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Abstract. Context-aware pervasive systems are complex, due to the
need to gather detailed environmental information and to perform a va-
riety of context reasoning processes in order to adapt behaviours accord-
ingly. These operations are merged seamlessly. We show the feasibility
and vitality of a fully designed system for mountain rescue operations,
with various aspects of the contextual processing in middleware, as well
as analyse its context life cycle. The system is verified through intensive
experiments with a rich set of categorised context data. The contextual
processing is shown in different weather scenarios. The service is geared
towards software development, converging IoT (Internet of Things) and
cloud computing with specific reference to smart application scenarios.

Keywords: streaming sensor data · modelling contextual information ·
middleware · IoT · rescuing activity.

1 Introduction

Context-aware systems are analysing complex information which is relevant to
a monitored entity and falls into a wide range of data categories [6, 15]. How-
ever, the context understanding presented in the well-known paper by Dey and
Abowd [6], seems too general by today’s standards, and to be used practically re-
quires categorisation, see paper by Zimmerman et al. [15], introducing a form of
interpretation, which allows us to govern the context complexity. In this article,
we have categorised the used domain context, which describe the mountain envi-
ronment. Smart decisions based on various situations and operational scenarios
are taken autonomously and pro-actively. System operations are transparent to
the sensed entities. Decisions are taken by middleware, which seamlessly binds
together all elements.

The first contribution is the categorisation of contextual data for the require-
ments of mountain environments, especially focusing on supportting mountain
rescuers. It is an enabler when reducing complexity, and prioritising activities.
Another contribution is a simulation experiment on contextual data processing
to better understand the nature of defined data, established categories, decision
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processes, and threats as regular languages. A separate contribution is to holis-
tically verify, thanks to an environment simulator, via a series of experiments,
the designed system, which supports mountain rescue operations. Previously,
only separate system components were tested, see [9], basing on randomly gener-
ated datasets. Presently, the mountain environment simulator produces different
datasets. The simulator reflects all the most important aspects of real mountain
environments. Five different weather scenarios were proposed and performed. All
objectives authenticate system feasibility, credibility and vitality. The system is
both an enabler and a provider in increasing understanding of the significance of
context-aware decisions, which are based on redundancy, spatial proximity, con-
text transition, context sharing, and other context features. It was designed to
help, among other IT engineers, better understand the specifics of context-aware
systems.

2 Related works

The basic definition of context was provided by a paper by Dey and Abowd [6].
A paper by Zimmermann et al. [15] identified many context taxonomies, user
and role, process and task, location and time, amongst others. The first defini-
tion seems too general today, since it does not help to govern the complexity of
modern software systems. Thus, we introduced the categorisation, which seems
the most appropriate for mountain environments. When choosing data for a
context, we act in accordance with Crowley’s suggestions, see paper [5], that is,
only focusing on relevant elements and relationships. A survey by Augusto et
al. [3] investigates the notion of context from a historical perspective, as well
as showing the relationship between Artificial Intelligence (AI) and Intelligent
Environments (IE). A paper by Alegre et al. [1] provides a comprehensive and
detailed survey concerning engineering aspects for context-aware applications.
It discusses developing methodologies, as well as engineering and conceptuali-
sation for context-aware systems, constituting a solid base for designing their
own systems. Hong et al., in a paper [7], state that only a small number of re-
search papers provide development guidelines for context-aware systems, while
reducing system complexity can only be achieved by using an appropriate system
infrastructure, and context modelling techniques The lack of design techniques
is also stated in paper [1].

A paper by Marconi et al. [10] describes a project co-financed by the Eu-
ropean Commission, to provide a ground and aerial robotic platform, which
supports search and rescue activities in mountain environments. The project
does not discuss the fundamental aspects of constant activity monitoring. We
are going to show that such an analysis is possible, and can be effective. Our
approach is an extension to the aforementioned project, or the beginning of a
new one.

