
Radial Basis Functions Based Algorithms for
non-Gaussian Delay Propagation in Very Large

Circuits

Dmytro Mishagli[0000−0003−0712−1094] and Elena Blokhina[0000−0002−4164−4350]

University College Dublin, Belfield, Dublin 4, Ireland

Abstract. In this paper, we discuss methods for determining delay dis-
tributions in modern Very Large Scale Integration design. The delays
have a non-Gaussian nature, which is a challenging task to solve and is a
stumbling block for many approaches. The problem of finding delays in
VLSI circuits is equivalent to a graph optimisation problem. We propose
algorithms that aim at fast and very accurate calculations of statistical
delay distributions. The speed of execution is achieved by utilising previ-
ously obtained analytical results for delay propagation through one logic
gate. The accuracy is achieved by preserving the shapes of non-Gaussian
delay distribution while traversing the graph of a circuit. The discus-
sion on the methodology to handle non-Gaussian delay distributions is
the core of the present study. The proposed algorithms are tested and
compared with delay distributions obtained through Monte Carlo sim-
ulations, which is the standard verification procedure for this class of
problems.

Keywords: Timing analysis · Statistical static timing analysis · Delay
propagation · Uncertainty · Non-Gaussian · Graph optimisation

1 Introduction

The decrease of the feature size of modern Very Large Scale Integration (VLSI)
design and the increase of the transistor count on a single chip inevitably ap-
proaches us to the end of Moore’s law. Recently, Integrated Circuit (IC) tech-
nology has already reached the 5 nm technological node. At such scales, the role
of uncertainty during the manufacturing process arises naturally due to physi-
cal fluctuations of various parameters such as the transistor channel width, its,
length, etc. The design verification for a VLSI circuit has now become even
more important since the complexity of design increases, which inevitably in-
crease their cost. The standard way of circuit verification is to perform the
timing analysis of a design [7, 13, 11, 1]. The most reliable analysis is done by
running Monte Carlo (MC) simulations that consider all possible variations of
every parameter in a system. However, such computations can last for weeks for
a single design. Thus, semi-analytical methods based on delay models have been
developed and are used in addition of MC simulations.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50426-7_17

https://dx.doi.org/10.1007/978-3-030-50426-7_17

2 D. Mishagli and E. Blokhina

Deterministic Static Timing Analysis (or simply STA) can effectively take
into account systematic process variations, and it was a dominant tool for sev-
eral decades. However, STA gives too pessimistic predictions of delays, which
significantly increases the cost of a chip in attempt to mitigate predicted delays.
Therefore, the need for handling random correlated processes have arisen, and
statistical approaches, known as Statistical Static Timing Analysis (SSTA), have
been developed [2, 5]. Within SSTA, all the delays in a system are treated as ran-
dom variables (RVs) with some distributions. The goal of such an approach is to
determine the mean value of the delay across selected paths and critical delays
that may jeopardise the logic operation of the whole circuit. In addition, it is
required to determine the standard deviation of the delay, its distribution, prob-
ability density function (PDF) and/or cumulative distribution function (CDF).

It is accepted now that the distribution of the delay generated by an indi-
vidual logic gate is generally non-Gaussian [8]. A number of methods have been
proposed to address this issue. However, treating non-Gaussian distributions of
delays in a very large graph it still a challenge. Traditionally, approximations
to the actual forms of distributions are used, as, for example, in studies [15, 4,
16], where the so-called canonical model of a delay has been proposed. Within
this method, the delay is described as a linear function of parameter variations.
Such approaches include (i) numerical approximations to the max-operator (see
Sec. 3 for the details on this issue) and/or linearisation of nonlinear functions,
and (ii) approximations to the actual distributions with Gaussians. For example,
paper [12] discusses another modification of the canonical form based on adding
a quadratic term and using skew-normal distributions.

In this study, we propose a fast and accurate algorithm for determining de-
lay distributions taking into account their non-Gaussian nature. The problem of
finding delays in VLSI circuits is formulated as that of a graph optimisation. The
speed of the algorithm execution is achieved by utilising previously obtained an-
alytical results for delay propagation through one logic gate, which was proposed
in [6]. The accuracy is achieved by preserving the shapes of non-Gaussian delay
distribution while traversing the graph of a circuit. This requires presenting a
PDF of a gate’s delay as a mixture of radial basis functions (RBFs) and solving
the corresponding optimisation problem. The discussion on the methodology to
handle non-Gaussian delay distributions is the core of the present study. The
proposed optimisation strategies are incorporated in a traversal algorithm and
tested and compared with delay distributions obtained through Monte Carlo
simulations. The latter is the standard verification procedure for this class of
problems.

