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Abstract. Autonomous Guided Vehicles (AGVs) are considered to be one of the 

critical enabling technologies for smart manufacturing. This paper focus on the 

application of AGVs in new generations of manufacturing systems including: (i) 

the fusion between AGVs and collaborative robots; (ii) the application of 

machine to machine communication for integrating AGVs with the production 

environment and (iii) AI-driven analytics that is focused on the data that is 

produced and consumed by AGV. This work aims to evoke discussion and 

elucidate the current research opportunities, highlight the relationship between 

different subareas and suggest possible courses of action. 

Keywords: Autonomous Guided Vehicles (AGV), Collaborative Robotics, 
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1 Introduction 

The growing popularity of Autonomous Guided Vehicles (AGV), which are used in 

manufacturing, has not only been the result of their technical features but also from 

their ability to cooperate. Cooperative-based internal logistics permits increased 

production flexibility. Because AGV are in the executive part of the internal logistics, 

their cooperation with other information systems and manufacturing equipment is 

particularly important. AGV have become a critical enabling technology for agile 

production systems. Modern production systems are characterised by a demand for a 

high degree of flexibility in order to cope with the frequent changes that result from 

orders that are changed by customers, low material buffers, the agile production 

technologies that are performed by robotised production stations and the many variants 

of production technology that can be used [1]. All of the factors mentioned above 

require the production process to be supported online by highly advanced information 
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services, which are performed during the successive steps in the production chain. This 

means that the production activities cannot be centrally planned but have to be 

optimised locally in order to handle the ongoing production tasks, the available 

materials, the production equipment and the technologies. The new generation of 

manufacturing execution systems has to support the autonomy and distribution of the 

decision-making processes [2]. 

The increasing use of AGV in manufacturing has far-reaching consequences for the 

industrial communication systems. Unlike for other machines, the use of wired 

networks is not possible in the case of AGV, which have to move through large internal 

and external areas. On the other hand, production support algorithms based on machine 

learning require huge volume of data provided by AGV. In this way, a communication 

with AGV, becomes convergent rather with IoT than with the classical industrial 

communication. In this context, artificial intelligence that is based on supervised 

machine learning can be used to optimise the internal logistical tasks that are performed 

by AGV. This requires a multi-criteria optimisation that takes into account the multiple 

goals that are connected with the requirements to move materials and semi-products. 

This process must be performed in a distributed, dynamic and autonomous way [3]. 

Moreover, AGV also have to communicate with the production stands, Manufacturing 

Execution Systems (MES) and other AGV. For this reason, the machine learning 

approach has to be combined with Machine-to-Machine (M2M) communication. This 

requires, on the one hand, adjusting the information that is collected from the 

production systems into a form that is suitable for automatic processing, which can be 

performed by using artificial intelligence algorithms. The results that are produced by 

these algorithms have to be converted into a form that can be exchanged with and used 

by the production systems [4]. In turn, the precise information that is owned by AGV 

includes important parameters about the materials, semi-finished products and finished 

products that are being transported. Such data can be beneficial for the Manufacturing 

Execution System (MES) and for the Business Intelligence (BI) solutions that support 

the long-term optimisation of the production processes.  

The goal of this paper is to summarise the existing research results and to show the 

most significant challenges related to the effective use of AGV, which are considered 

to be a part of a new generation of the manufacturing ecosystem. The paper is organised 

as follows: the second section presents the research challenges related to the fusion 

between AGV and collaborative robots. The research issues associated with the 

application of machine to machine communication for integrating AGV with the 

production environment are presented in section three. The fourth section summarises 

the state of the art in AI-driven analytics that are focused on the data that is produced 

and consumed by AGV. The conclusions are presented in section 5.  

2 Research challenges that are related to the fusion between 

AGV and collaborative robots 

In small series manufacturing, the production tools have to be adjusted to specific 

products and the process organisation must follow these changes in order to avoid or 
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reduce any losses that would result from non-productive time gaps [5]. The logistics 

tasks must be performed in a distributed, dynamic and autonomous way. AGV are key 

components that are necessary for developing flexible and efficient internal transport 

systems [6]. 

