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Abstract. The United States’s energy grid could fall into victim to
numerous cyber attacks resulting in unprecedented damage to national
security. The smart concept devices including electric automobiles, smart
homes and cities, and the Internet of Things (IoT) promise further in-
tegration but as the hardware, software, and network infrastructure be-
comes more integrated they also become more susceptible to cyber at-
tacks or exploitation. The Defense Information Systems Agency (DISA)’s
Big Data Platform (BDP), deep analytics, and unsupervised machine
learning (ML) have the potential to address resource management, cy-
bersecurity, and energy network situation awareness. In this paper, we
demonstrate their potential using the Pecan Street data. We also show
an unsupervised ML such as lexical link analysis (LLA) as a causal learn-
ing tool to discover the causes for anomalous behavior related to energy
use and cybersecurity.

Keywords: Big data platform · deep analytics · cybersercurity · usage
patterns · anomaly detection · lexical link analysis · causal learning

1 Introduction

The United States’ energy grid is evolving towards smart grid of future, which
incorporates the digital technology to improve reliability, security and efficiency
of the electric system through bi-directional information exchange, distributed
generation, and storage resources for a fully automated power delivery network.
The smart and integrated grids as shown in Fig. 1 seek efficiency through com-
mon communication standards and integrated networks, meeting the demand for
the rapid growth in a cost-effective manner [16]. To further the concept smart
devices including electric automobiles, smart homes and cities, and the Internet
of Things (IoT) promise further integration. Better ways to manage the energy
grid through better tools can also lead to better manage our energy resources
and reduce greenhouse gasses.

This energy and smart grid not only need tools for better management and
automation, but also face risks and vulnerability that bring unprecedented chal-
lenges and damage to national security:

1. Threats typical to smart grids and IoT devices are that they are not only
vulnerable to physical faults and attacks but to cyber attacks as in the Inter-
net, since the rise of the Internet and the integration via the Open Systems
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Fig. 1. The concept of smart or integrated grids seeks efficiency through common com-
munication standards and an integrated grid (Electrical Power Research Institute) [20]

Interconnection model (OSI) allows an integration of standards throughout
the different types of networks and devices Threats and vulnerabilities there-
fore are similar. The energy assets would naturally be susceptible to cyber
attacks such as a Distributed Denial of Service (DDOS), worms, viruses and
similar cyber exploits which might be the reasons for the Ukrainian power
grid problems [16] and the Massachusetts gas explosions [18]. An attacker
could take control of the company’s “Supervisory Control and Data Ac-
quisition” (SCADA) distribution management system [16]. The U.S. Energy
Information Administration (EIA) notes that the rise of electric vehicles and
smart devices has as one obstacle which is the cybersecurity [17]. Correla-
tions between different categories of sensor big data could potentially act as
“red flags” or early-warning signs of the cyber breach and vulnerability.

2. Distribution automation (DA) is a concept of smart grid which focuses on
the operation and system reliability at the distribution level. The conven-
tional centralized control management strategy is less effective for the smart
grid due to the unidirectional power flow and requirement of control of a
distributed grid. It is imperative to predict hotspots and areas of greatest
concern which will lead to a reduction in waste and inefficiency or expose
security vulnerabilities. This also calls for big data and deep analytics to be
operated in a distributed fashion.

3. Risks include unanticipated operational conditions, for example, for a grid-
connected microgrid, severe weather conditions or grid blackouts may trigger
an unintentional islanding accident [2], which threats the safety operation
and causes technical challenges.

New and emerging technologies offer opportunities to better analyze energy
sensor data to improve our understanding of where energy is wasted and how
to identify and best respond to risks. The IoT significantly increases the volume
and velocity of big data through the concept such as “smart cities.” Big data
analytics can reduce risks and show scalable solutions for detecting patterns and
anomalies from collective intelligence and from the distributed data sources [1].

In the past, data mining techniques [11], energy and entropy theories, wavelet
transform [6], machine learning algorithms such as predictive maintenance, elec-
tric device health monitoring, and power quality monitoring have been used for
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energy and smart grids [1]. The support vector machine (SVM) is used for an
islanding detection [2]. A deep learning is used for IoT device as deep sparse
coding [3]. Localized fault characterization uses a hybridization of evolutionary
learning and clustering techniques [4, 5]. SVM, AdaBoost, and extreme learning
machine (ELM) are used for online detection of risky events in power system [7,
8] Innovation of big data also comes to energy grid management and cyberse-
curity for example, real-time social sensor data using Twitter, Facebook could
provide new insight using the location data [9, 10]

Unique methods illustrated in this paper can be used for both energy man-
agement and cybersecurity because we show data collection and analysis from
sensors as the key components for constantly monitoring and detecting the
threats from collective and distributed data sources. Specifically, this paper ad-
dresses how a “Big Data Platform” (BDP), lexical link analysis (LLA) to discover
anomalies, potential threats, and vulnerabilities using the Pecan Street data set
as a use case. The key contribution of this paper is causal learning since human
is necessary in the process for the validation of decision making.

