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Abstract. Internet-of-Things systems are comprised of highly hetero-
geneous architectures, where different protocols, application stacks, in-
tegration services, and orchestration engines co-exist. As they permeate
our everyday lives, more of them become safety-critical, increasing the
need for making them testable and fault-tolerant, with minimal human
intervention. In this paper, we present a set of self-healing extensions for
Node-RED, a popular visual programming solution for IoT systems. These
extensions add runtime verification mechanisms and self-healing capabili-
ties via new reusable nodes, some of them leveraging meta-programming
techniques. With them, we were able to implement self-modification of
flows, empowering the system with self-monitoring and self-testing capa-
bilities, that search for malfunctions, and take subsequent actions towards
the maintenance of health and recovery. We tested these mechanisms on
a set of scenarios using a live physical setup that we called SmartLab. Our
results indicate that this approach can improve a system’s reliability and
dependability, both by being able to detect failing conditions, as well as
reacting to them by self-modifying flows, or triggering countermeasures.

Keywords: Internet-of-Things · Runtime Verification · Self-Healing ·
Software Engineering · Visual Programming

1 Introduction

The Internet-of-Things (IoT) is a network of programmable uniquely identifiable
devices, known as things, that can sense (i.e., sensors) and change (i.e., actuators)
their environment [22]. Within the nature of IoT systems, there are several partic-
ularities that, although not new or unique, congregate at an unprecedented scale
in terms of interconnected devices, people, systems, and information resources,
leading to an ever-increasing complexity that developers must address. These
systems — typically built with heterogeneous parts, mostly resulting from the
integration of different, and, sometimes, already existent, systems (i.e., systems
of systems [8]) — are not only logically distributed but also geographically, and
commonly have to deal with power constraints and real-time needs.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50426-7_27

https://dx.doi.org/10.1007/978-3-030-50426-7_27


2 J.P. Dias et al.

The wide range of IoT application scenarios urges the need for tools that allow
users with reduced technical knowledge to configure and adapt their systems to
their needs. These requirements lead to the birth of several different low-code
and visual programming solutions that try to reduce the inherent complexity
of programming and configuring these systems. Ray et al. [29] identify several
visual programming solutions tailored to this domain. To get a grasp on the
popularity of these solutions, we surveyed open-source tools (hosted on GitHub),
using the number of stars as the primary metric. We can observe that the most
popular visual programming solution for this domain is, by far, Node-RED
(9600 stars), followed by XOD (583), Ardublock (376, Arduino-only develop-
ment), Snap4Arduino (99, Arduino-only), Wyliodrin (84), Intel IoT Services
Orchestration Layer (80), miniBloq (72), and NETLabToolkit (17, Arduino-only).

As systems’ complexity increases, it inevitably results in people becoming
“overwhelmed by the effort to properly control the assembled collection,” [28] in-
creasing the probability of human-induced errors and failures; developing becomes
hard, labor-intensive, and expensive, no matter how low-code the infrastructure
is [16]. IoT is acknowledged to be a particular example of these complex sys-
tems [23], where recovering from faults becomes challenging [14]. As a result of this
inherent complexity, researchers have argued that there is an imminent need for
autonomic components [4,3,31]. From single devices (e.g., smart locks) to whole
systems (e.g., smart homes), components should be capable of self-management,
reducing the need for frequent human interactions [18]. This becomes essential in
mission-critical systems, or when devices are deployed in remote locations (e.g.,
wildfire control) or hard to access areas (e.g., inside walls).

Ganek and Corbi [13] identify four desired self properties, namely: self-
configuring, self-healing, self-optimization, and self-protection. All these charac-
teristics require a certain degree of runtime introspection [19] from the system.
Monitoring has been the most common approach for understanding a running
system [12,1,15]; this technique allows one to retrieve operational data about
running systems by using several distinct methods, but it is usually done by
external tools and without a feedback loop. Some authors do propose the usage
of runtime verification as a way to detect malfunctions and failures of system
elements and their interactions [1], which act as a lightweight verification mecha-
nism, complementing techniques such as model checking and testing. The main
difference lies in providing the missing feedback loop, allowing taking actions as
soon as some incorrect behavior is detected [21]. This verification mechanism can
be used as a foundation for self-healing IoT systems.

