ1 and λ2 (fig. 2). The sojourn time in each state has Pareto distribution P{X ≥
x} = x−α with parameter α > 0. This distribution has infinite variance for
1 < α < 2 and is heavy-tailed.

Fig. 2. Two Poisson sources of PMPP packet generator

The approximated value of IDC for PMPP source is:

IDC(t) ≈ 1 +
(λ1 − λ2)2

λ1 + λ2

(
α− 1

α

)
t2−α, (9)

where H can be easily obtained from:

H =
3− α

2
(10)

and is compatible with (7) in terms of the same exponent (2H − 1). The λ1
and λ2 values should be selected so that the expected value of number of pack-
ets E(N(t)) = 0.5(λ1 + λ2)t corresponds to the desired value of the generated
network traffic.

3.3 Performance evaluation

The network performance of backhaul link between st0 and st1 depends on
statistical properties of the inbound traffic as well as the service rate and packet
length distribution. Since all packets have fixed size, a deterministic service is
assumed. All traffic from local network goes to the input of queueing system
inside the output interface of st0 (fig. 1). The queueing system consists of one
server and has K−1 slots as a buffer space for packets. If the buffer overflows (K
packets in the system) then the next incoming packet is dropped. Most common
type of queueing system that meets the above assumptions is M/D/1/K, for
which explicit formulas of blocking probability, stationary distribution and mean
system sojourn time were derived in [18]. Both latency and packet loss can be
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expressed in terms of steady state probabilities of number of packets in the
system:

D =
1

λ(1− PLOSS)

K∑
k=0

k · p(K)
k (11)

PLOSS = p
(K)
K , (12)

where:

p
(K)
k =


(1 + ρΛK−1)

−1
for k = 0

(Λk − ΛK−1) p
(K)
0 for k = 1, . . . ,K − 1

1− ΛK−1p(K)
0 for k = K

(13)

Λk =

k∑
i=0

(ρ(i− k))
i

i!
exp ((k − i)ρ) . (14)

These relationships are the reference for comparing them with the data received
from the interface of st0 for different scenarios, i.e. different levels of LRD as
well as different number of nodes.

4 Results

All results were obtained using the OMNeT++ [22] simulation platform. The
simulation framework was described in the previous section.

Fig. 3. Sample result for the first 200 ms of highly congested traffic, nNodes: 5, band-
width: 1 Mbps, packet transmission time (T ): 4.096 ms.
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The performance results were compared to a typical M/D/1/K queuing sys-
tem, presented in 3.3, where all performance measures refer to the classical
Poisson model of input traffic (without LRD feature).

The purpose of the experiments was to examine the effect of different Hurst
exponent values in the range of 0.5 < H < 1 as well as different number of
nodes (nNodes) on performance of the backhaul link (fig. 1). The simulation
time, bandwidth and packet length for each scenario were 60 min., 1 Mbps and
4096 bits (512 bytes), respectively. The packet length corresponds to the packet
transmission time of 4.096 ms shown in fig. 3.

Fig. 4. Variance and IDC plots for two desired Hurst exponent values: H = 0.9 (α =
1.2) and H = 0.6 (α = 1.8).

Figure 4 shows the estimation results of Hurst exponent (H̃) for the aggre-
gated outbound traffic from 5 nodes. Two methods of estimation were applied:
variance-time and IDC plot (see section 2.2 and equations (5), (7)). The desired
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H was 0.9 and 0.6, which corresponds to the α = 1.2 and α = 1.8 of Pareto
distribution in PMPP model.

Fig. 5. Periodogram plots for different number of nodes.

Table 1. Main statistics for H = 0.9 and different number of nodes.

Number of nodes: 2 3 6 8 10 15

throughput [kbps] 81 131 233 290 397 326

packets at in0 [pkts] 70829 112264 192267 239938 291615 345220

collision rate [%] 2 4 12 16 24 39

λ̄ at in0 [pkts/s] 20 31 53 67 81 96

mean H̃ for nodes 0.943 0.881 0.889 0.917 0.859 0.91

mean H̃ at in0 0.873 0.813 0.861 0.841 0.758 0.574

In the next figure (fig. 5) there are periodogram estimation plots for different
number of nodes for desired H = 0.9. All estimation results of Hurst exponent
were obtained based on the formula (8). It is clearly seen that the values of H̃
decreases as the number of nodes increases. This is due to the disappearance
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of the LRD structure in aggregated stream that consists of many independent
network flows coming from single nodes. It can be better observed in table 1,
where the mean H̃ estimated for nodes stays the same (approximately), while
the mean H̃ at the input of the queue (in0) decreases to the low value, suggesting
that the LRD properties gradually disappears.

Table 2 shows the main statistics for different desired H values constant
number of nodes (nNodes = 5). A slight increase of all measured values can
be observed, which suggests that increasing H value raises the level of collisions
and hence increases values for other statistics.

Fig. 6. Mean number of packets in the queueing system for different number of nodes,
α = 1.2.

Table 2. Main statistics for 5 nodes and different H values.

H value: 0.6 0.7 0.8 0.9

throughput [kbps] 180.5 181.8 183.8 189.5

packets at in0 [pkts] 158681 159830 161598 166602

collision rate [%] 7.9 7.8 8.1 8.5

λ̄ at in0 [pkts/s] 40.6 40.8 44.5 48.4

The observations from table 1 are confirmed by the backhaul link perfor-
mance results. In figure 6 there are curves for mean number of packets in the
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Fig. 7. Packet loss for different number of nodes, α = 1.2.

Fig. 8. Latency for different number of nodes compared to M/D/1/20 queueing system.
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queueing system for different number of nodes versus offered traffic load. The
theoretical curve for M/D/1/20 system, marked with solid black line, is calcu-

lated as the mean value of all p
(K)
k in (13) for K = 20. In the next figure (7) one

can observe the same tendency - the packet loss becomes lower as the number
of nodes increases. Last figure (8) presents changing latency when number of
nodes increases. For nNodes = 10 and nNodes = 15 the empirical curves goes
below the levels of theoretical counterpart calculated from (11), which can be
explained by the fact that the aggregation of streams from single nodes causes
big change in LRD as well as in distribution.

5 Conclusions

The number of IoT devices and networks is constantly increasing, which means
that congestion can occur, especially when the communication channel capacity
does not increase. The main performance measures analyzed in this article were
latency and packet loss. It is obvious that for higher offered traffic load the
values of both measures increases causing poor performance of the connection
link. However, situation becomes worse when LRD is considered. There is no
doubt that this feature exists in network traffic. The question is, how strong
are these long-term relationships and how they influence the performance. The
simulation results of analysis of a typical IoT wireless CSMA/CA network with
backhaul link provided more insights on the impact of both LRD and number
of nodes on latency and packet loss.

All estimation results of Hurst exponent show that H̃ is stable for the same
number of nodes. If number of nodes increases, then H̃ becomes smaller. Fur-
thermore, all performance results show that with an increasing number of nodes,
performance improves, causing even underestimation of the classical M/D/1/K
model of queueing system. It implies that the aggregated stream consisting of
many single node streams has changed its structure in terms of LRD feature
as well as the distribution. This phenomenon can be used to determine the pa-
rameters of the IoT network system in order to reduce the value of latency and
packet loss, which in turn has a positive effect on QoS and QoE.
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