This paper is a continuation of [9], where a context-aware and pro-active sys-
tem to support mountain rescuers was proposed. The current work goes one step
further, because the whole system was built, redesigned as an independent and
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S

Fig. 1. Assumed context model (with indicated threat levels, see Tab. 2), see also [9],
and division into weather context W and non-weather context S

entire component. In previous works, only message streaming brokers and SAT
solvers were tested using randomly generated data. Now, the system was sub-
jected to holistic and comprehensive verification. For this purpose, the mountain
environment simulator was created [12]. The obtained contextual data is both
important and distinctive for a context-aware system, for example: redundancy,
spatial proximity, context transition, context sharing, among others. It is also
worth noting that we did not meet many simulators of this type, an exception
is a paper by Aronica et al. [2], describing a simulator for rescue operations in
marine environments.

3 Preliminaries

Information from this section is based on [9, Section III], however assumptions
are revised, are clearer, and some understatements and ambiguities are removed.
We establish context information categories, see Figure 1, which influence the
monitored object. This context situation is a subject of system predictions.

A division into weather context W (see Table 1, threats: E2–E5) and non-
weather context S (a dangerous animal on paths, distance from the leader, lack of
movement, and on/off the trail, threats: E6a, E6g, E6m, E6r) was implemented.
The context data results directly from sensor data and is available for reasoning
purposes after the filtration process. Table 2 shows detected threat levels for two
context categories, both weather and non-weather categories.
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Table 1. Weather context information, see also [9]

Context Labels Information
Avalanche A1 – A5 Increasingly difficult conditions

W
ea
th
er

co
nd

it
io
ns Wind W1 – W3

Increasingly difficult conditionsFog F1 – F3
Temperature T1 – T3
Rain, storm R1 – R3

Difficulty levels D1 – D4 Increasingly difficult levels for trails

Table 2. Increasing threat levels (top row: weather threat symbols, icon colours and
danger names; bottom row: non-weather threat symbols and surrounding shapes)

Weather
E1 E2 E3 E4 E5
green yellow orange red black
low medium increased high very high

Non-weather E6g E6r E6m E6a
pentagon circle square triangle

4 Contextual data processing

Context creates its context life cycle, that is, the sequence of stages (gathering,
modelling, repositoring, reasoning, distribution, and visualisation), which struc-
tures processes of contextual pieces of data metamorphosis. Context data goes
through particular stages. Starting with data gathering, its pre-processing, or
modelling data is located in the repository. After the logical reasoning process,
data is distributed in various system locations and visualised. The context data
is updated periodically. Figure 2 shows a workflow [11] for the operations of
the designed system, however, it is focused on tasks and data flows involving
contextual data processing.

Raw data from weather sensors, tourist locations from BTS stations or GPS
data, as well as animal geolocation, are placed in Sink. This data is then filtered
and modelled, and then tabularised and placed in Repository. After tabularisa-
tion, one is able to determine precise weather conditions on specific routes (or
their fragments), or assign each tourist to a specific route. Levels of alerts and
avalanches are defined manually by mountain rescuers. Repository contains all
the tabulated data prepared to make decisions based on logical inference. Recom-
mendations are being prepared for each monitored tourist, according to threat
levels, see Table 2. Visualisation occurs on available devices, such as monitors
or smartphones, along with the possibility to send text messages.

From a single tourist perspective, threat signals generated by the workflow
are described by the regular expression Li ≡ (E, )+, where the comma technically
separates the single workflow iterations, and E ≡ N |S|W |S·W , where N means
no threat, S ≡ E6a|E6g|E6m|E6r, and W ≡ E2|E3|E4|E5. An example for Li

is a finite sentence N , E6a, N , E6mE2, E3, . . . which ends when the object
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Fig. 2. Workflow for context processing, a single pass: gathering, modelling, repositor-
ing, reasoning, distribution, and visualisation. (WFTR means wind, fog, temperature
and rain, as a basic set of weather factors.)

leaves the monitored area. However, the workflow generates threat warnings for
every tourist at the same time, thus L ≡ L1 ∪ L2 ∪ . . . Ln, where n is the total
number of tourists once observed or currently being observed in the monitored
area. Thus, every Li and L are regular languages, and are generated by type-3
grammars [8].