Our work focuses on the principle that systems should be able to reconfigure
themselves to recover from failures introduced by faulty parts. To achieve this,
the running system must be able to model itself so that it can identify the faulty
components during its operation (i.e., runtime), without the need for human
inspection. Our main contribution is the ability to visually model diagnosis and
recovery/maintenance of health mechanisms to improve IoT systems’ reliability,
thus enabling them to be self-healing. These mechanisms have been developed,
applied, and tested, as extensions that we named Self-Healing Extensions for

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50426-7_27

https://dx.doi.org/10.1007/978-3-030-50426-7_27


Visual Self-Healing Modelling for Reliable IoT Systems 3

Node-RED (SHEN). We validated our approach by executing a set of scenarios
on top of a live, physical setup, called SmartLab. The in-place based system was
first upgraded with the designed extensions; then, a set of common scenarios was
executed, and the resulting system behavior observed. Our experiments show the
feasibility of the approach, pointing to improvements in terms of system reliability
and dependability, despite several limitations and challenges that this particular
VPL language poses, and which limit the full potential of our approach.

The structure of the remaining paper is as follows: Section 2 provides an
overview of the main concepts, Section 3 explores related work, Section 4 describes
our approach for runtime verification and self-healing as Node-RED extensions,
Section 5 describes the experimental phase, Section 6 discusses the limitations,
challenges, and benefits of our approach and Node-RED itself, and lastly, Section 7
provides some final remarks.

2 Preliminaries

The following paragraphs introduce some fundamental building blocks and key
concepts of this work, focusing on IoT. The Node-RED tool is presented (2.1)
along with additional details about its functioning and known limitations. The
current practices, in terms of validation and verification, are briefly presented and
discussed (2.2). Lastly, the concepts of autonomic computing, more specifically,
self-healing, are presented (2.3).

2.1 Node-RED

Node-RED is an open-source mashup-based4 approach for developing IoT systems.
Its “programs” are a set of flows, which consist of nodes connected by wires.
Several node templates are usually provided that can be used (e.g., drag-and-
dropped) into a flow canvas. Once the developer creates or updates a flow, it must
be deployed ; a process that persists the new flow version and (re-)starts the whole
system [7]. More recently, flows acquired the ability to be version controlled
and exported. The portfolio of available nodes can be extended via plugins
that implement new ones, either in (1) JavaScript, or (2) by the composition
of existent nodes in the form of sub-flows. Input nodes typically subscribe to
external services, listen for data on a specific port, or start processing HTTP
requests. Once the data is processed by a given node, either from an external
service or from an upstream node, a method is called with the resulting data on
downstream nodes that can either generate additional events or push the results
to outside services or systems [7]. Mashup tools are known to lower the barrier
of application development significantly [24].

Despite its features and popularity, this tool still presents several limitations
to our objective. There are no proper mechanisms for debugging and testing

4 Mashup-based developed systems are the result of composing or mashing up existing
services, components, and devices [26].
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flows, beyond adding special nodes having logging capabilities. The message
passing mechanism is not typed, which means simple connection errors are
not detected before they are deployed. Meta-facilities, such as reflection and
reification, are not available for usage in the flows, which might be due to it not
leveraging the usage of a formally defined meta-model as a way of representing
its abstractions [27]. The tool is also designed as a centralized orchestrator, in the
sense that every flow — particularly every message passing activity — must be
executed by it, even if several nodes gather or publish their information to external
systems. One contributing factor to this limitation is the non-usage of model-
based techniques, which leads to a platform-dependent specification, hindering
the ability to generate target-specific code. Its design favors the modeling of
the system’s overall behavior as a dataflow, but the behavior of each particular
component is mostly opaque and must be implemented manually. As such, it is
harder to inspect, simulate, analyze, and change flows as a whole when compared
to model-based systems — including during runtime.

