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Abstract. We investigate the classical Taylor’s swimming sheet prob-
lem in a viscoelastic fluid, as well as in a mixture of a viscous fluid and
a viscoelastic fluid. Extensions of the standard Immersed Boundary (IB)
Method are proposed so that the fluid media may satisfy partial slip or
free-slip conditions on the moving boundary. Our numerical results indi-
cate that slip may lead to substantial speed enhancement for swimmers
in a viscoelastic fluid and in a viscoelastic two-fluid mixture. Under the
slip conditions, the speed of locomotion is dependent in a nontrivial way
on both the viscosity and elasticity of the fluid media. In a two-fluid
mixture with free-slip network, the swimming speed is also significantly
affected by the drag coefficient and the network volume fraction.

Keywords: Swimming sheet · Viscoelastic fluid · Slip condition · Im-
mersed boundary method.

1 Introduction

How micro-organisms move in their surrounding fluid environment is of sig-
nificant biological and clinical importance. Examples include the locomotion of
E.coli in intestinal fluid [1], and the swimming of mammalian spermatozoa within
cervical mucus in the process of reproduction [2]. Such problems involve the dy-
namical interactions between elastic boundaries and a complex fluid medium,
which often exhibits complicated Non-Newtonian responses. Recent theoretical,
experimental and computational investigations are characterized by the com-
plexity of different ways in which biological locomotion may depend on fluid
properties. Analysis of the infinite undulatory sheet with small amplitude found
that fluid elasticity always reduces the swimming speed [3]. Further analytical
work indicated that swimming can be boosted by elasticity under specified gaits
[4]. Numerical simulations of finite swimmers with large amplitude of motion
showed that swimming speed may be enhanced by elasticity [5]. Experimentally,
the self-propulsion of C. elegans was observed to be hindered significantly in vis-
coelastic fluid [6]. However, the artificial swimmers in [7] exhibited systematic
elastic speed-ups. In [8] and [9], it was shown that favorable stroke asymme-
try, swimmer body dynamics and fluid elasticity may work together to cause
increases in speed.

In most of the analytical and numerical works to date, the fluid environment
is treated as a single continuous medium. No-slip boundary condition is assumed
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on the swimmer’s surface so that the fluid medium always moves together with
the swimmer. Such models and assumptions may not be appropriate for many
applications. First, biological fluids such as mucus are mixtures of a solvent and
a polymer network. There may be significant relative motions between different
components within the mixture so that it can not be adequately described by a
single phase continuum medium [10]. Furthermore, it has been long known that
slip may occur for polymer solutions near a solid boundary. This can be caused
by the phase separation over the solvent-rich boundary region where the polymer
phase is driven away [11]. Recent studies highlight the importance of boundary
conditions and fluid models in locomotion problems. The analysis in [12] exam-
ined swimming in a medium consisting of a mixture of a Newtonian fluid and an
elastic solid. Both elastic speed-up and slow-down can be obtained, depending
on the type of boundary conditions imposed. In [13], it was shown analytically
that the introduction of apparent slip or the reduction of fluid viscosity near
the swimmer in Newtonian fluids may lead to faster swimming. In [14] and [15],
different variations of the Immersed Boundary Method were proposed to simu-
late interactions between elastic boundaries and a a two-phase medium. Despite
these advances, a comprehensive analysis for the role of slip on swimmers in
viscoelastic media is lacking.

In this paper, we present the first computational investigation of the role
of slip for Taylor’s classical swimming sheet in a single phase viscoelastic fluid,
as well as in a mixture of a viscous fluid and a viscoelastic fluid. Our com-
putational method is based on extensions of the classical Immersed Boundary
Method [16] so that elastic boundaries are allowed to slip through the surround-
ing fluid media. In Section 2 and 3, the model equations and numerical methods
are presented first, followed by simulation results which highlight the influence
of slip on locomotion in complex fluids. The concluding remarks are given in
Section 4.

