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Abstract. Genetic learning particle swarm optimization (GL-PSO) is a hybrid 

optimization method based on particle swarm optimization (PSO) and genetic 

algorithm (GA). The GL-PSO method improves the performance of PSO by 

constructing superior exemplars from which individuals of the population learn 

to move in the search space. However, in case of complex optimization prob-

lems, GL-PSO exhibits problems to maintain appropriate diversity, which leads 

to weakening an exploration and premature convergence. This makes the results 

of this method not satisfactory. In order to enhance the diversity and adaptabil-

ity of GL-PSO, and as an effect of its performance, in this paper, a new modi-

fied genetic learning method with interlaced ring topology and flexible local 

search operator has been proposed. To assess the impact of the introduced 

modifications on performance of the proposed method, an interlaced ring topol-

ogy has been integrated with GL-PSO only (referred to as GL-PSOI) as well as 

with a flexible local search operator (referred to as GL-PSOIF). The new strat-

egy was tested on a set of benchmark problems and a CEC2014 test suite. The 

results were compared with five different variants of PSO, including GL-PSO, 

GGL-PSOD, PSO, CLPSO and HCLPSO to demonstrate the efficiency of the 

proposed approach. 

Keywords: genetic learning particle swarm optimization, enhanced diversity, 

particle swarm optimization, optimization; 

1 Introduction 

Developed by Kennedy and Eberhart [1, 2] particle swarm optimization (PS0) is a 

stochastic optimization method modeled on social behavior and intelligence of animal 

such as flocks of birds and fish schooling. Similar to other evolutionary methods, it is 

based on the population. The mechanism of the PSO method relies on particles fol-

lowing their best personal particle and globally the best particle in the swarm towards 

the most promising areas of the search space. Because of its easy implementation and 

high convergence rate, it is widely used in solving various optimization problems, 

including energetic [3], mechanics [4], scheduling problem [5], antenna design [6, 7], 

control systems [8], image classification [9] and many others. However likewise other 

evolutionary algorithms, PSO encounters some troubles including stagnation in local 
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optima, excessive loss of diversity and premature convergence [10]. A variety of dif-

ferent variants of PSO have been introduced to counteract these disadvantages and 

enhance the efficiency of PSO. Among them, the following improvements can be 

distinguished: 

 Adjustment of basic coefficients. According to Shi and Eberhart [11], a key to the 

improvement of the PSO performance is inertia weight, which should be linearly 

decreased from 0.9 to 0.4. Clerc [12] recommended to use fixed factors, and indi-

cates that inertia weight of 0.729 with fixed acceleration coefficients of 1.494 can 

enhance convergence speed. Five years later Trelea [13] proved that PSO with in-

ertia weight of 0.6 and constant acceleration coefficients of 1.7 allowed to get fast-

er convergence than that achieved by Eberhart [11] and Clerc [12]. The PSO meth-

od with nonlinear factors were proposed by Borowska [14,15]. Furthermore, the ef-

ficiency of changing factors was examined by Ratnawera et al. [16]. The cited au-

thors concluded that time-varying acceleration coefficients (TVAC) helped to con-

trol local and global searching process more efficiently. 

 Modification of the update equations. To improve searching process the researches 

propose to use a new update equation [17,18] or add a new component to existing 

velocity equation [19]. Another approach is to introduce, for ineffective particles, a 

repair procedure [10] with other velocity updating equations that helps more pre-

cisely determine swarm motion and stimulate particles when their efficiency de-

creases. 

 Topology structure. According to Kennedy [20] topology structure affects the way 

information exchange and the swarm diversity. Many different topological struc-

tures have been proposed including: square, four clusters, ring, pyramid and the 

von Neumann topology [20-23]. Another approach is a multi-swarm structure rec-

ommended by Liang and Suganthan [24] and Chen et al. [25]. In contrast, Gong et 

al. [22] have introduced a two-cascading-layer structure. In turn, Wang et al. [26] 

developed PSO based on multiple layers.  