The paper is organised as follows. In Sec. 2, we give a brief introduction
to SSTA and discuss general statement of the problem. Section 3 discusses the
model of delay propagation through a logic gate. The model allows us to built
an algorithm for an accurate and fast calculation of the critical delay through a
graph, which is summarised in Sec. 4. The key steps of the algorithm and the
optimisation problem are discussed in Sec. 5. Section 6 concludes this paper with
the verification of the algorithm via simulations and overall discussion.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50426-7_17

https://dx.doi.org/10.1007/978-3-030-50426-7_17

RBF approximation for non-Gaussian delay propagation in VLSI 3

sink

sourceg1

g2

g3

g4

I1I2
I3

I4
I5

I3

I2

I1

I4

I5

g1

g2

g3
g4

Fig. 1. Example logic circuit and its timing graph.

2 Statement of the Problem

2.1 Definitions

Throughout the paper, we will use the following commonly accepted terminol-
ogy [2]. A logic circuit can be represented as a timing graph G(E,N) as illus-
trated in Fig. 1 where the graph and its paths are defined as follows.

Definition 1. A timing graph G(E,N) is an acyclic directed graph, where E
and N are the sets of edges and nodes correspondingly. Nodes reflect pins (logic
gates) of a circuit. The timing graph always has only one source and one sink.
Edges are characterised by weights di that describe delays.

The timing graph is called a statistical timing graph within SSTA when the
edges of the graph are described by RVs. The task then is to determine the
critical (longest) path.

Definition 2. Let pi(i = 1, . . . , N) be a path of ordered edges from the source to
the sink in a timing graph G and let Di be the path length of pi. Then Dmax =
max(D1, . . . , Dn) is referred to as the SSTA problem of a circuit.

Therefore, SSTA is aimed at determining the distribution of the circuit delay,
which is equivalent to calculating the longest path in the graph formalism. Since
SSTA operates with random variables, we will also use the following notation
for the probability density function of the Gaussian distribution:

g(x|µ, σ)
def
=

1√
2πσ

ϕ

(
x− µ
σ

)
, ϕ(x)

def
= e−x

2/2 (1)

where µ and σ2 are the mean value and variance respectively, and ϕ(x) is the
Gaussian kernel function. The cumulative density function will be denoted as
follows:

Φ(x|µ, σ)
def
=

1

2

[
1 + erf

(
1√
2

x− µ
σ

)]
, (2)

where erf(x) is the error function.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50426-7_17

https://dx.doi.org/10.1007/978-3-030-50426-7_17

4 D. Mishagli and E. Blokhina

m
ax

P
D

F
 o

f
de

la
y

A

B

Time

(a) (b) (c) (d)

Fig. 2. Illustration of delay propagation through a logic gate. At stage (a), two signals
arrive at the input of the gate. At stage (b), the max-operation is performed, which
gives a skewed PDF. At the same time, the gate has its own operation time described
by some distribution (c). Thus, the distribution of the gate delay (d) requires the
convolution of the obtained distribution (b) and given (c). This convolution results in
a new RV, which clearly has a non-Gaussian form.

2.2 Gate Level Analysis

We will start by explaining briefly how the overall delay is generated in a single
logic gate. At the gate level, delay propagation is described by two operations:
computing the maximum (max) of two delays entering a gate and the summation
of the latter with the delay of the gate. From the statistical point of view, when
these operations are applied to RVs, the delay of a gate with two inputs reads:

max(X1, X2) +X0, (3)

where X1 and X2 are the RVs that describe the arrival times of input signals,
and X0 is the RV that gives the gate operation time. The operation of a logic
gate in terms of the arrival and operation time distributions is presented in
Fig. 2. Therefore, equation (3) is the convolution of the max(X1, X2,) and X0

probability density functions. The analytical solution to combination (3) exists
in a limited number of cases. We discuss these cases in the next section.