Traditional industrial robot systems usually perform dedicated tasks on specific 

assembly stations and are often isolated from other stations and human operators using 

physical barriers such as fences. Introducing safe, collaborative robots [7] into 

production systems (that also work together with human operators) opens up the 

possibility of using robots for a wider variety of tasks and permits the physical barriers 

to the rest of the production processes to be removed. Such an option enables robot 

automation to be introduced more widely into factories – but these robots are still 

usually dedicated to specific assembly stations. 

Combining collaborative robots [8, 9] with AGV 

(Fig.1) merges the dynamic logistic benefits of 

AGV with the flexibility of collaborative robots 

to enable a more extensive use between many 

assembly stations. This could also increase the 

efficiency of the production staff. However, the 

autonomous operation of AGV requires that 

several issues have to be resolved. The 

integration of an AGV, a collaborative robot and 

various sensors requires that data fusion methods [10] be used to achieve a docking 

functionality and to recalibrate the AGV and robot to that particular assembly station. 

Virtual sensing [11], which is based on computational models and is widely used to 

optimise an operation or product quality in industry, is a non-invasive method that is 

used to measure the parameters in dynamic systems. Monitoring an industrial process 

using data fusion and virtual sensing techniques [12] supports developing methods that 

permit the changes in the area of production lines to be detected. The use of fusion 

techniques allows more information about the state of a system to be obtained from 

several sensors. Multi-sensor data fusion [7] permits the working status of a process 

and machinery to be acquired by integrating sensors into manufacturing systems. The 

data fusion from AGV, robots, assembly stations and production monitoring system 

using virtual sensing can enable new methods and algorithms to be created in order to 

optimise the short series production process in industry. 

The first main challenge is to obtain the fusion of the data between AGV and the 

collaborative robots, which could be achieved by developing a distributed computer 

system architecture for integrating AGV [13], collaborative robots [9] and the required 

sensors [14]. A navigation system [15] supports the movements of AGV between 

assembly stations and helps to position an AGV for docking to an assembly station. 

Using distance sensors  enables the docking precision to be increased. To determine the 

accuracy of the measurements [16, 17], the selected sensors must be tested (camera, 

lidar, gyroscope, accelerometer, optical encoders). A vision-based recognition system 

further confirms that an AGV has arrived at the correct production station. Using 

methods that are dedicated to sensor fusion allows algorithms to be developed in order 

Figure.1. Autonomous Guided 

Vehicle produced by AIUT Ltd. 
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to increase the accuracy of the distance measurements [18]. The proposed methods also 

enable algorithms to be developed that allow precise docking to the assembly station. 

Distance sensors (e.g. inclinometers, cameras, including Time-of-Flight (ToF) 

cameras, optical encoders) [19, 14, 20] can also be used to increase the re-calibration 

of a collaborative robot to the mounting site on the assembly station. Using recognition 

methods based on a vision system increases the precision of the measurements. This 

approach allows the information covered by distance sensors to be combined with the 

vision system [18] to develop an algorithm that increases the accuracy of the distance 

measurements. The algorithms that are obtained allow the robot's displacement 

regarding the reference coordinate system at the mounting place at the assembly station 

to be calculated. In addition, robot-based calibration can be used to set the reference 

points for each axis. The displacement of the robot arm to the reference points at the 

assembly station and the use of precise force measurement on selected axes enables a 

more accurate determination of the current position of a collaborative robot. 

The next main challenge is to develop methods to support the cooperation between 

a collaborative robot and the production staff. One of the major challenges with 

physical Human-Robot Interaction (pHRI) is how to handle the possible or perceived 

risk of human-robot collisions [8]. Human motion and intention estimates that based on 

sensors [9] can ensure that the human states are continuously monitored and the human 

motion data together with the force/torque (FT) measurements from a collaborative 

robot can serve as inputs to a collision-handling (CH) system. A CH system can 

continuously monitor and assess the risk of unwanted interactions and collisions and 

implement the necessary reaction mechanisms, e.g. lower the speed of the robot, switch 

to a gravity compensation and compliance mode or to adhere to an admittance reflex 

strategy to drive away from the unwanted contact force [8]. A CH system should be 

implemented at the lowest control level in order to ensure that handling collisions takes 

priority over task execution. A collaborative robot control scheme for pHRI for robots 

that are mounted on AGV allows an overall system architecture to be built that takes 

into account the changes in roles between a human and robot in the interaction (leader-

follower, collaboration) [21,22] and how to dynamically share the tasks in any human-

robot cooperative load transport [23]. The overall system architecture should also allow 

the seamless, shared cooperative pHRI control for a wide range of possible applications.  