2 Swimming in a Single Phase Viscous/Viscoelastic Fluid

2.1 Model Equations

Consider an infinite 2D sheet immersed in a incompressible, viscoelastic Oldroyd-
B fluid. In its own frame, the movement of the sheet is described by y = ǫ sin(kx−
ωt). The fluid equations are given by:

∇ · σ −∇p = 0, (1)

∇ · u = 0, (2)

where u is the fluid velocity, and p is the pressure. The total stress tensor is
composed of viscous and polymeric contributions: σ = µs(∇u+∇uT)+σp, with
µs be the shear viscosity of the fluid. The polymer stress σp evolves according
to constitutive equation:

σp + λ

(

∂σp

∂t
+ u · ∇σp −∇uT · σp − σp · ∇u

)

= µp(∇u+∇uT). (3)
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Low Reynolds Number Swimming with Slip Boundary Conditions 3

Here µp is the polymer viscosity and λ is the polymer relaxation time. On the
sheet surface Γ , the fluid velocity u satisfies the following boundary conditions:

[u · n]|Γ = 0. (4)

[u · τ ]|Γ = 2Ξ(τ · σ · n)|Γ . (5)

n and τ are unit vectors normal and tangential to the surface, respectively. The
square bracket terms represent the components of the fluid velocity relative to
the surface of the sheet (slip velocity). Ξ is the slip coefficient. Condition (4)
states that the fluid and the sheet move together in the direction normal to
the sheet surface. According to (5), the fluid is allowed to slip relative to the
sheet in its tangential direction. The extent of slip is proportional to the local
shear stress, as well as the slip constant Ξ. This is the well known Navier Slip
Condition [17]. Note that the boundary conditions (4) and (5) apply to both the
upper and lower surfaces of the sheet. Since Taylor’s classical work [18], there
have been many analytical and computational studies on different versions of
the swimming sheet problem. See [19] for a complete review.

2.2 IB Method with Partial Slip Condition

The “classical” Immersed Boundary (IB) Method [16] is a powerful computa-
tional method capable of handling dynamic fluid-structure interactions. An Eu-
lerian description is used for the fluid variables such as velocity and pressure,
while a Lagrangian coordinate is used for each immersed elastic object. The sim-
plicity and robustness of the IB method have led to its successful applications
to many biological problems. Let x denote the fixed Eulerian coordinates and
X(q, t) be the physical location of material points on the immersed object, which
is parameterized by q. Let Ω be the fluid domain and Γ denote the Lagrangian
domain. The equations for the coupled fluid-structure system are given by:

∇ · σ −∇p + f = 0, (6)

f(x, t) =

∫

Γ

F(q, t)δ
(

x−X(q, t)
)

dq = SF, (7)

∂X(q, t)

∂t
=

∫

Ω

u(x, t)δ
(

x−X(q, t)
)

dx = S∗u. (8)

Here δ denotes the Dirac delta function. (7) describes how the Lagrangian force
density F is spread to the fluid and S represents the force spreading operator.
(8) is based on the assumption that the immersed object moves with local fluid
velocity (no-slip condition). S∗ is the velocity interpolation operator which is the
adjoint of the spreading operator S.

IB method described above needs to be modified to handle slip conditions
such as (5). This involves the evaluation of the interfacial fluid stresses on the
irregular boundary, which can be computationally challenging [20]. On a Stokes
swimmer, the elastic force F is balanced by the hydrodynamics forces (both
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viscous and viscoelastic), which can be calculated from the jump in fluid stress
across the swimmer. For Taylor’s sheet within an infinite domain, the tangential
hydrodynamics forces on the two surfaces (Γ+ and Γ−) of the sheet are equal
because of symmetry. So we have τ · σ+ · n = −τ · σ− · n. Thus the force
balance on the sheet in the tangential direction gives F · τ = −τ · [σ] ·n = −2τ ·
σ+ · n, where [σ] = σ+ −σ− is the stress jump across the sheet. Therefore, the
tangential component of the elastic force (which is straightforward to compute in
IB method) can be directly used to enforce the slip boundary condition. Denote
the boundary fluid velocity obtained from right hand side of (8) by U

(

X(q, t)
)

,
the sheet velocity UΓ can then be computed by:

UΓ (X) · n = U(X) · n, (9)

UΓ (X) · τ = U(X) · τ + ΞF · τ . (10)

2.3 Discretization and Numerical Solutions

All fluid variables are discretized using a Cartesian grid, with constant grid space
h. A MAC-type staggered computational grid is used for spatial discretization.
Scalars are located at the grid centers and vectors are located at the grid edges.
All components of the viscoelastic stress tensor σp are placed at the cell centers.
The sheet is represented by a set of discrete IB points. Using centered difference
for all spatial derivatives, the discretized equations from time tk to tk+1 = tk+∆t
are:

µs∆hu
k+1 +∇h · σk+1

p −∇hp
k+1 + Sk

hF(X
k) = 0, (11)

∇h · uk+1 = 0, (12)

Xk+1 = Xk +∆t
(

(S∗
h)

kuk+1 + Ξ
(

F(Xk) · τ k
)

τ
k
)

. (13)

Here ∆h and ∇h are discretized Laplacian and gradient operators, respectively.
Sk
h and S∗

h are discretized version of the spreading and interpolation operators
as defined in (7) and (8). The time iteration for the proposed scheme can be
summarized as following:

1. Compute the elastic forces F(Xk) on the sheet from its geometric configu-
ration at tk. Spread the Lagrangian force to the fluid grid.

