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Abstract. We develop a class of numerical methods for solving optimal
control problems governed by nonlinear conservation laws in two space
dimensions. The relaxation approximation is used to transform the non-
linear problem to a semi-linear diagonalizable system with source terms.
The relaxing system is hyperbolic and it can be numerically solved with-
out need to either Riemann solvers for space discretization or a non-linear
system of algebraic equations solvers for time discretization. In the cur-
rent study, the optimal control problem is formulated for the relaxation
system and at the relaxed limit its solution converges to the relaxed equa-
tion of conservation laws. An upwind method is used for reconstruction
of numerical fluxes and an implicit-explicit scheme is used for time step-
ping. Computational results are presented for a two-dimensional inviscid
Burgers problem.

Keywords: Optimal control problems · Conservation laws · Relaxation
approximation · Implicit-explicit schemes.

1 Introduction

In many applications, optimal control problems consist of a class of differential
equations whose evolution and the behavior of their solutions can be controlled
by involving external control laws. In the current study, we are interested in
optimal control problems subject to the following two-dimensional nonlinear
conservation law

∂tu+∇ · F(u) = 0, (x, y) ∈ Ω, t > 0,
(1a)

u(0, x, y) = u0(x, y),
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where Ω is an open bounded domain in R2, (x, y) the space coordinates, t the
time, u(t, x, y) is the control function, u0(x, y) the initial state and the flux

F(u) = (f(u), g(u))
T

, with f(u) and g(u) are nonlinear functions. In practice, op-
timal control problems require minimizing a cost functional J (u(T, x, y);ud(x, y))
based on the least-square method that associates a cost value to each possible
behavior. Thus, the problem statement is

min
u0

J (u(T, x, y);ud(x, y)) := min
u0

1

2

∫∫
Ω

(
u(T, x, y)− ud(x, y)

)2
dxdy, (1b)

subject to the conservation law (1a). In (1b), ud(x, y) is the desired state at the
final time T . Optimal control problems of type (1b) have received growing at-
tention in both theoretical and numerical studies over recent decades. In most of
these studies, control problems governed by hyperbolic equations have been less
extensively treated compared to elliptic and parabolic control problems. This is
mainly due to the fact that the semi-group generated by the hyperbolic con-
servation law is non-differentiable in L1 whereas its domain of definition is an
L1 closed subset of BV . In the case of nonlinear conservation laws in one space
dimension, a differential structure on general BV solutions has been presented
and discussed in [4, 19] among others. The first-order optimality conditions for
hyperbolic systems have been introduced in [5] based on the derived calculus. It
turned out that the resulting adjoint equations are non-conservative which fail
to recover stable solutions for problems with shocks. In [14, 19, 13], numerical
results for one-dimensional scalar problems with distributed control have been
presented. More results for the case of a one-dimensional linear hyperbolic sys-
tems can be found in [8, 10, 15]. In [11], a TVD Runge-Kutta method for the time
discretization of such problems has been employed. It was shown that requiring
high stability for both the discrete and adjoint states is too strong, limiting the
method to first-order, regardless of the number of stages used in the method.
Using the same discretization, authors in [11] have studied other conditions for
the discrete adjoint such that the numerical approximation is of the best possi-
ble order. In [1], the emphasis was placed on high-order linear multistep schemes
for the time discretization of adjoint equations arising within optimal control
problems. The authors reported that the so-called Adams methods may reduce
to the first-order accuracy and that only BDF schemes may be used as higher
order discretization for the hyperbolic relaxation systems in combination with
a Lagrangian scheme. Theoretical and numerical methods using finite difference
schemes combined with an immersed boundary method have been developed in
[9] for a special class of optimal control problems namely, problems involving
the shallow water equations and a geometric parameter to be optimized in the
terminal cost. More recently, theoretical studies including a posteriori error es-
timates have been carried out for numerical schemes to solve multi-dimensional
problems, based on adjoint equations, see for instance [16, 18].