 Learning strategy. It is used to improve performance of algorithm by breading high 

quality exemplars from which other swarm particles can acquire knowledge and 

learn to search space. A multi-swarm PSO based on dynamic learning strategy has 

been presented by Ye et al.[27]. Likewise, Liang et al.[28] has proposed a compre-

hensive learning strategy (CLPSO) according to which, particle velocity is updated 

based on historical best information of all other particles. To greater improve the 

performance and adaptability of CLPSO, Lin et al. [29] recommend to use an adap-

tive comprehensive learning strategy with dynamically adjusting learning probabil-

ity level according to the performance of the particles during the optimization 

process. Another approach is based on social learning PSO as described by Cheng 

et al. [30]. 

 Hybrid methods combine beneficial features of two or more approaches. They are 

used to strength PSO efficiency and achieve faster convergence as well as better 

accuracy of the resultant solution. Holden et al. [31] have proposed to join PSO 

with an ant colony optimization method. Li et al.[32] have combined PSO with 

jumping mechanism of SA (simulated annealing). A modified version based on 
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PSO and SA has been developed by Shieh et al. [33]. In turn, PSO with chaos has 

been presented by Tian and Shi[34], whereas Chen et al. [35] have proposed learn-

ing PSO based on biogeography. Furthermore, a hybrid approach based on im-

proved PSO, cuckoo search and clustering method has been developed by Bouer 

and Hatamlou [36]. 

In order to enhance the PSO performance, Gong et al. [22] have merged the latter two 

categories and proposed genetic learning particle swarm optimization (GL-PSO). In 

GL-PSO, except PSO and genetic operators, a two layer structure have been applied 

in which the former is used to generate exemplars whereas the latter to update parti-

cles through the PSO algorithm.  

The GL-PSO method improves the performance of PSO by constructing superior 

exemplars from which individuals of the population learn to move in the search space. 

Unfortunately, this approach is not free from disadvantages. In fact, the algorithm can 

achieve high convergence rate but in case of complex problems, due to global topolo-

gy, the particle diversity quickly decreases and, as a result, impairs the exploration 

capability. 

 

In order to enhance the diversity and adaptability of GL-PSO as well as to improve 

its performance in solving complex optimization problems, in this paper, a new modi-

fied genetic learning method, referred to as GL-PSOIF, has been demonstrated. The 

proposed GL-PSOIF method is based on GL-PSO in which two modifications have 

been introduced. Specifically, instead of global topology, an interlaced ring topology 

has been introduced. The second modification relies on introducing a flexible local 

search operator. The task of the interlaced ring topology is to increase the population 

diversity and improve effectiveness of the method by generating better quality exem-

plars. In turn, a flexible local search operator has been introduced to enrich searching 

and improve the exploration and the exploitation ability. To evaluate the impact of the 

proposed modifications on performance of the proposed method, the interlaced ring 

topology has been first integrated with GL-PSO only (referred to as GL-PSOI) and 

then together with a flexible local search operator (referred to as GL-PSOIF). Both 

methods were tested on a set of benchmark problems and a CEC2014 test suite [38]. 

The results were compared with five different variants of PSO, including the genetic 

learning particle swarm optimization (GL-PSO) [22], the comprehensive particle 

swarm optimizer (CLPSO) [28], the standard particle swarm optimization (PSO), the 

global genetic learning particle swarm optimization (GGL-PSOD) [23], and the heter-

ogeneous comprehensive learning particle swarm optimization (HCLPSO) [39]. 