2. Update the viscoelastic stress tensor σ
k+1
p from the discretization of (3)

using extrapolated velocity at time level tk+1/2 from values at tk and tk−1.
3. Solve (11) and (12) to get the values of u and p at tk+1.
4. Update the positions of the IB points on the sheet according to (13).

Each IB point is connected by linear springs to its two neighboring points. It is
also connected by a stiff spring to a corresponding “tether” point whose role is
to impose the desired motion of the sheet. The unit tangent vector τ j at the jth

IB point Xj is approximated by τ j =
τ j+1/2+τ j−1/2

2
, where τ j+1/2 =

Xj+1−Xj

||Xj+1−Xj||
.

Surface normal nj is obtained by a π/2 rotation of τ j. The discretized opera-
tors Sk

h and S∗
h are constructed with the four-point cosine-based discrete delta
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function proposed by Peskin [16]. A multigrid solver with the box-type smoother
is used to solve the coupled linear system from (11) and (12) [21]. Finally, to
solve the stress equation (3), a high-resolution unsplit Godunov scheme is used
to approximate the advection term explicitly. Crank-Nicolson approximation is
used for the remaining terms. For each Eulerian grid cell, a 3× 3 linear system
is solved to update all components of σp. See [22] for the detailed algorithm.

Our simulations are carried out in the domain [0, 1]× [−1, 1]. The boundary
condition in the x direction is periodic and that at y = ±2 is no-slip. The grid
size is 128× 256 and a constant time step ∆t = 10−4 is used for all simulations.
For all results presented in this paper, we use ǫ = 0.012, k = ω = 2π, and µs = 1.
The swimming speed of the sheet is calculated by averaging the x velocity over all
the IB points and over one wave period until a steady state value is obtained. To
verify the proposed method, we first set σp to zero and compare the numerical
results with the analytical solution given by [13]:

U

U0

= 1 + 4kµsΞ, (14)

where U and U0 are the second order swimming speeds of the sheet with and
without slip, respectively. The no-slip swimming speed is given by U0 = − 1

2
kωǫ2.

Note that the slip velocity in [13] is proportional to the shear rate, instead of
the shear stress. So the slip length Λ as defined in [13] is related to our slip coef-
ficient by Λ = 2µsΞ. From Fig. 1, it is clear that the numerical swimming speed
increases linearly with the slip coefficient. And our simulation results agree well
with the analytical solution. Next, we study the effect of slip on the swimmer in

0 0.05 0.1 0.15 0.2

1

3

5

7

U
/U

0

Analysis (14)

Numerical Solution

Fig. 1: Scaled swimming speed as a function of the slip coefficient: Taylor’s sheet
in a viscous fluid.

a viscoelastic medium. We carry out simulations with different slip coefficients
under three fixed values of the relaxation time λ = 2, λ = 0.2, and λ = 0.05,
respectively. The polymer viscosity is fixed at µp = 2. The scaled swimming
speed U

U0
is plotted as the function of the slip coefficient in Fig. 2(a). Here the
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Deborah Number defined as De = λω is used to quantify the fluid elasticity.
Note that in the plot, the analytical solution is plotted from (14), with µs re-
placed by the total viscosity of the fluid µs + µp. The numerical results indicate
that apparent slip always enhances the swimming speed in a viscoelastic fluid. It
seems that for a fixed Deborah Number, the swimming speed increases linearly
with the slip coefficient Ξ, which is similar to the swimmer in a viscous fluid.
For the same slip coefficient, the swimming speed decreases with the increase
of the fluid elasticity. As the Deborah Number De → 0, the numerical solutions
approach asymptotically to the analytical solution for the viscous fluid. Next,
we fix the relaxation time λ = 0.2 and study the influence of polymer viscos-
ity on swimming under different slip coefficients. As shown in Fig. 2(b), when
Ξ = 0, the swimming speed decreases monotonically with the increase of µp.
The result matches well with the analytical solution given by (15) [3]. When
the slip coefficient is moderately increased to 0.02, the swimming speed is not
significantly impacted by the change of µp. And the variation is no longer mono-
tone. For larger Ξ values of 0.05 and 0.1, greater values of µp always lead to a
faster swimmer, whose speed changes more dramatically with µp than the one
with smaller Ξ. Overall, the simulation results indicate that there exists a slip
threshold beyond which the polymer viscosity can benefit swimming.
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(b) λ = 0.2 (De = 0.4π)