We conducted a simple yet interesting simulation regarding the contextual
data under consideration, and the results are shown in Figure 3. The assumptions
are as follows: duration time 24 h, sampling every 0.5 h, which gives 48 iterations.
Normal distribution for the tourist population, population peak is 200 people at
2:00 pm, and standard deviation 4 h. We examine three time periods: morning
5:00 am–11:00 am, noon-afternoon 11:00 am–5:00 pm, and evening-night 5 pm–
5 am. Probability for E2–E5 (considered together) is 20% for the 1st time period,
increases by 30% for the 2nd period, and by 100% for the 3rd period. Probability
for E6a is 5%, E6g is 5% (while 30% tourists are in groups), E6m is 5%, and
E6r is 10%. Threats for both categories are calculated independently. If we have
any threat which belongs to S, subsequent ones are not calculated, see [9, Algo-
rithm 3], which is a result of conditional checking. The use of a particular context
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Fig. 3. Simulation of contextual data processing, and two categories (W , S), average
values: left – weather context information, middle – non-weather context information,
and right – cumulatively all pieces of contextual data. (Blue and violet show similar
values and fuse together for the left and middle figures.)

data is shown in Figure 3. Individuality and Time are equally used to calculate
the type-W threat. On the other hand, Relation, Activity and Location are used
to calculate the type-S threat, however, Relation is used more often (for E6a,
E6g). The largest number of threats W occurs with a large number of tourists,
see the 11:00 am–5:00 pm period at the right figure. At night, the 5 pm–5 am
period, which is the longest one, there are very few tourists, but the threat prob-
ability is doubled, which gives a relatively large number of threats. The number
of Individuality and Time readings will always be the largest when compared
to others, because they concern every tourist. At night, the 5 pm–5 am period,
there are very few tourists and the number of S threats must be small.

5 Mountain environment simulator

5.1 Basic assumptions

The developed simulator [12] enables generating extensive data, which mirror
real mountain conditions within the monitored area and applies to its numer-
ous aspects, for example: weather conditions, tourists’ location (trail), walking
speed, probability of changing or continuing walking along the same route on
trail intersections or the probability of getting lost. Other important aspects of
the simulator’s work are related to animal migrations. Figure 4 presents screen-
shots from the simulator system, together with the monitored area. Figure 4 also
presents exemplary screenshots of different administrative panels of the simula-
tor. They enable us to influence mountain conditions, and in effect, the datasets
generated by the system, by setting particular parameters.

Let us analyse five different weather conditions, with a separate simulation
process being prepared for each case:

1. summer, rather bad weather conditions, but they improve, possible periodi-
cal fluctuations;

2. summer, very good weather conditions, but at some point, they significantly
worsen (until the end of the simulation process);
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Fig. 4. Simulator screenshots: top – map of the monitoring system before tourist enters
(the mountain routes are prepared using QGIS [13] and the base map is from Google
Maps), bottom, left – admin panel, the simulation tab [12], bottom, right – admin
panel, the weather tab [12]

3. summer, very good weather conditions, but they worsen for short periods of
time;

4. winter, difficult weather conditions, with periodical fluctuations;
5. winter, very difficult weather conditions, but at some point, they significantly

improve (until the end of the simulation process).