2 Pecan Street Big Data

Fig. 2. Pecan Street Data

The data source used in this research was obtained by the Pecan Street
organization [12]. Pecan Street collects energy usage for a smart city which
means there is a conscious and curated effort to record the right data for energy
consumption in a methodical manner. The organization host and maintain one
of the largest databases of consumer electricity and water use in the world.
750 million records are collected daily as circuit-level use data from multiple
sources available through their Dataport website. The data track appliance level
consumer behavior.
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We extracted sample research data from Pecan Street Dataport. Fig. 2 shows
the depiction of a sample Pecan Street data. The sample data consists of par-
ticipants’ electricity usage data (per kWh) with 69 data fields including one key
field (user id or data id and timestamp) and the remaining 67 fields listing var-
ious equipment used on site (e.g., furnace, kitchen, lights, dish washer, dryer,
etc.). We selected one month of data consisting of 250,000 records in 15 min
data blocks for 100 participants (users or data ids) as follows:

– air1: air conditioner 1
– air2: air conditioner 2
– air3: air conditioner 3
– aquarium1: aquarium 1
– bathroom1: bathroom 1
– bathroom2: bathroom 2
– bedroom1: bedroom 1
– . . .

The “air1” field records electricity usage for air conditioner 1 for 31 days in for
a January. Baselines could be set and monitored to find anomalies, for example,
an insider threat could be the unauthorized running of energy grid servers in
January not August which would increase the air conditioner usage. Fig. 3 shows
an example of Pecan Street data.

3 Big Data Platform (BDP)

The Big Data Platform (BDP), which has been developed by the Defense Infor-
mation Systems Agency (DISA) [19], runs on on Amazon Web Services (AWS)
including a mix of big data standard and customized tools for data ingestion,
management, security, exploration, and analysis. These functions are supported
by open source tools including Apache Spark [25], Apache Storm [26], Hadoop
Map/Reduce, Kibana [27], NodeJS [28], and R-Shiny [29].

BDP is designed for real-time processing of Big Data beginning at inges-
tion and ultimately presenting useful data visualizations that may alert decision
makers of energy leaks and security vulnerabilities. The BDP has the strict com-
pliance with the DISA security standards which provide a secure system security
that can be an advantage to store big data such as Pecan Street and National
Energy Grid. There are also analytics in BDP which can perform more compli-
cated calculations on a larger data set. For the Pecan Street sample data set,
we first applied BDP to provide initial useful information. We later applied un-
supervised machine learning algorithms k-means and lexical link analysis (LLA)
to discover patterns and anomalies in the data set.

4 Application of BDP

We first ingested and parsed the Pecan Street data into the BDP system. After
ingesting, the data were available to the analytics tools inside BDP such as
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Unity. Kibana is used to create a display of metrics, heatmaps, graphs, and
charts. The BDP system is designed to display results quickly for real-time big
data so that trends and outliers can be discovered quickly. BDP uses a catalogue
or taxonomy shared by multiple users in the same domain. For example, in a
typical cybersecurity environment, people often use similar network monitoring
tools to collect data and monitor activities, therefore, the data fields are similar
and can be shared across multiple locations. The characteristic applies to the
energy grid as well. This is an unique advantage of using BDP. Fig. 4 shows the
average electricity usage each hour over one month for the Pecan Street data
set. It is interesting to note that the spikes in use are not regular. Fig. 5 shows
a dashboard of graphs and metrics representing electricity usage over 24 hours
for different areas of the data set. These could be updated in near real-time for
monitoring activities should energy grid data hosted in such a secure data center.
For example, why do the outside lighting plugs have higher average electricity
usage around the noon time?

Fig. 3. Pecan Street data example

4.1 Unsupervised Machine Learning

We first applied the K-means clustering algorithm from MATLAB and clustered
the 250K records into 10 clusters as shown in Fig. 6. K-means requires a chosen
k and k=10 in our case for simplicity. Fig. 6 is a radar graph showing cluster
center values, i.e., average usages within clusters for the 67 areas labeled in
the circle. These clusters represent the discovered patterns. The characteristics
of the clusters show behavior patterns of the users and time periods in which
characteristics of usage patterns can be summarized in the following examples:

– Cluster 7 (series7): Average high usages within the cluster attribute to the
areas of “use”, “grid”,”drye1”, “furnace1”, “poollight1”,and “waterheater1”.