The result is that, although Node-RED presents an easy platform to prototype
simple systems, it quickly falls behind once the complexity starts increasing.
Ray’s survey findings [29] concur with our analysis, arguing that although several
domains of applications already take great advantage of the use of recent advances
in Visual Programming Languages, the emerging field of IoT is still lingers far
behind other sectors.

2.2 Validation and Verification of IoT Systems

The complexity of our target systems affects not only their design and development
processes but also implies a greater complexity of their verification and validation
procedures. Traditional approaches for testing software-only systems are mostly
limited and insufficient by overlooking fundamental factors about interaction
with the real world, and mostly ignoring the hardware counterpart [9]. Of the
available solutions, most focus solely on a specific platform, language, or standard,
hindering overall improvement or extension, and do not provide out-of-the-box
functionality [9]. The lack of IoT-specific testing systems can also lead to the
adoption of poor testing practices; a closer examination allows the identification
of recurring behaviors in these applications and a set of corresponding testing
strategies [10]. Pontes et al. [25] proposed a pattern-based approach to IoT
testing by identifying five specific test patterns, namely: Test Periodic Readings,
Test Triggered Readings, Test Alerts, Test Actions, and Test Actuators. They
claim that once these are available as test patterns, the overall process of testing
becomes easier, as they can be reused to test recurrent behaviors in different
scenarios.

2.3 Self-healing Systems

Ghosh et al. [14] describe systems with self-healing capabilities to be those that
can deal with disruptions in their operation by (1) detecting system failures and
possibly diagnosing the root cause of the problem, (2) determining a fix (i.e.,
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maintenance of health), and (3) recovering (even if only to a less capable but
safe and healthy state). Self-healing may use models (external or internal) that
monitor the system’s behavior (probes), allowing it to adapt to environmental or
operational circumstances. These approaches can be intrusive, if implemented
internally within the system itself, or non-intrusive, if they consider the guarded
system as a complete unit; they are closed-loop when they try to avoid all a
priori known failure sources (i.e., all possible states are known before recovery),
or open-loop otherwise [28]. The typical recovery mechanisms employed include
reconfiguration and replication of components (hardware and software) and
degradation of the quality-of-service (QoS) [1].

3 Related Work

Athreya et al. [5] suggest devices should be able to manage themselves both in
terms of configuration (self-configuration) and resource usage (self-optimization),
proposing a measurement-based learning and adaptation framework that allows
the system to adapt itself to changing system contexts and application demands.
Although their work has some considerations about resilience to failures (e.g.,
power outages, attacks), it does not address self-healing concerns.

The concept of responsible objects, introduced by Angarita et al. [3], states
that things should be self-aware of their context (passage of time, the progress
of execution and resource consumption), and apply smart self-healing decisions
taking into account component transaction properties (backward and forward
recovery). Their approach shows limitations, viz. (1) when applied to time-critical
applications, as it is not clear how much time we should wait for a transaction
to finish, (2) some processes, such as those triggered by emergencies, cannot
be compensated, and (3) when is it acceptable to perform checkpoints in a
continuously running system that cannot be rolled-back? It also disregards the
typical capability of devices (e.g., limited memory, power) that might challenge
the implementation of transactions.

Aktas et al. [1] are amongst the first to purpose runtime verification mech-
anisms to identify issues by resorting to a complex event processing (CEP)
technique and “applying rule-based pattern detection on the events generated
real-time”. They do not address self-healing and only convey a summary of
problems or possible problems to human operators. Leotta et al. [20] also present
runtime verification as a testing approach by using UML state machine diagrams
to specify the system’s expected behavior. However, their solution depends on
the definition of a formal specification of the complete system, which is unfeasible
for highly-dynamic IoT environments (e.g., dynamic network topology).