Each simulation process takes around one hour. and processes 25–30 times
faster than real life. In other words: a one-hour simulation is equal to processes
which, in a real life mountain scenario, would take approximately thirty hours.
Figure 5 presents considered weather scenarios. The total number of weather
threats for all tourists within a monitored area was shown. (As a threat we con-
sider all levels from E2 to E5 excluding E1 which describes a normal situation.)
Data is collected at regular intervals, twelve times during one simulation hour,
which is equal to collecting data every five minutes. (In general, the frequency
of data collection can be established in any other way.) If weather conditions
get worse, the frequency of threat detections must increase in relation to ob-
jects within the monitored area. We also assume regular division of tourists on
routes, as well as the fact that weather changes appear at the same time within
the whole monitored area.
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Fig. 5. Total number of detected threats for five different scenarios as a result of
weather condition fluctuations. (The entire simulation period is divided into twelve
intervals.)

Scenario #1 shows weather fluctuations which stabilise themselves with time.
At the beginning, both #2 and #3 have excellent weather conditions. In the
first example they rapidly worsen, while the second example only experiences
some local deviations. Both #4 and #5 are related to winter conditions. The
first example describes normal weather fluctuations, while the second example is
related to very bad weather conditions which gradually improve. Each diagram
shows the overall presence of threats. In the case of winter scenarios, there are
rather higher threat levels, which range E2 to E5, while during summer there
are lower levels from the same range. It is not necessary to show the internal
structure of those threats.

5.2 Simulation results

Table 3 shows a general overview of simulation processes, and what happened on
the routes within a monitored area. A lot of emphasis has been put on making
this image both realistic and reliable. All numbers refer to the total number
of events, i.e. events which happened during the hour-long simulation. Only a
group of four rows, starting from the third row, concerns the current number of
tourists.

“Low BTS location accuracy situations” means situations where the accuracy
of the position, determined by the data from BTS stations, is too low. Broadly
speaking, the algorithm works in such a way, see [4], that, by knowing the dis-
tance between two stations, it determines two intersection points of the circles
which have their centres in the exact location of stations, and radiuses equal to
the distance between those stations. Having those two points, we can calculate
their distance to the third station. Moreover, knowing the distance between a
tourist and the third station, determined from the strength of signal, we can
decide which one of the two predetermined points is closer to our result. Dis-
crepancy between the distance determined from the algorithm, and the distance
determined from the strength of a signal is treated as an inaccuracy. In the case
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Table 3. Simulation processes’ general summary

#1 #2 #3 #4 #5
Total number of tourists 3308 3344 3080 3575 3298
Tourists who left the area 3088 3123 2870 3351 3060
Current/last number of tourists 220 221 210 224 238
BTS located tourists 136 140 129 132 144
GPS located tourists 84 81 81 92 94
Tourists who denied GPS data 29 33 16 30 26
Animal threats 628 629 519 417 343
Weather threats 2003 6349 2478 10527 11195
Avalanche risk alarms 20 6 27 18 17
“No movement” situations 84 364 118 836 620
“Out of route” situations 85 372 122 848 623
Low BTS location accuracy situations 1152 967 637 222 640
“One weather detector” situations 3891 4027 3831 4029 4176
Tourists who lost their group leader 149 225 130 470 360

Table 4. Total number of recorded weather threats

#1 #2 #3 #4 #5
by emergency level
E2 1774 4438 1259 3352 3301
E3 229 1797 567 4669 3114
E4 0 114 298 1314 1696
E5 0 0 354 1192 3084

#1 #2 #3 #4 #5
by routes
Route1 742 1906 682 2437 2087
Route2 0 1 0 1 4
Route3 55 572 215 1151 1180
Route4 683 1135 487 2487 5053
Route5 64 283 159 765 1368
Route6 32 206 40 523 270
Route7 49 229 57 457 282
Route8 378 2017 838 2706 951

of the discrepancy being too high, a report is sent to the system, and there is
the possibility to send a BTS drone.

The general image presented above is supplemented by the presentation of
weather threats which appeared in every simulation process (level E1 describes a
normal situation) and the total number of threats on each route, see Table 4. The
data shown proves that the mountain environment was simulated in a realistic
way. Numerous simulation aspects concerning weather and non-weather threats
were considered.