3 Model for a Logic Gate Delay

Consider a logic gate with two inputs, A and B, and suppose that the gate
operation time is distributed according to the normal law with a mean µ0 and
a variance σ2

0 , i.e., it is a Gaussian RV. Assume now that the arrival times of
both signals are also Gaussian RVs with means and variances µ1, σ2

1 and µ2,

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50426-7_17

https://dx.doi.org/10.1007/978-3-030-50426-7_17

RBF approximation for non-Gaussian delay propagation in VLSI 5

σ2
2 respectively. Even if the individual distribution in the example of Fig. 2 are

Gaussian, the application of formula (3) leads to a non-Gaussian distribution of
the delay at the gate output as shown in that figure.

In our previous work [6], the exact expression for the PDF of such an RV
was presented:

f(x) =
1√
2π

∑
i,j=1,2
i 6=j

1

σ̃i
ϕ

(
x− µ0 − µi

σ̃i

)
Φ

 1√
1 + κ2ij

y(. . .)

 , (4)

where

κij =
σ0σi
σj σ̃i

, σ̃i =
√
σ2
0 + σ2

i , y(x) =
σ2
i (x− µ0) + σ2

0µi

σ̃2
i σj

− µj

σj
. (5)

Expression (4) does not take into account possible correlations between the
arrival signals. This issue will not be addressed in this study. Instead, we are
interested in demonstrating how this exact solution can speed up SSTA for a
given graph keeping precision high. Formula (4) assumes all initial delays (arrival
and gate itself) to have Gaussian distributions. In principle, both the arrival
signal and gate delay do not have to be Gaussian. If they can be decomposed
into a linear superposition of Gaussian kernel functions, the PDF of the gate
output delay can be presented as a linear combination of expressions (4) due
to the linearity of the integration operation. This idea constitutes the core of a
delay propagation algorithm which we discuss in the next sections.

4 Delay Propagation Algorithm

The algorithm for the calculation of the delay propagation through a timing
graph is outlined below. The high-level description of the algorithm is shown in
Fig. 3.

Algorithm 1. Returns a list with the parameters of Gaussian mixtures for
each node of the graph G.

Input: graph G; distributions, means and variances for graph nodes
1. Perform preprocessing: decompose each non-Gaussian PDF for input nodes

and gates and get corresponding Gaussian mixtures
2. Do forward propagation in G.

for node in G:
- calculate PDF f(x), mean µgate and standard deviation σgate
- represent via Gaussian mixture
- append to a list

Output: a list with PDFs for all nodes in the RBF representation

This algorithm relies on the decomposition procedure. This procedure aims
to represent a skewed (non-Gaussian) distribution with a mixture of RBFs that
have Gaussian form, which allows one to use the result (4). In the next section,
we discuss how such a decomposition can be performed.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50426-7_17

https://dx.doi.org/10.1007/978-3-030-50426-7_17

6 D. Mishagli and E. Blokhina

non-G
decomposition

For any non-Gaussian PDF
pass to the next

node

get new Gaussian Mixture for this PDF

result
non-Gaussian

PDF

another arrival
signal

Gaussian
Mixture

Gaussian
 Mixture

convolution
with another

Gaussian Mixture

Fig. 3. High-level diagram of the Algorithm flow.

5 Optimisation

The exact function (4) can be written as frbf(x), a sum of RBFs; each of these
RBFs has a Gaussian-like shape. In other words, it can be decomposed to a
Gaussian mixture [14, 9]. The decomposition procedure is equivalent to fitting
the actual PDF with a sum of RBFs, which brings us to an optimisation problem.
In this study, we discuss the minimisation of the sum of squares of the residuals

min
∑
i

|frbf(xi)− yi|2, (6)

subject to constraints (specified below). Here yi are the data points correspond-
ing to the actual function f(x) that we want to fit.

Depending on the form of the RBFs, the minimisation of (6) can vary signifi-
cantly, e.g., an approximate function frbf(x) can be either linearly or non-linearly
dependent on the fitting parameters. We discuss two alternative approaches be-
low.

5.1 Choice of the cost function

Let us consider the RBFs frbf(x) in the following form:

frbf(x) =

m∑
i=1

wiϕ

(
x− bi
ci

)
, ∀wi, ci > 0, (7)

where wi are the weight coefficients, bi determine positions of the corresponding
RBFs and ci are the shape parameters. The constraints on wi and ci are chosen
so that the resulting mixture of RBFs has the meaning of a PDF. In the most
general case, for m RBFs there are 3m parameters to be determined from the
solution to the least-squares problem (6).