2 The PSO method 

The PSO method was inspired by the social behavior of flocks of organisms (bird 

flocking, fish schooling, bees swarm) living in their natural environment [2, 3]. Like-

wise other evolutionary method, PSO is based on a population. Individuals of the 

population are called particles, and the population itself is called a swarm. In the PSO, 

the optimisation process is achieved by migration the particles towards the most 
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promising area of the search space. Assuming that migration occurs in the D-

dimensional search space, we can imagine particle swarm as a set of points each of 

which possess knowledge about: its actual position described by the position vector 

xj=(xj1,xj2,…,xjD), its current speed of movement described by velocity vector 

vj=(vj1,vj2,…,vjD), its best position encountered by itself described by 

pbestj=(pbestj1,pbestj2,…,pbestjD), and the best position encountered in all swarm de-

scribed as gbest=(gbest1,gbest2,…,gbestD). In the first iteration, the position vector 

value and the velocity vector value are randomly generated. In subsequent iterations, 

values of the vectors are updated based on the knowledge and acquired experience of 

the particles. Changing of the particles velocity is achieved based on the equation (1).  

 (l))x(gbestrc(l))x(pbestrc(l)vw)(lv jjjjj  22111  (1) 

Changing the particle position is realized by adding its actual velocity to its previous 

position (2) 

 
)(lv(l)x)(lx jjj 11    (2) 

where: w - inertia weight, pbestj -the best j particle position., gbest - the best posi-

tion. in a swarm, r1,r2 .-random numbers generated from (0,1) ., c1,c2- acceleration coef-

ficients. 

3 Genetic learning particle swarm optimization  

In contrast to PSO, the GL-PSO algorithm possess a two-cascading-layer structure. 

One layer is used to generate exemplars, the other to update particles position and 

velocity through the PSO algorithm. To generate exemplars, three operators (crosso-

ver, mutation and selection) of the GA algorithm [37] are applied.  

Exemplars ej are selected from offspring. To generate offspring oj for each dimension 

of particle  j, a crossover operator is applied according to the formula: 

      
                                                        

                                                                                            
  (3) 

where k is random selected particle, r –random number from (0,1).  

Next, for each dimension, a random number         is generated and then if r < pm, 

(where pm probability mutation) the offspring is mutated. Then the offspring under-

goes the selection operation according to the formula: 

     
                         

                    
  (4) 

The particle velocity is updated based on the following equation: 

 (l))x(erc(l)vw)(lv jjjj 1  (5) 

where ej is the exemplar of the j particle.  
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4 The proposed method 

In order to improve the performance of global genetic learning particle swarm optimi-

zation (GL-PSO), in this article two modifications have been proposed: interlaced 

ring topology and flexible local search operator. 

  

4.1 Interlaced ring topology 

One of the main reason for inability to obtain and pursue satisfactory performance of 

the GL-PSO is the lack or weakennes ability to maintain diversity of the population 

(swarm). This leads to a loss of balance between exploration and exploitation and 

consequently to premature convergence and unsatisfactory results. To avoid this, it is 

necessary to develop tools that could help increase adaptability of the algorithm, 

which, in turn, should give satisfactory results.  

Lin et al. [22] have introduced ring and a global learning component with linearly 

adjusted control parameters to enhance a GL-PSO diversity. This improves the 

adaptability of the method but is not sufficient. Hence, the problem remains open and 

other solutions should be sought. To improve the adaptability of the GL-PSO, in this 

paper, instead of global learning, the interlaced ring topology has been proposed. This 

approach uses two neighbour particles, like in the ring topology, but in every next 

iteration (except the first one), the order of the particles is changed as follows. The 

particle collection is divided into two parts (sets) and particles of the second part take 

up spaces between the particles of the first part alternately (one particle from the first 

set, another particle from the second set, and next one from the first set, another from 

the second set etc....) according to equation 6 and 7. 

    
   

 
         

 
 (6) 

    
   

 
          

 
 (7) 

where nj is the position of the particle to be moved to the j place in the ring, j=1… N, 

N is a swarm size (for example n2 = 5 means that the second position in the ring is 

occupied by a particle from 5th place in the swarm). 

Then, the position of exemplars are generated according to equations 8-10. 