Redundancy as repetition of information, or inclusion of additional informa-
tion to improve the quality of processing, occurs in the system when locating
objects in the monitored area. The basic way to localise a tourist is to analyse
the data from a BTS station. GPS data is obviously much more precise in rela-
tion to geolocation, but this data can only be obtained from users who agreed,
after entering the monitored area, to such a means of sending data regarding
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Table 5. Tourists registered in groups, or redundancy for the group localisation case

#1 #2 #3 #4 #5
Total number of tourists in groups 103 82 102 31 102
Number of groups 24 22 28 9 24
Number of BTS located tourists 90 77 92 27 92
Number of GPS located tourists 13 5 10 4 10
Locations improved 49 18 33 9 40
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Fig. 6. General view of tourists in groups in the case of simulation #1. (The entire
simulation period is divided into twelve intervals.)

their location. The process of positioning for each object is possible thanks to
the comparison of data from BTS and GPS, if the latter exists. The use of re-
dundancy to resolve the location issues has been shown as a subset of data on
the current/last number of tourists in Table 3.

The benefits of redundancy also apply when considering tourist groups. Peo-
ple can visit a monitored area individually, but can also be organised into reg-
istered groups. There are no rules on how large a group can be, but the typical
size of a group is 3, 4 or 5 people. (In a small number of cases, there are also
two-person groups.) Then, even if one member agreed to send GPS data, it may
be helpful to localise other BTS-oriented tourist positions. Table 5 shows the
localisation data gathered for a one-hour simulation. It has been proved that
the redundancy of information may be successfully used, mainly in relation to
tourist locations, which makes the system more effective and precise.

On the other hand, Figure 6 supplements the above image and presents
the volatility of the different kinds of data regarding observed tourists within
registered groups. The figure shows data for one simulation scenario, however,
the images for the remaining scenarios are very similar. All analysed scenarios
prove the credibility of the simulation processes. Fluctuations connected with
groups and localisations which follow are a subject of natural volatility. If a
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Table 6. Spatial proximity for weather stations

#1 #2 #3 #4 #5
Number of analysed tourists 334 365 324 401 382
Total number of events 1620 1723 1614 1737 1772
including stations: 1 427 486 462 474 453
including stations: 2 909 979 885 983 1033
including stations: 3 284 258 267 280 286

Average number of events per tourist 4.9 4.7 5.0 4.3 4.6

tourist remains within a group, the information about the location of other
group members, if followed by GPS, is used to prove the BTS location. Thus, it
is another example and proof of the reasonable use of data redundancy in the
system.

Spatial proximity means nearness or closeness in space. It is an important
and compulsory aspect of the analysis of an intelligent system. In our system,
it is implemented in relation to weather conditions, precisely speaking, when
downloading data which is generated by meteorological stations located on the
routes or in their nearest surrounding. If in the close neighbourhood, there are a
few stations, but we only require the data from the nearest one, and if they are
within a similar distance, we only require the data from the one the object is ap-
proaching. During the simulation there were numerous situations where we had
to choose between 1–3 stations. Table 6 presents the results concerning meteo-
rological station readings. It needs to be emphasised that although all tourists,
without exception, were subjected to the same rules of situational evaluation for
weather conditions, for the purposes of this particular experiment, that is spatial
proximity, we randomly selected a certain representative subset of tourists. In
order to illustrate the experiment, every fifth tourist was chosen. Apart from the
number of analysed tourists, Table 6 also includes the number of all events for
weather data for particular tourists and differentiation of events when 1, 2 or
3 stations were taken into consideration, respectively. The obtained results are
representative and credible, and this statement is related not only to an average
number of data readings when the tourist remained on the route, but also to the
fact that we are mostly dealing with taking two weather stations into consider-
ation. The station closest to the walking direction was chosen as the one which
possessed the most useful data to evaluate the tourists’ most recent situation.