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50426-7_17

https://dx.doi.org/10.1007/978-3-030-50426-7_17

RBF approximation for non-Gaussian delay propagation in VLSI 7

Gaussian Comb

𝚫b

Gaussian Mixture

adjust weights

Fig. 4. A sketch of a Gaussian comb. For a given shape parameter c, the Gaussian
kernels ϕ(x), being equally separated by ∆b, form a 1D grid, which we call a Gaussian
comb. By adjusting the weights wi, the Gaussian comb can give various shapes. The
black dashed line shows the resulting curve from a mixture of Gaussian kernels in a
comb.

Allowing all three parameters to vary, the fit function frbf(x) gives the desired
shape using a small number m of RBFs. At the same time, obtaining a minimum
of (6) in such a case is not a trivial problem even for a few RBFs: the optimisation
solver may stuck in one of the local minima, which makes this approach less
reliable.

One can simplify the problem by setting a 1D grid of RBFs with given pa-
rameters bi and ci, therefore, only the weights wi remain unknown. Note that
we get only linear to the Gaussian kernels ϕ(x) unknown parameters in such a
case. To make the problem even simpler, let us fix the shape parameters ci for
all kernels, ci = const, and let us distribute the kernels with equal separation
∆b. We shall call such mixtures of RBFs a Gaussian comb (see Fig. 4). At the
same time, such a simplification will require more terms in a mixture of RBFs
to get the desired shape.

Thus, to construct the Gaussian comb, one needs to set up the number m of
RBFs in the comb, the Gaussian comb step ∆b and the shape parameter c. The
weight coefficients wi then to be determined from (6). In this study, we assume
m and c are known a priori, and the step ∆b is determined as

∆b =
∆y

m
, (8)

where ∆y is the effective interval of values over which the function (PDF) must
be fit (we call it bandwidth). The choice of the bandwidth is discussed below.
In principle, the optimisation problem can be formulated in such a way that m
and c are determined simultaneously with the weights wi, making the solution
self-consistent. This will be reported elsewhere.

The distinguishable feature of such RBF decompositions is that one obtains
simple functions that allow fast and simple computations of a mean and a vari-

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50426-7_17

https://dx.doi.org/10.1007/978-3-030-50426-7_17

8 D. Mishagli and E. Blokhina

0 2 4 6 8
parameter b

0.0

0.4

0.8

1.2

1.6

pa
ra

m
ete

r c

1.500

3.
00

0
4.500 4.500

6.000 6.
00

0

7.
50

0 7.500

9.000 9.
00

0

1 RBF (w = 0.5699)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
parameter w1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

pa
ra

m
ete

r w
2 20.000

40.000
60.000

2 RBFs (b = 1.0, c = 0.6)

2

4

6

8

10

20

30

40

50

60

70

80

Fig. 5. Cost functions for the least square problem of fitting a Gaussian PDF with
µ = 4 and σ = 0.7. Left: only one RBF is used; for w = 0.5699, the minimum is located
at b = 4 and c = 0.7. Right: two RBFs are used; for b1 = 3.5, b2 = 4.5 ∆ = 1.0 and
c = 0.6, the minimum is located at w1 = w2 = 0.5299.

ance for the PDF:

µrbf =
√

2π

m∑
i=1

wibici, σ2
rbf =

√
2π

m∑
i=1

wici(b
2
i + c2i)− µ2

rbf; (9)

for a case of Gaussian comb, ∀ci = c.

5.2 Comparison

For the sake of illustration, consider a problem of fitting the Gaussian PDF,
g(x|µ = 4, σ = 0.7), with only one RBF. If we pre-set the weight w, only two
parameters, b and c, are left to find. Choosing w = 1/(

√
2π0.7) ≈ 0.6599, the

parameters should be then exactly b = 4 and c = 0.7. A contour plot of the cost
function (6) for such a case is shown in Fig. 5 on the left. The cost function has
only one minimum, which lies in a valley (the point with b = 4 and c = 0.7).
However, if we allow the weight w to vary, there will be 3 parameters to find and
local minima appear. Increasing the number m of RBFs inevitably brings us to
a problem of omitting such minima.