Although the approaches to cooperative pHRI control can be independent of any 

predefined trajectories or paths for the robot [24], the available information on the task 

goal should be exploited in the overall pHRI control scheme. This can be accomplished 

by dividing tasks into sub-activities that can serve as feedforward reference inputs to 

the control system and that can try to make the most of the flexibility, knowledge and 

sensory skills of a human and the efficiency, strength, endurance and accuracy of a 

robot. Information on the task goal can also serve as an essential parameter for when a 

human or a robot should take the lead in a cooperative pHRI operation [22] and will be 

dependent on the particular pHRI application. 

The overall physical interaction between humans and robots is a multi-dimensional 

dynamic control problem that is hard to define explicitly using rigid state-space models 

that have fixed parameters. Therefore, learning strategies for pHRI are now emerging 

as an essential research challenge and many learning and adaptation approaches are 
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currently being proposed. They are primarily focused on two aspects of pHRI – 

adaptive impedance control, and learning the desired trajectories [8]. Adaptive 

impedance controllers are focused on learning or adapting to the impedance gains and 

feedforward torques of the controller to improve the robot capabilities during an 

interaction. Some recent results have used neural networks or biomimetic approaches 

to learning [25]. Learning the desired trajectories for a pHRI has, in recent years, been 

primarily focused on using hidden Markov models (HMM) to find the appropriate 

motion patterns for human-robot cooperation. A novel approach for a mobile bi-manual 

platform is taken in [26], where semantic task structures are learned during a joint task 

execution and where the semantic labels on the task segments are given by the human 

partner using speech recognition. 

3 Machine to machine communication for integrating AGV 

with the production environment  

Machine to Machine (M2M) communication in the new generation of manufacturing 

systems can be considered on three levels: (i) the low-level communication protocols 

that support a reliable and time determined exchange of information between devices 

and between a device and production system [27,28] – in the case of AGV, low-level 

wireless communication protocols must take into account the movement of an AGV, 

which might result in a high degree of electromagnetic interference and also the need 

to maintain communication despite its moving between different network segments; (ii) 

the communication middleware, which based on the lower-level networks that support 

independent logical communication channels between an AGV and any cooperating 

devices or systems including syntax based data format conversion and information 

exchange management such as MQTT, CoAP [29], OMADM, LwM2M, XMPP [30] 

and OPC UA [31] – in the case of AGV, the communication middleware must support 

a high degree of flexibility, automatic reconfiguration and different types of 

information modes including cyclic real-time communication with control systems, 

event-based communication between the control subsystems and also batch 

communication with the management systems that are focused on aggregated data 

exchange and (iii) the ontology that describes the information models [32, 33] – in the 

case of AGV, the ontology should facilitate and ensure unambiguous information 

exchange with other AGV, different production stations as well as with the production 

support systems such as an MES (Manufacturing Execution System). Below, we 

illustrate the scope of the M2M issues starting with the ontology domain and ending 

with wireless communication. 

The ontology that is used for AGV has to correspond with the information models 

that are used in the new generation of manufacturing systems. The ongoing changes 

that are called the Fourth Industrial Revolution are the primary interest of 

manufacturing companies, production technologies suppliers and the advisory groups 

that are supported by government agencies. The latter is attempting to structure the 

changes to harmonise the introduction of modern ICT technologies in manufacturing 

on a global scale. Examples of such global organisations are the German Platform 

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50426-7_25

https://dx.doi.org/10.1007/978-3-030-50426-7_25


Industrie 4.0; the NIST (National Institute of Standards and Technology), which is 

similar to the US Department of Commerce or the SMLC (Smart Manufacturing 

Leadership Coalition), which operates in South Korea [34]. All these solutions are 

characterized by increased autonomy and a departure from the centralized hierarchical 

system to the horizontal cooperative model. Since, detailed analysis is beyond the scope 

of this work, the authors discuss only one selected features of one, but commonly 

recognized approach the Reference Architecture Model for Industry 4.0 RAMI4.0 [35]. 