                               (8) 

        
                 
            

  (9) 

       
                  
           

  (10) 

where according to the ring topology nj1 and nj2 are the indexes of the adjacent parti-

cles from the left and right side of the particle j, respectively. 
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4.2 Flexible local search operator 

To improve the searching behavior of PSO and improve the exploitation capacity of 

the swarm, a flexible local search operator is introduced. The particle positions are 

updated according to the formula:  

   
     

                                     

  
    

                                        
  (11) 

where p is a a randomly selected number in the range [0,1], s is a real number linearly 

increasing from 0.6 to 0.8. This means that each particle has a 40 to 20% possibility to 

perform search in the vicinity of its personal best position. This means that, according 

to [16], in the early stage of the optimization process, the exploration is enhanced, and 

the local exploitation in the latter stage is facilitated. 

5 Test results. 

In order to investigate the efficiency of the proposed modifications, the GL-PSOI (in 

which only the interlaced ring topology was adopted) and GL-PSOIF (with interlaced 

ring topology and flexible local search operator) were evaluated, separately. Both 

strategies were tested on a set of classical benchmark problems, and on the CEC2014 

test suite. Twelve of them (6 selected benchmark function and 6 CEC2014 functions) 

are described in this article and depicted in Tables 1 and 2. 

Table 1. Optimization test functions. 

Function Formula fmin Range Accept 

Sphere       
 

 

   

 0 [-100, 100]
n
 10-5 

Schwefel         

 

   

  
 

   

 0 [-100, 100]
n 100 

Rosenbrock                 
           

   

   

 0 [-5, 5]
n 10-5 

Rastrigin        
                 

 

   

 
0 [-32, 32]

n 10-5 

Ackley                 
 

 
   

 

 

   

      
 

 
          

 

   

  

      

0 [-600,600]n 10-5 

Penalized                            
   

   

                 0 [-50, 50]
n 10-5 
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Table 2. Selected CEC2014 test suite. 

 Functions Name Range F(x*) 

F7 Rotated Bent Cigar Function [-100,100]n 100 

F8 Shifted and Rotated Rosenbrock’s Function [-100,100]n 400 

F9 Shifted and Rotated Ackley’s Function [-100,100]n 500 

F10 Shifted Rastrigin’s Function [-100,100]n 800 

F11 Shifted and Rotated Rastrigin’s Function [-100,100]n 900 

 

The results of the tests were compared with performances of CLPSO, HCLPSO, PSO, 

GL-PSO and GGL-PSOD. The parameter settings of this algorithms are listed in Ta-

ble 3.  

Table 3. Parameters settings. 

Algorithm  Parameter settings 

CLPSO w=0.9-0.4, c=1.496 

HCLPSO w=0.99-0.2, c1=2.5-0.5, c2=0.5-2.5, c=3-1.5 

PSO w=0.9-0.4, c1=2.0, c2=2.0 

GL-PSO w=0.7298, c=1.49618, pm=0.01, sg=7 

GL-PSOD w=0.7298, c=1.49618, pm=0.01, sg=7 

 

Both in the GL-PSOI and GL-PSOIF, the inertia weight w = 0.6 [13]. The accelera-

tion coefficients used in the computations were equal c1=c2=1.7. In case of the set of 

benchmark functions, the population consisted of 20 particles, the dimension of the 

search space was 30, the maximum number of function evaluations was 300000. The 

search range depends on the function used as shown in Table 1. For each problem, the 

simulations were run 30 times. For CEC2014 functions, the population consisted of 

50 particles, the dimension of the search space was D=30, and the maximum number 

of function evaluations was D × 10
4
. The search range was [-100,100]

n
. For CEC2014 

functions, the algorithms were run 31 times independently. 

The exemplary results of the tests are summarized in Tables 4-5. 

 

. 

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50426-7_11

https://dx.doi.org/10.1007/978-3-030-50426-7_11


adfa, p. 8, 2011. 

© Springer-Verlag Berlin Heidelberg 2011 

Table 4. The comparison test results of the PSO algorithms on the benchmark functions. 