The Gaussian comb consist of two Gaussian kernels with c = 0.6 and ∆b = 1
(b1 = 3.5 and b2 = 4.5) leads to the cost function shown in Fig. 5 on the right.
One can see that the minimum is located in the bottom of a steep well that
rises dramatically as one goes away from the minimum. Thus, there will be no
difficulties in finding the minimum in higher dimensions, moreover, this problem
allows exact solution.

Consider another example. The PDF fLN(x) of the lognormal distribution
reads

fLN(x) =
1

x
· 1

σ
√

2π
exp

(
− (lnx− µ)2

2σ2

)
, (10)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50426-7_17

https://dx.doi.org/10.1007/978-3-030-50426-7_17

RBF approximation for non-Gaussian delay propagation in VLSI 9

0 1 2 3 4 5 6 7 8
x

0.0

0.1

0.2

0.3

0.4

0.5

RB
Fs

Weighted Gaussian Comb

𝚫b = 0.38, c = 0.30
30 RBFs

0 1 2 3 4 5 6 7 8
x

0.0

0.1

0.2

0.3

0.4

0.5

RB
Fs

3 Fully Adjustable RBFs
a = 0.32, b = 2.91, c = 0.60
a = 0.12, b = 3.79, c = 0.90
a = 0.23, b = 2.24, c = 0.44

0 1 2 3 4 5 6 7 8
x

0.0

0.1

0.2

0.3

0.4

0.5

PD
F

Lognormal Distribution
exact curve
Gaussian Mixture

linearly dependent
functions

non-linearly dependent
functions

Fig. 6. Case study: representation of the lognormal distribution with a Gaussian mix-
ture. Two strategies are realised: (i) 3 RBFs with with nonlinear to kernels fitting
parameters and (ii) 30 RBFs forming the Gaussian comb with linear to kernels param-
eters. Both strategies give the perfect fit and desired values of µLN = 3 and σLN = 0.9
via the approximation (9).

where µ and σ2 are the mean and variance of the corresponding normal distribu-
tion. The reciprocal relation between these µ and σ2 and the mean and variance
of the lognormal distribution, µLN and σ2

LN, is as follows:

µLN = exp

(
µ+

σ2

2

)
, σ2

LN =
[
exp

(
σ2
)
− 1
]
· exp

(
2µ+ σ2

)
. (11)

Two different decompositions of (10) with µLN = 3 and σLN = 0.9 are shown
in Fig. 6. One can see that both approaches give perfect result, while require
different number of RBFs: (i) 3 RBFs with 3 fitting parameters each (wi, bi and
ci) and (ii) 30 RBFs in the Gaussian comb with 30 fitting parameters (weights
wi). The bandwidth is chosen as ∆y = [µLN − 4σLN, µLN + 4σLN]. We shall
keep this choice for the bandwidth in this study although it is not optimal

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50426-7_17

https://dx.doi.org/10.1007/978-3-030-50426-7_17

10 D. Mishagli and E. Blokhina

g1 g2 g3

gn

I1
I2
I3
I4

In+1

Fig. 7. A sequence of logic gates used in simulations.

(distributions can be significantly skewed). This issue will be addressed in a
separate study.

In the next section, the proposed Algorithm with the decomposition strate-
gies discussed above is tested and compared with the numerical experiments
(Monte Carlo simulations). The goal is to proof the concept, determine possible
issues and define future steps in the research.

6 Verification and Discussion

Let us investigate whether an error in computing the delays’ PDF is accumu-
lating or not when the decomposition into Gaussian kernels is used. To do so,
we consider a model circuit shown in Fig. 7. The inputs’ delays Ii (i = 1, . . . , n)
are described by the corresponding RVs, Xi. For simplicity (and without any
loss of generality), the operation time of the gates is considered to be the same,
thus, described by an RV X0. From the mathematical point of view, the forward
traversing of such a sequence of gates is equivalent to computing the chained
expressions of type (3). Thus, for the nth gate we have

max{. . .max[max(X1, X2) +X0, X3] +X0 . . .︸ ︷︷ ︸
n−1 times

, Xn+1}+X0. (12)

We have conducted a series of runs of the Algorithm and MC simulations for
the sequence of n = 20 (the source code is available from [10]). We have chosen
the initial delays Xi to be distributed as Xi ∼ N (µi, σi). The values for the
inputs’ means and standard deviations, µi and σi, were randomly drawn from
∼ U(2, 7) and ∼ U(0.2, 1.3) respectively for each run. One of the realisations of
the experiments is shown in Fig. 8. Since the absolute values of delays are not
important in the present study, the performance of the algorithm is measured by
relative errors in the mean values and standard deviations of delays with respect
to the Monte Carlo simulations.