We could not find any work that focuses on bringing runtime verification
mechanisms for visual programming environments. This is not unexpected, as
Leotta et al. [20] point out that “software testing (in IoT) has been mostly
overlooked so far, both by research and industry,” and later corroborated by
Seeger et al. [30], claiming that most of the research being conducted in visual
programming for IoT has been disregarding failure detection and recovery.
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4 System Architecture and behavior

We encapsulate runtime verification and self-healing mechanisms by extending
Node-RED with new nodes. The following subsections detail our approach for
those that are subsequently used in the validation scenarios (Section 5.1), but
they are part of a more extensive palette [11].

4.1 Visual Runtime Verification

Node-RED has several limitations regarding testing and debugging of flows, from
not providing out-of-the-box nodes capable of doing these tasks, to some design
decisions of the programming environment itself.

Probes Errors
Recovery & Main-
tenance of Health

Mechanisms

detect &
identify

managed &
recovered by

Fig. 1. Self-healing sequence. The use of runtime verification probes the system for
errors, and the self-healing is accomplished by the activation of system recovery and/or
maintenance of health mechanisms.

Regarding runtime verification capabilities, we created nodes that allow
inspecting the system under test (SUT), i.e., probing the system (Fig. 1), including
the test patterns presented in Pontes et al. [25] and detailed in Section 5.1. Some
devices and services (e.g., message brokers, datastores, third-party services) can
only be tested by implementing black-box reachability checking, such as the new
MQTTBrokerTimeout node that asserts if the broker is still alive.

4.2 Visual Self-healing Approach

Following the self-healing loop described by Psair et al. [28], our detection
component is composed by nodes that allow runtime testing and provide diagnosis
information (Fig. 1), after which the recovery process is accomplished by nodes
that implement maintenance of health and recovery mechanisms:

Replacement. Replace a faulty component with a duplicate spare one;
Balancing. Reduce or manage the load of a component to avoid damage;
Isolation. Isolate the failing component to keep the system in a healthy state;
Persistence. Assume that a failure does not cause further system degradation;
Redirection. Change the flow during a failure to a recovery routine and then

back to the original;
Relocation. Move a system component (along with its dependencies) from a

faulty host to a healthy one;
Diversity. Switch between different approaches or processes during runtime.
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On-premises
Server

On-premises
Datastore

SN-2

AN-1 SN-1

AN-2

AN-3

SN-3

Third-Party
Services

Control
Dashboard

Broker

AN-4

AN

SN

REST Communication

MQTT Communication

Actuator Node

Sensor Node

Fig. 2. System component diagram, showing the main system parts, along with the
different devices (actuators and sensors) and the enabling communication protocols.

Supporting these features requires meta-facilities that allow changing a sys-
tem’s behavior during runtime. As Node-RED does not formally provide them,
we found a workaround by resorting to its external REST API from inside our
nodes, thus gaining the ability to create, delete and change the configuration of
flows and other nodes. This is exemplified by the SetFlowStatus node, which
allows toggling flows on and off, thus providing the necessary capabilities for
redirection, replacement, and isolation. We were then able to change between
instances of message brokers and create a balancing mechanism. Other self-healing
mechanisms were implemented by adding secondary flows and sub-flows, that
are triggered when some precondition is met.

5 Experimental Scenarios and Results

Validating new solutions for runtime verification and self-healing requires scenarios
representative of the characteristics, issues, and challenges of real-world IoT
environments, such as heterogeneity and real-time needs. We carried experiments
on SmartLab, an experimental testbed with four actuators and three sensing
devices (each having more than one sensor) deployed in a laboratory (Fig. 2),
responsible for a set of user-interaction features.