Functions Criteria CLPSO HCLPSO GL-PSO PSO GGL-PSOD GL-PSOI GL-PSOIF 

F1 Mean 0.00E+00(=) 0.00E+00(=) 0.00E+00(=) 3.48E-25(+) 0.00E+00(=) 0.00E+00 0.00E+00 

 Std 0.00E+00 0.00E+00 0.00E+00 2.08E-24 0.00E+00 0.00E+00 0.00E+00 

F2 Mean 6.88E+01(+) 5.57E+00(+) 2.43E-20(+) 2.71E-11(+) 6.74E-20(+) 3.15E-22 4.52E-21 

 Std 3.24E+01 4.03E+00 3.16E-20 4.29E-11 4.82E-20 2.67E-21 3.84E-20 

F3 Mean 2.34E+01(+) 2.16E+00(+) 6.48E-01(+) 4.16E+01(+) 6.53E-01(+) 5.02E-01 5.16E-01 

 Std 1.58E+01 4.24E+00 2.54E-01 3.92E+01 6.07E-01 5.48E-01 2.58E-01 

F4 Mean 1.02E-11(+) 6.32E-12(+) 7.14E-14(+) 3.89E+01(+) 4.32E-14(+) 6.44E-15 3.50E-16 

 Std 3.21E-12 8.40E-12 3.62E-14 9.22E+00 5.36E-14 5.37E-14 3.68E-15 

F5 Mean 2.05E-14(+) 1.41E-12(+) 7.86E-15(+) 3.59E-13(+) 6.29E-15(+) 5.85E-15 5.32E-16 

 Std 3.41E-15 4.07E-13 3.92E-15 7.91E-14 2.23E-15 2.73E-15 1.98E-15 

F6 Mean 1.82E-32(+) 1.65E-32(+) 1.73E-31(+) 3.47E-02(+) 2.11E-31(+) 1.62E-32 1.57E-32 

 Std 5.56E-48 5.56E-48 1.94E-32 5.89E-02 3.73E-32 5.04E-36 4.86E-34 
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Table 5. The comparison test results of the PSO algorithms on the CEC2014 test suite. 

Functions Criteria CLPSO HCLPSO GL-PSO PSO GGL-PSOD GL-PSOI GL-PSOIF 

F7 Mean 3.24E+02(-) 4.15E +02(-) 5.96E+02(+) 8.09E+02(+) 7.12E+02(+) 4.58E+02 4.41E+02 

 Std 4.85E+02 6.73E+02 3.63E+02 3.34E+02 7.29E+02 6.73E+02 1.18E+02 

F8 Mean 6.93E+01(+) 3.82E+01(-) 2.76E+01(-) 1.62E+02(+) 6.27E+01(+) 5.75E+01 4.64E+01 

 Std 3.15E+01 3.36E+01 6.59E+01 5.16E+01 3.49E+01 5.18E+01 2.37E+01 

F9 Mean 2.08E+01(=) 2.00E+01(=) 2.05E+01(=) 2.32E+01(+) 2.00E+01(=) 2.00E+01 2.00E+01 

 Std 5.37E-02 6.24E-03 3.42E-02 8.89E-02 3.27E-02 2.83E-02 2.12E-02 

F10 Mean 4.07E-02(+) 2.38E-01(+) 1.95E-10(+) 2.66E+01(+) 2.43E-12(+) 2.35E-13 1.57E-13 

 Std 2.19E-02 5.40E-01 7.23E-11 8.19E+00 7.68E-13 6.48E-13 1.88E-13 

F11 Mean 4.20E+01(+) 4.43E+01(+) 5.84E+01(+) 7.81E+01(+) 3.57E+01(+) 2.97E+01 2.35E+01 

 Std 7.17E+00 1.26E+01 2.13E+01 2.69E+01 1.49E+01 1.56E+01 1.06E+01 

Table 6. The comparison test results of the PSO algorithms. 