For the Gaussian comb, m = 55 kernels have used with the shape parameter
c = 0.15. The relative error is less than 0.01% and remains at that level until it
starts to grow dramatically (see Fig. 8). This occurs when the chosen topology
of the comb becomes non-optimal, as it is shown for node 19. Also note that the
relative error in the standard deviation increased faster than that for the mean,
which is expected.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50426-7_17

https://dx.doi.org/10.1007/978-3-030-50426-7_17

RBF approximation for non-Gaussian delay propagation in VLSI 11

0 2 4 6 8 10 12 14 16 18 20
node

0
10
20
30
40
50
60
70

Re
lat

ive
 Er

ror
, %

error in mean
error in std

4 6 8 10 12 14
x

0.00
0.08
0.16
0.24
0.32
0.40

PD
F

Node 2

15 20 25 30 35
x

0.00
0.04
0.08
0.12
0.16
0.20

PD
F

Node 19Gaussian comb
Monte Carlo

Fig. 8. Results for the Gaussian comb approach (m = 55 kernels with c = 0.15):
the relative error in determination of the mean and standard deviation with respect
to the Monte Carlo values versus number of gates passed in the sequence. When the
bandwidth ∆y becomes large, the topology of the Gaussian comb is no longer optimal
and the comb sprawls (node 19). For the details of the simulations see the text.

For the case of 3 RBFs with non-linear fitting parameters, the algorithm has
given poor performance. As is discussed in the previous section, the optimisa-
tion problem (6) in this case is sensitive to small deviations in an initial guess or
change of the bandwidth ∆y. Thus, it has not been possible to finish the traver-
sal of the graph successfully (a Trust Region Algorithm [3] for the constrained
optimisation was used), and the results for this approach are not presented.

The obtained results allow us to conclude that the problem of VLSI circuit
delay indeed can be solved using (i) exact solution for a single gate’s delay PDF
and (ii) decomposition of non-Gaussian functions into Gaussian mixtures. The
detailed discussion and conclusions are as follows.

(i) The exact formula for an output logic gate delay, the convolution of max(X1,
X2) and X0 for Gaussian RVs Xi (i = 0, 1, 2), allows one to build a closed-
loop algorithm for forward traversal of a delay through a timing graph G.
The requirement for this is that non-Gaussian PDFs of delays are presented
via Gaussian mixtures, sums of RBFs of Gaussian form. The decomposition
is equivalent to solving the minimisation problem (6). We have considered
two different strategies for this problem.

(ii) Within the first strategy, for m RBFs it is required to determine 3m param-
eters, 3m − 1 of which are coefficients in the arguments of the RBFs. The
advantage is that only a few of RBFs is enough to obtain a fit with a desired
accuracy, but the drawback is sensitivity to small changes in the parameters
such as initial guess, choice of bandwidth ∆y, etc.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50426-7_17

https://dx.doi.org/10.1007/978-3-030-50426-7_17

12 D. Mishagli and E. Blokhina

(iii) The second strategy relies on a pre-set grid of equally separated Gaussian
kernels ϕ(x) with the same shape parameter, a Gaussian comb. In such a
case, only coefficients that are linear multipliers to RBFs should be deter-
mined. The obvious advantage of this approach is that the optimisation
problem allows the exact solution, however the required number m of RBFs
increases dramatically, which increases (linearly to m) computation costs.

(iv) The comparison with MC simulations shown in Fig. 8 proofs the concept:
the timing graph can be forward traversed with the relative error less than
0.01% by decomposing real PDFs into corresponding Gaussian mixtures at
each node. However, when the topology of the Gaussian comb is fixed, it
leads to sprawling of the latter as the bandwidth ∆y becomes large.

(v) In principle, the optimisation problem of finding the weights wi for the Gaus-
sian comb can be solved together with the problem of finding optimal num-
ber m∗ and shape parameter c∗ of kernels in the comb. This should not only
prevent the comb sprawling but also speed up the graph traversal procedure
noticeably. At the same time, the optimisation problem for the 3-RBF case
should be analysed rigorously to avoid slipping in local minima. This can
be an alternative to the Gaussian comb decomposition. These issues will be
addressed in a separate study.