5.1 Scenarios

We devised three scenarios to demonstrate both the necessity of runtime verifica-
tion as well as self-healing mechanisms. Although these scenarios do not cover all
possibilities, we believe them to be sufficient to show the complexity, challenges,
and, in this case, Node-RED limitations and trade-offs.

Unavailability of Message Broker. MQTT is the base of most of our Smart-
Lab communications; thus, it needs a message broker. Typically, the defined flows
are triggered when a new message is received (the flow subscribes to a specific
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Fig. 3. MQTTServerTimeout example, for detecting and healing (using a replacement
strategy) a potential unavailability of the broker.

topic). In this scenario (cf. Fig. 3), the message broker is both the bottleneck
and a single point of failure (SPOF) of the system; if it fails, the functionality
of the system is compromised. To verify its availability (i.e., health status), a
heartbeat pattern was followed: when the broker stops sending its periodic signal,
it is assumed that some fault occurred. The same logic can be easily applied to
other publish-subscribe protocols. When this kind of fault is detected, a redirec-
tion strategy is followed, ensuring the continuation of communications. In our
scenario, we trigger a change from the MQTT-dependant flow to the alternative
HTTP-based flow.

Erroneous Sensor Readings. SmartLab relies on the readings from different
sensors so that it can act according to user-defined rules. As an example, if smoke
is detected, an alarm or another notification mechanism should be triggered (and
possibly trigger some contention mechanism like sprinklers). These procedures
depend on the timeliness and correctness of readings. Sensor malfunctioning can
display an array of different behaviors, such as outputting out-of-bound or out-of-
spec values; these can lead to wrong decisions and may end up having nefarious
effects to the point of impacting the well-being of humans. Several strategies can
be used separately or in combination to detect sensor malfunction. Sensors that
provide periodic readings can be verified by analyzing the expected periodicity
(cf. Section 2.2). Other errors, such as out-of-bounds and out-of-spec readings
require customized verification and tailored failure conditions. Fortunately, these
are usually available; e.g., the DHT11 temperature/humidity sensor is capable of
readings ranging from 0◦C to 50◦C, and 20% to 80% humidity. Values outside these
ranges should be considered erroneous by default. In this scenario, an isolation
strategy is followed; when an out-of-spec problem is detected, the readings are
ignored via the TestAndFilter node. In the presence of redundant sensors, other
readings may still be used by the system; otherwise, all the actuating components
that depend on that sensor cease their activity (Fig. 4).

Connectivity Issues. Devices that are part of our SmartLab provide HTTP
and MQTT connectivity. These devices (especially actuators) depend on receiving
messages to work as supposed. However, in some situations, the devices are not
accessible by the protocol used by default (e.g., MQTT) due to connectivity
disruptions, protocol bugs, or other reasons, thus becoming inaccessible and
eventually causing problematic side-effects (e.g., sprinklers not turning on in the
presence of a fire). In this case, a verification can be carried after a certain amount
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Fig. 4. TestAndFilter example in a flow that triggers an actuator if the humidity is
above 80%, but verifies for correct sensor readings beforehand.

of time (cf. Section 2.2), asserting if the request has been processed by the device,
preferentially using an alternative communication protocol. As an example, after
a state change request message is sent to an actuator via MQTT, one could
request its status, after a given time, to verify if the reported state corresponds
to what was expected. Fixing scenarios in which the state of the system does not
correspond to the expected, requires a diversity strategy. Having things that are
capable of using different protocols allows us to adapt by dynamically switching
to the most stable one given the systems’ conditions (although usually incurring
in a trade-off, such as the differences in energy consumption between MQTT
and HTTP). As an example, if the light controlling device does not turn on the
lights, as requested by the MQTT broker, a second request is made to the same
device, this time using HTTP. This only can be implemented if both the device
and the system can communicate using several different protocols. For this, we
implemented a TestAction node that connects to the trigger and actuator nodes
and checks if actions are triggered correctly. If not, a secondary flow is triggered,
repeating the failed request using a different protocol. The resulting scenario
implementation is depicted in Fig. 5.