The vertical axis of RAMI4.0 (Fig. 2) 

organises the system structure and the 

functions of the individual layers, 

which are from the bottom up (i) the 

Asset layer, which represents reality, 

i.e. the asset that exists in the physical 

world; (ii) the Integration layer, which 

represents the transition from the 

physical world to the information 

world; (iii) the Communication layer, 

which describes the Industry 4.0-

compliant access to the information 

and functions of a connected asset by 

other assets; (iv) the Information layer, 

which describes the data that is used, generated or modified by the technical 

functionality of an asset; (v) the Functional layer, which describes the (logical) 

functions of an asset (technical functionality) connected with/associated with its role in 

the Industry 4.0 system and (vi) the Business layer, which describes the commercial 

view including the general organisational boundaries.  

 RAMI4.0 defines the Administration Shell (Fig. 3), which is the glue that enables 

the different physical entities that are used for production, including the equipment, 

materials, production technology and related software for controlling production and 

the human staff that is involved in the 

production to be joined. A 

Communication Layer that is based on a 

service-oriented architecture (SOA) is 

responsible for providing the seamless 

connection between the entities while 

the Information Layer is responsible for 

supporting the meta-information that 

enables the information to be interpreted 

correctly by taking the required 

presentation context into account. The 

Administration Shell can allow access for both the fundamental elements of the system 

and for the highly complex aggregates that consist of many components. In the case of 

AGV, we can indicate two levels for the application of the Administration Shell – one 

for a single vehicle that is responsible for executing the transportation tasks and the 

second for a fleet of AGV that offers holistic transportation services. Moreover, for 

Figure 2. A Reference Architecture Model for 

Industry 4.0 (RAMI 4.0) [35] 

Figure 3. RAMI4.0 Administration Shell [35] 
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each level, the information model must be presented according to its context of use, 

which means that multiple Administration Shells have to be implemented on each 

aggregation level. The Administration Shell should be implemented by communication 

middleware such as OPC UA. The OPC UA is an object-based and service-oriented 

communication middleware that not only supports the exchange of information but also 

organises the information models [36]. It is based on the client-server communication 

principle. Secure communication uses a Secure Channel. The Service Set is established 

by an OPC client, which is then managed by the services that are collected in the 

Session Service Set. The address space of the OPC UA server exposes both the data 

and the relevant information models that can be browsed by any connected client. 

OPC UA is also useful as a modelling tool that can be used in accordance with other 

standards that have been prepared by organisations such as W3C, ISA, OMAC, 

PLCopen, VDMA and others. Such an approach has resulted in several domain-specific 

information models that have been created under OPC UA, which are dedicated to a 

given type of application. In the context of AGV, two such models seem to be 

particularly valuable – (1) the OPC Foundation and AutomationML Companion 

Specification “AutomationML for OPC UA” [37], which can be used for a technical 

description of an AGV and its components and (2) “OPC UA for ISA-95 Common 

Object Model” [38], which is more relevant for communication with an MES. The 

address space of the OPC UA server can be browsed by any OPC UA clients that are 

connected. A reference mechanism is used to express the dependencies between the 

parts of the model. References link OPC objects with their type definition, other objects 

and the variables that are responsible for the physical data representation. The data 

types define the interpretation of the values of variables, which are also connected by 

references. The types of all of the references are known to clients and therefore the kind 

of relationship between the connected nodes can be easily determined. The number of 

references between two particular nodes is not limited, so different dependencies can 

be expressed in one model. Clients can use the browsing services to discover all of the 

data items and model-based types of information about the items that are managed by 

the OPC UA server. 

A Data Access mechanism supports effective communication between OPC UA 

servers and clients. Each OPC UA client defines a set of subscriptions for the selected 

OPC UA servers, which are then performed as parts of individual sessions. The number 

of Monitored Items for each subscription is agreed upon between the client and the 

server. These mechanisms enable clients to select the required data. In this model, a 

client subscribes to variables with a given Sampling Interval [ms] according to which 

the OPC UA server only sends new information to the client when there is a change in 

the source of information, which is checked cyclically with the frequency that is defined 

by the sampling interval. The information is bound with its quality status and two 

timestamps – one from the source and the second from the server. Data transfers are 

optimised by grouping them within the sessions for efficiency [39]. 