7 Acknowledgement

This work has emanated from research supported in part by Synopsys, Ire-
land, and a research grant from Science Foundation Ireland (SFI) and is co-
funded under the European Regional Development Fund under Grant Number
13/RC/2077.

References

1. Bhasker, J., Chadha, R.: Static Timing Analysis for Nanometer Designs. A Prac-
tical Approach. Springer (2009)

2. Blaauw, D., Chopra, K., Srivastava, A., Scheffer, L.: Statistical timing anlaysis:
From basic principles to state of the art. IEEE Trans. Comput.–Aided Des. Integr.
Circuits Syst. 4(8) (2008)

3. Byrd, R., Schnabel, R., G.A., S.: A trust region algorithm for nonlinearly
constrained optimization. SIAM J. Numer. Anal. 24(5), 1152–1170 (1987).
https://doi.org/10.1137/0724076

4. Chang, H., Zolotov, V., Narayan, S., Visweswariah, C.: Parameterized block-based
statistical timing analysis with non-gaussian parameters, nonlinear delay functions.
In: Proc. DAC. pp. 71–76 (Jun 2005). https://doi.org/10.1145/1065579.1065604

5. Forzan, C., Pandini, D.: Statistical static timing analysis: A survey. Integration, the
VLSI Journal 42(3), 409–435 (2009). https://doi.org/10.1016/j.vlsi.2008.10.002,
http://www.sciencedirect.com/science/article/pii/S0167926008000564, special
Section on DCIS2006

6. Freeley, J., Mishagli, D., Brazil, T., Blokhina, E.: Statistical simulations of de-
lay propagation in large scale circuits using graph traversal and kernel function
decomposition. In: Proc. SMACD (Jul 2018)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50426-7_17

https://dx.doi.org/10.1007/978-3-030-50426-7_17

RBF approximation for non-Gaussian delay propagation in VLSI 13

7. Gerez, S.H. (ed.): Algorithms for VLSI Design Automation. Wiley (1998)
8. Lavagno, L., Markov, I.L., Martin, G., Scheffer, L.K. (eds.): Electronic Design

Automation for IC Implementation, Circuit Design, and Process Technology. CRC
Press (2016)

9. McLachlan, G., Peel, D.: Finite Mixture Models. Wiley series in probability and
mathematical statistics, Wiley (2000)

10. Mishagli, D.: RBF approximation for non-Gaussian delay propaga-
tion in VLSI: Code (Apr 2020). https://doi.org/10.5281/zenodo.3749750,
https://doi.org/10.5281/zenodo.3749750

11. Orshansky, M., Nassif, S., Boning, D.: Design for Manufacturability and Statisti-
cal Design: A Constructive Approach. Series on Integrated Circuits and Systems,
Springer (2008)

12. S., R., Vijaykumar, M., Vasudevan, V.: A skew-normal canonical
model for statistical static timing analysis. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 24(6), 2359–2368 (June 2016).
https://doi.org/10.1109/TVLSI.2015.2501370

13. Sapatnekar, S.: Timing. Springer-Verlag (2004)
14. Titterington, D., Smith, A., Makov, U.: Statistical analysis of finite mixture dis-

tributions. Wiley series in probability and mathematical statistics: Applied prob-
ability and statistics, Wiley (1985)

15. Visweswariah, C., Ravindran, K., Kalafala, K., Walker, S.G.,
Narayan, S.: First-order incremental block-based statistical timing
analysis pp. 331–336 (2004). https://doi.org/10.1145/996566.996663,
http://doi.acm.org/10.1145/996566.996663

16. Visweswariah, C., Ravindran, K., Kalafala, K., Walker, S.G., Narayan, S., Beece,
D.K., Piaget, J., Venkateswaran, N., Hemmett, J.G.: First-order incremental block-
based statistical timing analysis. IEEE Trans. Comput.–Aided Des. Integr. Circuits
Syst. 25(10), 2170–2180 (Oct 2006). https://doi.org/10.1109/TCAD.2005.862751

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50426-7_17

https://dx.doi.org/10.1007/978-3-030-50426-7_17