Context transition means dynamically switching environments which sur-
round and influence object state and behaviour via the pervasive smart system
operations that follow. Basically, tourists’ context may change regularly, be-
cause it is influenced by weather changes, and, indirectly, also by the degree of
a particular rule difficulty, time of day, etc. Contextual changes were observed
individually, in relation to every single tourist, along its way which may include
a set of routes. Table 7 presents the results of research over contextual changes
in relation to tourists who finished their hiking and left the monitored area. The
data obtained proves the stability of the simulation process, because of the sim-
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Table 7. Context transition for tourists who finished their excursions

#1 #2 #3 #4 #5
Number of analysed tourists 3088 3123 2870 3351 3060
Average number of transitions per object 23.26 22.34 24.50 20.36 21.58
Minimum/maximum value 3/250 4/166 3/148 3/146 3/127
Standard deviation 20.82 19.41 20.61 17.11 17.67
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Fig. 7. Context transitions during the simulation, or average number of transitions per
object. (The entire simulation period is divided into twelve intervals.)

ilar values of particular variables. Of course, in real winter condition situations,
routes are visited by a fewer number of tourists, however, we did not decide
to decrease these values for winter scenarios, since our goal was to verify the
simulation processes, alongside each comparable input value for each scenario.

Figure 7 shows the context transitions for each simulation. Every five min-
utes of the simulation, all important variables are saved, which gives an image
of the environment within the system. For that reason, we are able to calculate
an average number of context changes per tourist. Also, for this experiment, the
obtained results prove the stability and reliability of the simulation processes.
In the initial period of each simulation, the average number of changes is lower,
which can be explained by having fewer tourists on routes. When the simula-
tion starts, there are no tourists on the routes. That changes as the simulation
continues, until it reaches a natural value. (There are numerous well-known na-
tional parks which are closed during some designated periods, or as a result of
catastrophes. Opening them and giving access to tourists meets the initial con-
ditions of our simulation scenarios.) All results concerning the context transition
prove the experiments success and credibility. In the future, the data may be also
subjected to deeper analysis, typical for context-aware and pro-active systems.

Context sharing means overlapping and participation of the information, or
knowledge, by different objects. Thus, groups of objects which share context, also
share knowledge of how things are perceived within these groups, see also [15].
Figure 8 shows how context sharing is perceived in our system. The results are
illustrated in the following way: we have twelve intervals of the simulation pro-
cess, variables which describe objects are stored as a subject of simulation. Each
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Fig. 8. Context sharing, or number of tourists grouped into four percentages: top –
summer (#1), bottom – winter (#5). (The entire simulation period is divided into
twelve intervals.)

object is described by using variables to define their context (a touristic route,
data from a weather station, difficulty level, BTS/GPS availability). Context
sharing was expressed as a percentage in relation to contextual variables. Thus,
the most common case is context sharing 25%, with the rest being related to
a rather lower number of tourists. 100% coverage is quite rare. The results ob-
tained are fully natural and prove the credibility of the whole simulation process.
The particular percentage groups are pairwise disjointed. The figure is limited
to winter and summer scenarios. The results were very similar for the remain-
ing seasons. Moreover, context sharing can also be analysed more precisely in
relation to particular mountain routes. Again, we conclude that all obtained
results are not fundamentally different from our images of naturalness and the
credibility of the simulation process.

6 Conclusions

We have shown that a sensor-based context-aware system has the ability to
sense mountain environments, supporting rescue operations effectively. We have
identified contextual elements in accordance with context and system require-
ments [14]. The number of tourists assumed in all simulation scenarios seems to
be quite vast, considering the size of the monitored area. The effectiveness of
the proposed solutions were validated by numerous experiments. Some concerns
may arise due to the fact that all experiments were carried out on a local host,
i.e. both physical phenomena collected by sensors as well as location data to-
gether with the monitoring system itself were located in one place. The designed
system is also a source of rich analysis focused on contextual data processing.
We intend to develope this system to enable defining arbitrary weather scenarios
and providing contextual data analysis on demand.
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