– Cluster 6 (series6): Average high usages attribute to the areas of “use”,
“car1”, “gen”, and “grid”.
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Fig. 4. Average electricity usage each hour over one month

Fig. 5. A dashboard shows graphs and metrics representing electricity usage over 24
hours for different areas of the data set. BDP allows to update such graphs in real-time
for monitoring activities.
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Fig. 6. Unsupervised learning and cluster characteristics using the k-means algorithm
and displayed using a radar graph and k-means.

– Cluster 5 (series5): Average high usages attribute to the areas of “gen” and
“grid” (negative – giving back to the grid).

We then computed an anomaly index value for each of the data points, which
is the minimum distance of a data point to the 10 cluster centers. The higher
an anomaly index, the far away is the corresponding data point from the 10
patterns (“normal behaviors”). Fig. 7 shows the value of the anomaly index for
each cluster. Cluster 7, 6, and 5 have the highest 3 values of anomaly indexes,
which are the potential candidates for further investigation for the areas of energy
management and cybersecurity.

The anomaly detection system detected 3 anomaly profiles which gives three
different reasons for these users to be different from the population as a whole.
The information shows human analysts behavioral patterns for attributes and
source of the anomaly, for example “gen” means there is a generator at home
and negative “grid” means the generator gives energy back to the grid. The
combination might indicate a different usage pattern for some users. If some
anomaly patterns are trending collectively from various locations, they are the
opportunities for human decision makers and consequences of the anomalies
detected can be alerted to the human analysts via the BDP server.
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Fig. 7. The values of the anomaly index for the clusters

5 Lexical Link Analysis (LLA)

LLA is an unsupervised ML method [13, 14] which describes the characteristics
of a complex system using a list of attributes or features, or specific vocabularies
or lexical terms. Because the potentially vast number of lexical terms from big
data, LLA can be viewed as a deep model for big data. LLA can describe a
system using feature pairs as bi-gram lexical terms extracted from data. LLA
automatically discovers word pairs, and displays them as networks.

Bi-grams allow LLA to be extended to numerical or categorical data. For ex-
ample, using structured data, such as attributes from the Pecan Street data set,
we discretize numeric attributes and categorize their values to paired features.
The feature pair model can further be extended to a context-concept-cluster
model [21]. A context can represent a location, a time point, or an object shared
across data sources. For example, for the Pecan Street data, the data id and
time point can be contexts.

5.1 LLA Outputs for the Pecan Street Data Set

In order to use LLA, we first generate word feature networks for the data set. The
value for an attribute in Fig. 3, such as “grid” is discretized into three bins when
applying LLA as a word feature: 1) less than (lt) the mean (m̄) of the feature
minus one standard deviation (m̄ − σ), 2) between (bt) the mean minus one
standard deviation (m̄− σ) and the mean plus one standard deviation (m̄+ σ),
and 3) more than (mt) the mean plus one standard deviation (m̄ + σ). A node
in LLA represents a discretized feature. For example, grid mt 1.8 means if the
“grid” (i.e., grid usage of electricity in a 15 minutes interval for a data id ) is
more than 1.8.

Probability and lift are the two measures in LLA defined in Equation (1)
and Equation (3) to measure the strength of an association between two word
features.
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probij =
word features i, j together

word feature j
(1)

probi =
word feature i

all word features
(2)

liftij =
probij
probi

(3)

Fig. 8 shows the output of LLA for a word feature grid mt 1.8’s associations
with other features using the “lift” as the association strength measure listed as
follows (filtered using “lift” > 4):

– drye1 mt 1.0: “dryer1” (dryer 1)’s usage of electricity is more than 1.0 in a
15 minutes interval

– car11 mt 2.0: “car1” (car 1)’s usage of electricity is more than 2.0 in a 15
minutes interval

– air1 mt 0.6: “air1” (air conditioner 1)’s usage of electricity is more than 0.6
in a 15 minutes interval

– air2 mt 0.6: “air2” (air conditioner 2)’s usage of electricity is more than 0.6
in a 15 minutes interval

– waterheater1 mt 2.0: “waterheater1” (water heater 1)’s usage of electricity
is more than 2.0 in a 15 minutes interval

– poolpump1 mt 1.5: “poolpump1” (pool pump 1)’s usage of electricity is more
than 1.5 in a 15 minutes interval

– poolpump1 bt 0.6 1.5: “poolpump1” (pool pump 1)’s usage of electricity is
between 0.6 and 1.5 in a 15 minutes interval

– oven1 mt 0.3: “oven1” (oven 1)’s usage of electricity is more than 0.3 in a
15 minutes interval

– dataid 5357: data id (user) 5357

Fig. 11 shows gen mt 1.7 (i.e., a generator, such as solar, alternative, and
renewable energy with inverter interfaced distributed generators (IIDGs), gen-
erates electricity more than 1.7 in a 15 minutes interval) is associated with
grid lt −0.9 (i.e., grid usage of electricity is less than -0.9, negative, giving back
to the grid in a 15 minutes interval for a data id).These results are similar to
the k-means result in Fig. 6.