In the present work, we are interested in developing numerical algorithms
for control problems of two-dimensional nonlinear conservation laws to achieve
numerical stability without need to inclusion of extra artificial diffusion in the
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problem under study. For this purpose we consider the relaxation approximation
of nonlinear conservation laws in the same manner as introduced in [12]. This
approach approximates the nonlinear problem to semi-linear system with linear
characteristic speeds, while preserving the hyperbolic structure on the expense
of an additional equation and stiff source terms. Thus, the resulting relaxation
system is semi-linear which allows for a Riemann-solver free treatment. The re-
laxation methods have been investigated by many authors, see [3] among others.
First studies of relaxation systems with respect to control problems have been
reported in [2] in case of one-dimensional scalar conservation laws. Numerical
results are still very limited in the multi-dimensional cases and we therefore
restrict ourselves to a numerical study including a first-order relaxation approxi-
mation. For the space discretization, we consider an upwind reconstruction of the
numerical fluxes and an implicit-explicit method is used for the time integration.

The remainder of this paper is structured as follows. In section 2, the relax-
ation approximation for the coupled optimal control problem and the nonlinear
conservation laws is formulated. The space and time discretizations along with
the approximation procedure of the solution is presented in section 3. In section
4, numerical results are presented for a test example of inviscid Burgers equation.
Section 5 contains concluding remarks.

2 Relaxation Approximations for Conservation Laws

Following [12], the relaxation approximation for (1a) allows to construct a cor-
responding linear hyperbolic system with a stiff source term that approximates
the original problem with a small dissipative correction. Thus, the relaxation
associated with (1a) reads

∂tu+ ∂xv + ∂yw = 0,

∂tv + a2∂xu = −1

τ
(v − f(u)) , (2a)

∂tw + b2∂yu = −1

τ
(w − g(u)) ,

where τ is a small positive parameter that measures the relaxation rate, v and
w are the relaxation variables, a2 and b2 are the characteristic speeds satisfying
the sub-characteristic condition [12]

f ′(u)2

a2
+
g′(u)2

b2
≤ 1, ∀ u. (2b)

The initial conditions for the relaxation system (2a) are selected as

u(0, x, y) = u0, v(0, x, y) = f(u0), w(0, x, y) = g(u0). (2c)

It is clear that, when τ tends to 0, the relaxation system (2) converges to the
system of conservation law (1a). Note that the main advantage of numerically
solving the relaxation system (2) over the original conservation law (1a) lies in
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the special structure of the linear characteristic fields and localized lower or-
der terms. Indeed, the linear hyperbolic nature of (2) allows to approximate
its solution easily by underresolved stable numerical discretization that uses
neither Riemann solvers spatially nor nonlinear system of algebraic equations
solvers temporally. Hence, using the relaxation approximation, the optimal con-
trol problem (1b) becomes

min
u0

1

2

∫∫
Ω

((
u(T, x, y)− ud(x, y)

)2
+
(
v(T, x, y)− f(ud(x, y))

)2
+(

w(T, x, y)− g(ud(x, y))
)2)

dxdy, (3)

subject to the relaxation system (2a). Notice that a formal adjoint calculus leads
to a first-order optimality conditions for the function u0. The calculations are
rigorous provided that the solutions have sufficient regularity which however in
general is not the case. Hence, we formulate the adjoint equations for the system
(2) as

−∂tp− a2∂xq − b2∂yr =
1

τ
(qf ′(u) + rg′(u)) ,

−∂tq − ∂xp = −1

τ
q, (4a)

−∂tr − ∂yp = −1

τ
r,

with terminal conditions given by

p(T, x, y) = u(T, x, y)− ud(x, y), q(T, x, y) = v(T, x, y)− f(ud(x, y)),

r(T, x, y) = w(T, x, y)− g(ud(x, y)). (4b)

It should be stressed that the adjoint equations (4) have to be solved backwards
in time and the gradient of the reduced cost functional is defined as

p(0, x, y) + q(0, x, y)f ′ (u0(x, y)) + r(0, x, y)g′ (u0(x, y)) = 0. (5)

Again, when τ tends to 0, the system (4) converges to the adjoint problem
associated with the conservation law (1a). Then, from the second and third
equations in (4a), an expansion in terms of τ gives

q = τ∂xp+O(τ2), r = τ∂yp+O(τ2).