Fig. 2: Scaled swimming speed as a function of the slip coefficient (a) and polymer
viscosity (b): Taylor’s sheet in an Oldroyd-B fluid.
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Fig. 3: Relative boost in swimming speed as a function of the slip coefficient:
Taylor’s sheet in an Oldroyd-B fluid. Note that Uno−slip has different values for
curves with different Deborah Numbers.

(a) Ξ = 0, ||u||
max

= 0.075 (b) Ξ = 0.2, ||u||
max

= 0.073

Fig. 4: Distribution of u and σ
12
p at t = 8 for different Ξ.
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In Fig. 3(a), a different scaling is used for the same swimming speed U shown
in Fig. 2(a). Here Uno−slip is the analytical second order swimming speed for an
infinite sheet in an Oldroyd-B fluid (without slip) [3]:

Uno−slip =
1 + µs

µs+µp
De2

1 + De2
U0. (15)

Therefore, U
Uno−slip

measures the relative slip boost for a swimmer in the same

medium. Interestingly, for a fixed µp, the numerical results with different Debo-
rah Numbers all match well with the analytical solution with De = 0. Therefore,
for the range of parameters tested in this work, our results indicate that the rel-
ative slip boost for the infinite waving sheet is similar for a single phase viscous
and a single phase viscoelastic fluid (with fixed fluid viscosity). In Fig. 3(b), the
scaled speed is plotted for a fixed ratio of polymer viscosity to relaxation time
µp

λ = 1. Here the analytical solution is plotted from (14) without viscosity con-
tribution from the polymer (µp = 0). For fixed µs and ω, the ratio

µp

λ measures
the relative contribution of the polymeric stress to the force balance in fluid [5].
It is clear that for the same slip coefficient, the relative speed boost increases
with the increase of Deborah Number. As the values of µp and λ decrease, the
fluid behaves more like a viscous fluid with viscosity µs. In Fig. 4, the distri-
butions of fluid velocity u and stress component σ

12
p at t = 8 are plotted for

two simulations both with µp = 2 and λ = 0.2. The one on the left has no-slip
condition while the one on the right has slip coefficient Ξ = 0.2. Compared with
the no-slip case, the magnitude of σ12

p and u is slightly lower for the simulation
with slip.

3 Swimming in Viscoelastic Two-fluid Mixture

3.1 Model Equations and Two-phase IB Method

In this section, we study the swimming sheet problem in a two-fluid mixture,
which is modeled as a mixture of a viscous solvent phase (denote by s) and a
viscoelastic network phase (denoted by n). The viscous solvent fluid satisfies the
standard no-slip condition on the swimmer while the viscoelastic network fluid
can slip freely in the direction tangential to the swimmer. Two-fluid models
of this kind have been widely used to describe dynamics of biofluids such as
blood clot, biofilm and cytoplasm [23, 10]. At any spatial location x, the relative
amounts of the two fluids are given by their volume fraction, θs(x, , t) and θn(x, t)
for the solvent and network, respectively. In this work, we treat θs and θn as
model parameters with spatially uniform values constant in time. The solvent
and network fluids move with their own velocity fields, us(x, t) and un(x, t).
Mass conservation gives the incompressibility condition on the volume-averaged
velocity:

∇ · (θsus + θnun) = 0. (16)
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Low Reynolds Number Swimming with Slip Boundary Conditions 9

For a small Reynolds number, the force balance equations for the two fluids are
given by:

∇ · (θsσs)− θs∇p + ξθnθs(un − us) + fs = 0, (17)

∇ · (θnσn) +∇ · (θnσp)− θn∇p + ξθnθs(us − un) + fn = 0. (18)