The OPC Historical Access (HA) provides an interface with a historical archive that 

is connected with/associated with a given Object node and can be used by various 

applications such as the HMI, Report Generation, Analysis etc. The data that is 

provided by the historical interface consists of historical records or calculated values 
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such as the min, max, average etc. A Client can read or annotate the historical data. 

Because OPC UA is only a communication interface, the historical data should be 

stored in an external database. Both Data Access and Historical Access communication 

modes use a common memory model. Each client can freely select the information in 

the server’s address space and request access to the data under the requirements that 

they have defined. A common memory model does not support the integrity of the 

information between clients. In cases in which horizontal data integrity is essential, an 

Event-based communication Alarms & Events mechanism should be used. In Event-

based communication, all subscribed clients receive precisely the same messages about 

any state changes of the Object that was selected for the subscription. 

The physical connection with AGV has to be provided by Wireless Sensors and 

Actuators Networks ( WSAN). WSAN consist of interconnected sensors and actuators 

that collaborate in order to monitor and control a system. The sensors measure the 

physical quantities and report this to the actuators, which then act on them. Currently, 

WSAN design generally uses a sink to collect and process the collected data and to send 

commands to the actuators. A WSAN handles network functions such as routing and 

scheduling medium access. The increased application of WSAN wireless technologies 

in industry has given rise to a plethora of protocol designs [40]. However, due to the 

added delay as the data transmits through the sink, future network design will include 

peer-to-peer communication between the sensor nodes and actuator nodes. This will be 

discussed further below.  

Transmitting through sinks creates challenges. Current industrial sensor networks 

(that also include WSAN) face a challenge due to the limited interoperability between 

different systems. One option is to relay the sensor data (using a sink solution) between 

the stovepipe solutions. Three challenges emerge. First, since the two solutions are 

disjoint and both offer a similar functionality, there is a duplication of functionality. In 

addition to the added cost, this solution also adds a delay as the data must be relayed 

through interconnection points. The relay point is located on the edge of the network, 

thus creating an excessive delay compared to a peer-to-peer connection. Second, the 

main challenge facing the network designer is ensuring the predictable maximum delay 

end-to-end. Interconnecting two disjoint technologies in which each separate network 

segment operates independently from each other obstructs such guarantees. 

Furthermore, since each stovepipe solution resides in disjoint domains and operates in 

isolation, it is not possible to establish an optimal path. Third, each separate network 

segment (stovepipe) has its own management system, which means that no  coherent 

management can be developed. The only viable solution is to transform the current 

disjoint technologies into a common infrastructure similar to the transformation that 

occurred in the telecom industry in the 1990s. 

Due to the co-location of the sensors and the controllers on an autonomous unit, 

peer-to-peer communication between the units is preferable. Transmitting data through 

a sink delays the data too much. In addition, this solution makes the autonomous unit 

dependent on the infrastructure. Communication between an autonomous unit and fixed 

infrastructure requires special attention because the units detach from an access point 

(or base station) and re-attach to a new location (or station). Layer 3 technologies (IP) 

offer solutions for moving units, but further investigations/research is required to 

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50426-7_25

https://dx.doi.org/10.1007/978-3-030-50426-7_25


understand its implications on the delay as well as its robustness. Moreover, security 

will be an issue as both the de-detachment and re-attachment of the unit must follow 

strict security procedures. These procedures are likely to add a delay. 

Based on reconfigurable I/Os and communication channels a real-time simulator can 

usually be easily connected to the practical relays from different vendors. Real-time 

simulators are used to validate the hardware-in-the-loop (HIL), develop algorithms for 

adaptive protection, design system schemes for integrity protection and perform 

remedial action schemes [41].  