Signature CLPSO HCLPSO GL-PSO PSO GGL-PSOD 

+ 8 7 8 11 8 

- 1 2 1 0 1 

= 2 2 2 0 2 
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The exemplary charts showing the mean fitness selected functions in the following 

iterations for GL-PSO, GGL-PSO, CLPSO, HCLPSO, PSO, GL-PSOI and GL-PSOIF 

algorithms, are depicted in Figs. 1-3. 

  

 

Fig. 1. Convergence performance for f2 function. 

 

Fig. 2. Convergence performance for f4 function. 
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Fig. 3. Convergence performance for f6 function. 

The results of the tests confirmed that both GL-PSOI and GL-PSOIF are more effec-

tive and can achieve superior performance over the remaining tested methods. In case 

of unimodal functions, the GL-PSOI with interlaced ring topology obtained superior 

results over the ones for GL-PSOIF. For multimodal functions superior results were 

achieved by GL-PSOIF.  

In case f2 function, GL-PSO achieved worse results than GL-PSOI and GL-PSOIF 

but better than those obtained by the CLPSO, HCLPSO and PSO. For f3 function, 

GL-PSOI achieved the best result. The performance of GL-PSO was worse than that 

obtained by GL-PSOI but superior then performance of GL-PSOIF. For unimodal f7 

function the best results were obtained by CLPSO. The outcomes achieved by GL-

PSOI and GL-PSOIF were worse than results obtained by CLPSO but better than the 

results achieved by the remaining tested methods. For multimodal functions, the re-

sults show that (almost in all cases) GL-PSOIF exhibit the best performance. 

The convergence curves presented in Figs. 1-3 indicate that both GL-PSOI and 

GL-PSOIF converge slower in the early stage of the optimization process than most 

of the compared methods. At this stage, each algorithm, except PSO, is faster. Then 

both algorithms accelerate and converge faster than the others. 

In case of the unimodal f2 function, both algorithms initially revealed slower con-

vergence, which was followed by a further rapid acceleration after about 5x10
4
 itera-

tions showing superiority over the rest evaluated methods. For the unimodal f2 func-

tion, GL-PSOIF performed a bit slower than GL-PSOI, which could be due to the 

introduction of flexible search operator, which did not improved the GL-PSOIF run. 

In case multimodal functions (Figs, 2-3), GL-PSOIF converges slowly (other methods 

are faster) but after about 1.3x10
5
 iterations accelerates and after 2x10

5
 iterations 

becomes the fastest. 
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6 Statistical test 

In order to evaluate the differences between algorithms, a statistical t-test was used. A 

confidence level of 0,05 was selected for all statistical comparisons. Tables 4-5 shows 

the results of the t-test performed on the test functions. The signature ‘+’ indicates 

that GL-PSOIF is significantly better than the other algorithms, ‘-’ worse to the other 

algorithms, and ‘=’ equal to the other algorithms. The rows in Table 6 named ‘+’, ‘-‘ 

and ‘=’ mean the number of times that the GL-PSOIF is better than, worse than or 

equal to the other algorithms. The results of the t-test indicate that proposed algorithm 

is significantly better than other methods with 95% confidence level in a statistically 

meaningful way. 

7 Conclusion 

In this study, a new genetic learning particle swarm optimization with interlaced ring 

topology and flexible local search operator (GL-PSOIF) has been proposed. To assess 

the impact of introduced modifications on performance of the evaluated method, first 

the interlaced ring topology was integrated with GL-PSO only (referred to as GL-

PSOI) and then with the flexible local search operator (GL-PSOIF). The efficiency of 

the new strategy was tested on a set of benchmark problems and the CEC2014 test 

suite. The results were compared with five different variants of PSO, including GL-

PSO, GGL-PSOD, PSO, CLPSO and HCLPSO. The results of the experimental trials 

indicated that the genetic learning particle swarm optimization with interlaced ring 

topology is effective for unimodal function. In case of the multimodal function, GL-

PSOIF showed superior performance over the remaining tested methods. 
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