Here, σs and σn are the viscous stress tensors for the solvent and network,
respectively. σp is the viscoelastic stress tensor for the network fluid. ξθnθs(un−
us) represents the frictional drag force between the two fluids due to relative
motions where ξ is the drag coefficient. fs and fn are force densities generated by
immersed elastic structures on the two fluids. σs and σn are taken to be those
of Newtonian fluids:

σs = µs(∇us +∇us
T) + (λs∇ · us)I, (19)

σn = µn(∇un +∇un
T) + (λn∇ · un)I. (20)

Here I is the identity tensor, µs and µn are the shear viscosities and λs,n+2µs,n/d
are the bulk viscosities of the solvent and network (d is the dimension). We choose
λs,n = −µs,n so that the bulk viscosities in both phases are zero. The network
fluid is treated as an Oldroyd-B fluid with constitutive equation given by (3),
where u is replaced by network velocity un. In [14], an Immersed Boundary

n

Γ

Γ

s

Fig. 5: Dual IB representation of an infinite swimmer • −Xs, ◦ −Xn, � −Xa
s ,

△−Xa
n. Xn and Xs are material points on the boundary. Xa

s and Xa
n are anchor

points to enforce the no-penetration boundary condition for the network fluid.

Method was proposed to simulate interactions between elastic structures and
mixtures of two fluids. A penalty method was used to enforce the no-slip con-
dition for both fluids on the elastic boundaries. In this work, we propose an
extension to the method which allows the elastic structure to slip through one
of the materials in the mixture. As shown in Fig. 5, the infinite sheet is repre-
sented by the immersed boundary Γ s, where the associated IB points Xs(q, t)
move with local solvent velocity us (no-slip condition). A “virtual IB” Γ n is
introduced to enforce the no-penetration condition for the network fluid on the
boundary. Material points on the virtual IB are denoted by Xn(q, t), which move
with local network velocity un. As indicated in the figure, each Xn is connected
by a stiff spring (with zero rest length) to a corresponding “anchor point” Xa

n

located on Γ s. Similarly, each Xs is connected to an anchor point Xa
s located on
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Γ n. The resulting force penalizes separation between Γ s and Γ n in the normal
direction, without penalizing the relative motion tangential to the sheet surface.
Using an analog of (7), Lagrangian force on Γ s is distributed only to the solvent
fluid and Lagrangian force on Γ n is distributed only to the network fluid. In (17)
and (18), the Eulerian force densities have the form fs = θsSF

o
s + θsθnSF

p
s and

fn = θnSF
o
n + θsθnSF

p
n. Here S is the force spreading operator defined before.

Fp
s and Fp

n are penalty forces on Γ s and Γ n, respectively. At each IB point and
the associated anchor point, we have Fp

s = −Fp
n. The spread contributions from

the penalty forces are scaled by the product of the volume-fractions θsθn so that
no penalty force is applied if either of the volume fractions goes to zero. This
also ensures that the total net penalty forces applied to the two fluids approxi-
mately add up to zero, provided that an IB point and its anchor point are always
close (small normal separation between Γ n and Γ s). Other Lagrangian forces Fo

s

and Fo
n are scaled by the fluid’s volume fraction after they are spread to that

fluid. These include forces from the springs connecting an IB point to its two
neighbors. Additionally, Fo

s also include forces from the springs connecting Γ s

to tether points with prescribed waving motion.

3.2 Numerical Solutions

To solve the model equations presented in the previous section, we use the same
space-time discretization as described in section 2.3. The time iteration scheme
is given by:

1. From the boundary configurations Xs(q, t
k) and Xn(q, t

k), identify the an-
chor points Xa

s and Xa
n for all IB points on the two boundaries. Compute

boundary forces Fo
s , F

o
n, F

p
s , and Fp

n at tk. Use the values to calculate the
Eulerian force densities fs and fn on the two fluids.

2. Update the viscoelastic stress tensor σ
k+1
p using extrapolated network ve-

locity at time level tk+1/2.
3. Solve discrete versions of (16), (17) and (18) to get the values of us, un and

p at tk+1.
4. Update the positions of all IB points byXj(q, t

k+1) = Xj(q, t
k)+∆t(S∗

h)
kuk+1

j

for j = s, n.