Fig. 5. TestAction example, where a verification is made to check if the lights turn on
(request sent via MQTT) after a given interval, by checking if the luminosity lowers
below 50 lux. If not, a secondary flow sends a new on request via HTTP.

5.2 Results

We showed improvements to SmartLab reliability and dependability both by de-
tecting failures as they happen and recovering or maintaining the systems’ health.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50426-7_27

https://dx.doi.org/10.1007/978-3-030-50426-7_27


10 J.P. Dias et al.

Node-RED does not provide any out-of-the-box solution for dealing with failing
components, nor to dynamically change the system’s behavior during runtime,
which is essential to enable self-healing. After adding such functionalities via new
nodes, users can now leverage these new capabilities. Our first example scenario
shows how it becomes possible to test and recover from a SPOF (exemplified as
a message broker failure). The same method could be used to deal with other
SPOFs, including failures of Node-RED itself, with a RedundancyManager node
that activates duplicated and inactive flows on a different Node-RED instance
(provided one is available). The second scenario shows how to isolate a system’s
component to ensure that its misbehaviors do not compromise the system as
a whole. The last scenario shows how we can now manage several (redundant)
communication protocols as an enabler of self-healing mechanisms, and the
importance of continuously asserting the actuators outcome.

6 Discussion

Ensuring the dependability of software systems has been the goal of most fault-
tolerance research in the past years [6]. In IoT, ensuring systems are secure,
reliable, and compliant is becoming a paramount concern due to the recent
increase in safety-critical applications. Fault-tolerance becomes more challenging
due to several factors, including, but not limited to: (1) the high heterogeneity
of devices, (2) the interaction and limitations of systems deployed in a physical
world, (3) the fragmentation of the field, ranging from the unusually high number
of communication protocols, to the different and competing standards, and (4)
the intrinsic dependability on hardware that might simply fail [2]. Moreover, in a
perfect environment, every actuator should possess a monitoring sensor capable
of verifying its intended end state; however, real-world cost efficiency might limit
their availability to critical components.

The pervasiveness and complexity of IoT have contributed to the rise of visual
programming, in particular Node-RED, as the go-to solution (see Section 1).
Nevertheless, as it slowly permeates our lives, it becomes crucial to ensure
proper functioning through self-verification and self-recovery features: self-healing.
Although previous work attempted to tackle runtime verification and self-healing
mechanisms to specific IoT systems (see Section 3), none was found to provide
this kind of feature in a visual environment. Previous work also relies heavily on
new systems (e.g., rule-based monitoring services and CEP approaches), without
attempting to integrate into the existent ecosystem of tools and platforms.

Although we chose to extend Node-RED due to its popularity, several chal-
lenges limit its potential concerning our use-cases (or introduce unnecessary
accidental complexity). We already discussed some in Section 2.1, but while
implementing our test scenarios (Section 5.1), the following issues became dispro-
portionately prominent, namely:

Support for labels and annotations: Nodes do not visually provide suffi-
cient information about their connectors and internal status, making flows
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harder to construct, debug, and adapt. Most (if not all) nodes configuration
cannot be set or changed by other nodes. A solution similar to Fig. 6 seems
more useful, not only in presenting this information but also in terms of
flexibility regarding our goals;

Multiple inputs: Although Node-RED supports several outputs per node, they
cannot have differentiated inputs (see Fig. 6). This poses both a cognitive
and technical difficulty in defining and readjusting the behavior of nodes
both during the design and runtime phases, including the configuration of
test conditions and recovery measures;

Types and static analysis: Nodes do not have the notion of types; this allows
the user to incorrectly connect two nodes, where the destination expects a
different data type than the one sent by the origin one. This leads to common
(and simple) errors that only make themselves noticeable after deployment of
the whole flow, possibly introducing severe inconsistencies in the system;

Debugging: Besides the provided logging capabilities of Node-RED, using
debug nodes, no other debugging technique is available. This means that
breakpoints, node inspection, value history, and other apparatus are absent,
severely hindering the ability for the developer to understand what went
wrong in the internal logic of a node;

Meta-programming: Formal mechanisms of introspection and reification, es-
sential for effective meta-programming, are non-existent. This limits the
possibility of adjusting flows in runtime and forces us to rely on external
APIs that were not designed for this particular purpose and which might
easily break.