4 AI-driven analytics focused on data produced and consumed 

by AGV  

AI-driven analytics is one of the domains that plays a significant role in maintaining a 

fleet of AGV and a production cycle. These analytics cover the development and use 

of ML algorithms to analyse the behaviour of AGV and to detect any anomalies, 

possible problems or failures. Machine learning provides many algorithms that fall into 

two main classes: (i) supervised – where information on the occurrence of faults is 

present in the training data set and (ii) unsupervised – where the process information is 

available, but no maintenance-related data exists. The supervised approaches [42] are 

divided into (i) classification models – if the categorical labels are predicted and (ii) 

regression models – if the results are continuous values. Classification and regression 

may need to be preceded by a relevance analysis, which attempts to identify the 

attributes that are significantly relevant to the classification and regression 

processes[43]. Supervised learning is successfully used in the area of predictive 

maintenance to classify faults by building fault detectors. In the literature, these 

detectors rely on various AI techniques such as Artificial Neural Networks [44], k-

Nearest Neighbours, Support Vector Machines [45], Bayesian networks [46] or 

Principle Component Analysis [47]. 

Unsupervised learning 

techniques primarily work 

based on algorithms that detect 

outliers. Outliers can be 

detected using statistical tests 

that assume a distribution or 

probability model for the data 

or by using distance measures 

in which objects that are 

remote from any other cluster 

are considered to be outliers. 

Building models that do not 

require labelled data is 

possible because of techniques such as auto-encoders, Deep Belief Networks or 

statistical analysis [48]. 

Figure 4. Remote monitoring, managing, and detecting failures 

in AGVs connected to the control center through real-time AI-

based analytics. 
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Industrial IoT systems usually generate large volumes of data in various formats 

and states (e.g. historical, data streams), which raises the challenges of Big Data. AI-

driven analytics has to deal with these challenges (Fig. 4). These challenges led to the 

creation and popularisation of data lake systems. Data lakes are repositories that keep 

the data in its original format. In recent years, the sudden proliferation of data in 

industrial computer systems has increased the pressure to introduce data lake-based 

analysis methods. More and more data are considered to be useful sources of 

information for making critical decisions. The vast volume of data that must be 

processed and the variety of formats that the data is stored in is a significant research 

challenge [49]. The uncertainty of data complicates data analysis and the inclusion of 

expert knowledge in data processing offers many advantages [50].  

Standard condition monitoring techniques rely on inspecting and observing the 

physical properties of AGV. The methods that are used include visual monitoring 

(contaminant, leaks, thermograph), audible monitoring and physical monitoring 

(temperature, vibration). Using real-time analysis of production data and advanced data 

exploration, we can implement remote condition monitoring and predictive 

maintenance tools to detect the first signs of failure long before the appearance of the 

early alarms that precede AGV failures in a short period [51]. As discrete production 

lines become more and more complicated, predictive maintenance has become a vital 

task for the engineers that are responsible for production support. Many potential 

technological and technical problems can be detected based on early signs that are first 

noticeable in changes in energy consumption. The current data can be compared with 

the information related to the energy consumption profiles in an appropriate production 

context. This comparison allows maintenance tasks to be planned and, as a result, 

reduces losses related to production breakdowns. 

Thus, several challenges should be considered for the implementation of AGV in 

real-world domains and applications. Based on the AI-driven methodologies, pure data 

can produce more accurate performance. Most of the data that is collected from AVG 

may be incomplete and inconsistent and especially those data are collected by mobile 

or senor devices. Currently, the pre-processing step of data (i.e. labelling the data) in 

AI-driven analysis must be performed manually. It is necessary to build an intelligent 

model to refine the collected data in order to obtain excellent performance. To have 

better support for decision making, it is also a challenge to implement an automatic 

decision-support system that is based on the results produced by the AI-driven 

methodologies. Moreover, the results of AVG that are produced should consider the 

multi-objective criteria in order to achieve global optimisation for different tasks and 

domains. It is a considerable challenge to develop an optimised AI-driven system for 

AVG for intelligent decision-making. 

5 Conclusions 

The use of Autonomous Guided Vehicles (AGV) in production systems has many 

advantages as it allows production lines to be automated and accelerates logistics. 

However, it also raises many challenges that provide a space for future research. In this 
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paper, authors tried to evoke a discussion on selected issues related to application of 

AGVs in flexible manufacturing systems including: (i) the fusion between AGV and 

collaborative robot with focus on flexibility and interoperability; (ii) the new models 

for machine to machine communication for AGVs which allow them to cooperate with 

production environment and at the same time use solutions developed for IoT; (iii) AI-

driven analytics focused on the data produced and consumed by AGV that have to be 

adapted to the pipe-line processing of data collected from many distributed sources.  
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