In step 1, Fp
s and Fp

n are computed at and spread from all IB and anchor points.
For a specific Xs, the associated anchor point Xa

s is defined as the point on
the piece-wise linear boundary Γ n such that ||Xs −Xa

s || is the shortest distance
between Xs and Γ n. The anchor point Xa

n on Γ s for Xn is identified similarly.
In step 3, a multigrid preconditioned GMRES solver is used to solve the linear
system [22]. All simulation parameters such as computational domain, grid size
and time step are the same as ones used in section 2.3. For all simulations, we
set the viscosity values to µs = µn = 1.0. In the first set of test, we fix the drag
coefficient ξ = 1.0 and fluid volume fractions θs = θn = 0.5. The influence of
relaxation time on swimming is studied for three different values of polymer vis-
cosities µp = 0.5, µp = 2 and µp = 4. In Fig. 6(a) and (b), the relative velocity
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(a) µp=0.5, ||un − us||max
= 0.05 (b) µp = 2, ||un − us||max

= 0.043

Fig. 6: Distribution of un − us and σ
12
p for λ = 2 at t = 12.

un − us and the stress component σ
12
p are plotted for µp = 0.5 and µp = 2,

respectively, at t = 12. In both plots, the relative velocity is approximately tan-
gent to the sheet, indicating the boundary condition is properly enforced. With
a larger polymer viscosity, the stress component has larger magnitude while the
motion of the network relative to the solvent fluid is less significant. The scaled
swimming speed is shown in Fig. 7(a) as the function of λ for different values of
µp. The plots indicate that the sheet always swims much faster in the mixture
than in a viscous fluid, even when the mixture contains a highly elastic network.
For fixed polymer viscosity, the increase of the network elasticity monotonically
hinders the swimming speed. For a fixed λ, the sheet moves faster in mixtures
with larger values of µp. The speed enhancement due to polymer viscosity is
more significant for less elastic mixture. Next, we carry out simulations in which
both µp and λ are varied while the values of their ratio

µp

λ remain fixed. As
seen from Fig. 7(b), with fixed

µp

λ , the swimming speed is always moderately
enhanced when µp and λ increase with the same rate. Together with the data
shown in Fig. 2(b), our simulation results suggest that for a swimmer that is al-
lowed to slip through a viscoelastic material (or mixture of materials), the speed
of locomotion is dependent in a nontrivial way on both the viscosity and elastic-
ity of the material. In Fig. 8(a), the swimming speed is plotted as the function
of the drag coefficient ξ for θn = 0.5. The sheet moves slower with the increase
of drag. For a drag coefficient of ξ = 104, the swimming speed is about 60% of
that in a viscous fluid. In Fig. 8(b), U

U0
is plotted for different network volume

fraction θn with ξ fixed at 1. The increase of the network volume fraction in the
mixture leads to significant swimming speed-ups. In a separate test with no-slip
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network, we observe smaller swimming speed with the increase of θn (result not
shown).

4 Conclusion

We simulate the infinite swimming sheet problem in complex fluids under slip
boundary conditions with extensions of the classical IB method. For swimmers
in a viscoelastic fluid, interpolated fluid velocities are modified using tangential
components of the Lagrange force to account for the partial slip condition. This
can be thought as the single-phase version of the force calculation strategy pro-
posed in [15]. In a viscoelastic two-fluid mixture, a dual IB representation of
the immersed structure is used where the free-slip condition is enforced through
a penalty method. Instead of the projection-based fractional step methods as
used in [15], we solve the momentum equations and the incompressibility con-
straint simultaneously. This makes it more straightforward to enforce the veloc-
ity boundary conditions. Furthermore, our method can be directly applied to
problems where fluid volume fractions are spatially variable. For such problems,
methods for Stokes equations that decouple the velocity and the pressure, such
as the pressure-Poisson formulation, can not be used. Our numerical results show
that: (1) Slip may lead to substantial speed enhancement for the swimmer in a
viscoelastic fluid or two-fluid mixture relative to the swimmer in a no-slip vis-
cous fluid. (2) For a viscoelastic fluid with fixed viscosity and relaxation time, the
swimming speed increases linearly with the slip coefficient. With fixed viscosity
and slip coefficient, the swimming speed decreases with the increase of relaxation
time (fluid elasticity). (3) While polymer viscosity always hinders swimming for
a no-slip viscoelastic fluid, it can benefit the swimmer in a viscoelastic fluid if the
slip coefficient is large enough. (4) In a two-fluid mixture where the swimmer is
allowed to slip freely through the viscoelastic network, speed enhancement can
be obtained by reducing the drag coefficient, increasing the polymer viscosity,
and increasing the network volume fraction.
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