Despite these limitations, it was possible (up to a certain extent) to fulfill
our goals mostly by using its visual notation, as seen in Section 5 and discussed
in Section 5.2. It should be noted that all implemented strategies fall into the
forward error recovery category, i.e., “continue from an erroneous state by making
selective corrections to the system state” [17]. Exploration of backward error
recovery techniques is harder due to the dependency of system state checkpoints,
that needs to capture a mix of device internal states, concurrent communication
protocols messages, and controller state.

TimeoutWatcher

peridiocity

timeout

ok

event

variable

value30 seconds

Event Subscriber

eventSensor X
last event: 10 secs ago

Fig. 6. Mockup of possible node interface with annotations, labels and multiple in-
puts/outputs.
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To further improve the self-healing capabilities of systems such as the presented
SmartLab, devices should have extra features such as diverse communication
channels (e.g., Wi-Fi and ZigBee), remote management capabilities (e.g., in-
dependent watchdogs that allow to gracefully restore a device), and capability
announcement, which would empower dynamic usage of redundant devices. We
observe these features are mostly absent from consumer-grade devices, most
probably due to cost efficiency.

Several challenges remain unaddressed by this work, such as (1) dealing with
concurrent inputs that can lead to unexpected states (e.g., the system decides to
turn on the lights and the user manually turns them off), which may result in
false assertions by the runtime verification mechanisms, (2) auto-discovery and
configuration of new devices in the system (e.g., a new mobile device can be used
as a redundant sensing node while it remains in the system network), and (3)
what are the reasonable operational states that the system should converge to
in the case of failure (e.g. if the system has to decide between shutting down
the smoke alarm or the surveillance system, which one should take prevalence?).
Supporting and articulating with other self-* aspects is also an open challenge
towards fully autonomic systems; this includes self-protection, self-optimization,
and self-configuration [13].

7 Conclusion

IoT systems are perhaps one of the most significant examples of heterogeneous ar-
chitectures in existence. Different protocols, different application stacks, different
integration services, and different orchestration engines, all must come together
in a technological solution that allows both an organic growth from end-users,
as well as dealing with security and privacy concerns at unprecedented levels.
The consequence is that the system is required to keep functioning at minimal
levels, even when parts of it become non-compliant, faulty, or even under attack.
Requiring the end-user to address these challenges is unrealistic, as most of them
are not developers. Even most system integrators cannot keep up with the pace
of release devices, which very seldom adhere to open standards.

In this paper, we argue that an IoT system that attempts to tackle the
presented challenges must be capable of self-healing. This is not a small feat, as
most of the research being conducted in integration tools for IoT recurrently
disregard failure detection and recovery. We fulfill these desiderata with SHEN,
Self-Healing Extensions for Node-RED. As this very popular tool lacks built-
in testing and self-healing capabilities, we use it as a case-study for common
failure and recovery scenarios, and (1) show how to leverage meta-programming
techniques to allow self-modification of flows via a custom plugin, (2) explore
common self-healing patterns and how they can be solved by such techniques,
(3) provide them as reusable nodes for others to incorporate in their systems,
and (4) discuss which challenges remain open and which might need rethinking
architectural and design decisions.
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To validate our claims, we applied SHEN to the existing SmartLab, and
proceed to show its behavior for three different scenarios, viz. (1) Unavailability
of Message Broker, (2) Erroneous Sensor Readings and (3) Connectivity Issues.
We conclude that we can improve the system’s reliability and dependability,
both by being able to detect failing conditions, as well as reacting to them by
self-modification of defined flows. Future work includes (a) the extension of the
SHEN palette with more runtime verification’s and self-healing mechanisms,
and (b) case studies over various degrees of systems complexity, and in different
contexts and scales.