LLA allows a drill down search as shown in Fig. 9. When clicking both nodes
grid mt 1.8 and waterheater1 mt 2.0: 373 data records in the Pecan Street data
set have both characteristics grid mt 1.8 and waterheater1 mt 2.0 and they
are listed in the LLA search result. 373 data records have the characteristics
waterheater1 mt 2.0, 100% of them also have the characteristics grid mt 1.8.
16,434 data records have the characteristics grid mt 1.8 out of the total 120,847
data records. So the lift is 7.4.

LLA also discovers interesting associations, for example, grid mt 1.8 is as-
sociated with a specific user (data id) of “5357” in Fig. 8. As another example,
Fig. 11 shows the time points of a day are associated with gen bt 0.6 1.7 (i.e.,
generater) generates electricity between 0.6 and 1.7 in a 15 minutes interval).
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5.2 Discussion: Discovering Causal Associations Using LLA

A unique requirement of anomaly detection for energy management and cyber-
security is causality analysis because human analysts need to understand causes
behind any observable anomaly effects. This calls a systematic approach of deep
analytics that is also causality analysis, i.e., linking an anomaly effect, e.g., grid

Fig. 8. Causal level 1

Fig. 9. Drill down

Fig. 10. Grid usage of electricity is less than -0.9: negative, giving back to the grid
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usage of electricity in a 15 minutes interval is more than 1.8 (grid mt 1.8), to
the causes, e.g., specific users or time points. The key factors for causal learning
includes the three layers of a causal hierarchy [23, 24] - association, intervention
and counterfactuals.

The common consensus is that data-driven analysis or data mining can dis-
cover initial statistical correlations and associations from big data. Human an-
alysts need to validate and understand if the associations make sense and what
are the real causes and effects.

Fig. 11. Local time causal relations

Fig. 12. Causal associations level 2
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In a real-life application, one often wants to predict causes based on the data
of effects, i.e., computing and validating the probability (P) of a potential cause
(C) given an effect (E), i.e., P (C|E). Effects are often observable data, e.g.,
grid mt 1.8 in the Pecan Street data set. Causes, e.g., specific users and time
points need to be discovered from the observable data. P (C|E) is difficult to dis-
cover because causes are often hidden, anomalous, and capricious. In machine
learning practices, the associations, correlations or probabilistic rules are typi-
cally cross-validated using separate or new data sets. Causal learning requires
the intervention and counterfactual reasoning. An intervention reasoning tries
to answer the question: What will happen if one takes an action? For exam-
ple, instead of examining P (C|E), if E is actionable or P (C|do(E)) [23] can be
examined. The intervention more than just mining the existing data.

Counterfactual reasoning tries to answer the question: What if I had acted dif-
ferently? If P (C|E) is high-probability rule discovered from data, P (C|Not E),
P (Not C|E), and P (Not C|Not E) are the counterfactuals needed in the rea-
soning. Traditionally, the counterfactual is defined as the effect of an action for
an entity and for the same entity without the action.

LLA calculates the lift measure that is one of the counterfactual reasoning
in causal learning [22]

In the Pecan Street data set, although the linked features as shown in Fig. 8
make sense to human analysts, the specific user or data id or time points might
be more detailed causes for energy management and cybersecurity. In Fig. 12,
each cause feature nodes can be expanded to another level to reveal more causes
such as more data ids (users) linked to the first level causes as shown in Fig. 8.

In LLA,when liftE,Ci > 1, Ci is a potential cause for E. However, if another
cause Cj is a confounder of Ci and E, then liftCj ,Ci > 1. So if liftCj ,Ci > 1 for
some Cj and liftCj ,E > 1, then Cj not Ci is the cause of E. In Fig. 12, only
dataid 5357 directly links to grid mt 1.8 and the first level features poolpump1 mt 1.5,
poolpump1 bt 0.6 1.5, air1 mt 0.6, and air12 mt 0.6. dataid 5357 is a real cause
and we can eliminate poolpump1 mt 1.5,
poolpump1 bt 0.6 1.5, air1 mt 0.6, and air12 mt 0.6. Other causes
waterheater1 mt 2.0, drye1 mt 1.0, car1 mt 2.0, and oven1 mt 0.3 are inde-
pendent causes with no confounders.

6 Conclusion

We demonstrated that BDP and deep analytics using the Pecan Street data for
anomaly detection and causality analysis of resource management, cybersecu-
rity, and energy network situation awareness. We also demonstrated unsuper-
vised learning algorithms to discover the usage patterns and anomalies. We also
defined an anomaly index and showed its values for the clusters and time points.
We showed LLA as an innovative approach to discover causal associations. The
information can help business users to see the patterns and detect abnormal
activities for the management and cybersecurity of an energy grid.
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