Acknowledgement. This work was partially funded by the Portuguese Founda-
tion for Science and Technology (FCT), under the research grants
SFRH/BD/144612/2019 and SFRH/BD/115358/2016.

References

1. Aktas, M.S., Astekin, M.: Provenance aware run-time verification of things for
self-healing Internet of Things applications. Concurrency Computation 31(3), 1–9
(2019)

2. Aly, M., Khomh, F., Gueheneuc, Y.G., Washizaki, H., Yacout, S.: Is fragmentation
a threat to the success of the internet of things? IEEE Internet of Things Journal
6(1), 472–487 (Feb 2019)

3. Angarita, R.: Responsible objects: Towards self-healing internet of things appli-
cations. Proceedings - IEEE International Conference on Autonomic Computing,
ICAC 2015 pp. 307–312 (2015)

4. Ashraf, Q.M., Habaebi, M.H.: Introducing autonomy in internet of things. In: 14th
International Conference on Applied Computer and Applied Computational Science
(ACACOS’15) (2015)

5. Athreya, A.P., DeBruhl, B., Tague, P.: Designing for self-configuration and self-
adaptation in the Internet of Things. Proceedings of the 9th IEEE International
Conference on Collaborative Computing: Networking, Applications and Workshar-
ing, COLLABORATECOM 2013 pp. 585–592 (2013)

6. Avizienis, A., Laprie, J.C., Randell, B.: Fundamental Concepts of Dependability.
Technical Report Seriesuniversity of Newcastle Upon Tyne Computing Science
1145(010028), 7–12 (2001)

7. Blackstock, M., Lea, R.: Toward a Distributed Data Flow Platform for the Web of
Things (Distributed Node-RED). In: Proceedings of the 5th International Workshop
on Web of Things - WoT ’14. pp. 34–39 (2014)

8. Delicato, F.C., Pires, P.F., Batista, T., Cavalcante, E., Costa, B., Barros, T.:
Towards an iot ecosystem. In: Proceedings of the First International Workshop on
Software Engineering for Systems-of-Systems. pp. 25–28. SESoS ’13, ACM (2013)

9. Dias, J.P., Couto, F., Paiva, A.C.R., Ferreira, H.S.: A brief overview of existing tools
for testing the internet-of-things. In: IEEE International Conference on Software
Testing, Verification and Validation Workshops. pp. 104–109 (April 2018)

10. Dias, J.a.P., Ferreira, H.S., Sousa, T.B.: Testing and deployment patterns for the
internet-of-things. In: Proceedings of the 24th European Conference on Pattern
Languages of Programs. EuroPLop ’19, ACM (2019)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50426-7_27

https://dx.doi.org/10.1007/978-3-030-50426-7_27


14 J.P. Dias et al.

11. Dias, J.P.: jpdias/node-red-contrib-self-healing: Replication package for ICCS 2020.
(Apr 2020). https://doi.org/10.5281/zenodo.3746414

12. Dundar, B., Astekin, M., Aktas, M.S.: A big data processing framework for self-
healing internet of things applications. In: 2016 12th International Conference on
Semantics, Knowledge and Grids (SKG). pp. 62–68. IEEE (2016)

13. Ganek, A.G., Corbi, T.A.: The dawning of the autonomic computing era. IBM
systems Journal 42(1), 5–18 (2003)

14. Ghosh, D., Sharman, R., Rao, H.R., Upadhyaya, S.: Self-healing systems — survey
and synthesis. Decision Support Systems 42(4), 2164 – 2185 (2007), decision Support
Systems in Emerging Economies
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