Inserting these terms in the first equation of (4a) leads to

−∂tp− f ′(u)∂xp− g′(u)∂yp = τ
(
a2∂xxp+ b2∂yyp

)
, (6)

which is a viscous approximation to the formal adjoint of (4). Note that the gra-
dient eventually vanishes at the minimum of the cost functional. Since u might
develop discontinuities we will have to scope with discontinuous derivatives of
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the flux functions f ′(u) and g′(u). However, since we use the relaxation approxi-
mation, the derivative functions f ′(u) and g′(u) appear as source terms and not
as a discontinuous transport coefficient as in (6). This problem has been inves-
tigated for one-dimensional problems in [19]. However, as pointed out in [2, 19],
the problem reappears in the small τ limit. In the one-dimensional case it can be
shown that the first-order relaxation discretization converges to the reversible
solution of a transport equation with discontinuous coefficient. Here, we focus
on a numerical study of the optimality system (1a). Using the characteristic
variables

v± = v ± au, w± = w ± bu,
an equivalent system associated with (2) can be reformulated as

∂tv
± ± a2∂xv± = −1

τ

(
v+ + v−

2
− f

(
v+ − v−

2a

))
,

(7)

∂tw
± ± b2∂yw± = −1

τ

(
w+ + w−

2
− g

(
w+ − w−

2b

))
.

The adjoint equations in characteristic form are therefore given by

−∂ts± ∓ a∂xs± = −1

τ

(
s+ + s−

2
∓ s+ + s−

2a
f ′
(

(v + au)− (v − au)

2a

))
,

(8)

−∂to± ∓ b∂yo±y = −1

τ

(
o+ + o−

2
∓ o+ + o−

2b
g′
(

(v + bu)− (v − bu)

2b

))
.

This system is equivalent to a spatial splitting approximation of the adjoint
equations (4). Introducing

q = s+ + s−, p = a
(
s+ − s−

)
(9a)

we obtain from the equations in s that the solutions (p, q) satisfy

−∂tq − ∂xp = −1

τ
q, −∂tp− a2∂xq = +

1

τ
(qf ′(u)) . (9b)

Similarly, for

r = o+ + o−, p = b(o+ − o−). (9c)

we have

−∂tr − ∂xp = −1

τ
r, −∂tp− b2∂xr = +

1

τ
(rg′(u)) . (9d)

Hence, the formulation (9) is precisely the spatial splitting applied to (4). There-
fore, the adjoints in characteristic form are the same as the adjoint of the char-
acteristic form when applying a dimensional splitting in the spatial variable. For
the optimize-then-discretize approach discussed below it is therefore sufficient to
state the discretization of the forward equations in characteristic form. A rigorous
discussion of the relation between discrete adjoints, the characteristic variables
and higher-order schemes can be found in [2] in the case of one-dimensional
scalar advection equations.
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3 Numerical Solution of Optimal Control Problems

Relaxation schemes are in fact a combination of non-oscillatory upwind space
discretization and an implicit-explicit time integration of the resulting semi-
discrete system, see for instance [12, 3]. The fully discrete system of the equations
(2a) is referred to as a relaxing system, while that of the limiting system as the
relaxation rate τ tends to zero is called a relaxed system. In this section, we
formulate the space and time discretizations used for the numerical solution of
optimal control problems and also formulate the algorithm used for the discrete
gradient.

3.1 Space and Time Discretizations

For the space discretization of the equations (2a), we cover the spatial domain
with rectangular cells Ci,j := [xi− 1

2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
] of uniform sizes ∆x and

∆y for simplicity. The cells, Ci,j , are centered at (xi = i∆x, yj = j∆y). We use
the notations ωi± 1

2 ,j
:= ω(xi± 1

2
, yj , t), ωi,j± 1

2
:= ω(xi, yj± 1

2
, t) and

ωi,j :=
1

∆x

1

∆y

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

ω(x, y, t)dxdy,

to denote the point-values and the approximate cell-average of a generic function
ω at (xi± 1

2
, yj , tn), (xi, yj± 1

2
, tn), and (xi, yj , tn), respectively. We define the

following finite differences

Dxωi,j :=
ωi+ 1

2 ,j
− ωi− 1

2 ,j

∆x
, Dyωi,j :=

ωi,j+ 1
2
− ωi,j− 1

2

∆y
. (10)

Then, the semi-discrete approximation of (2a) is

dui,j
dt

+Dxvi,j +Dywi,j = 0,

dvi,j
dt

+ a2Dxui,j = −1

τ
(vi,j − f (ui,j)) , (11)

dwi,j
dt

+ b2Dyui,j = −1

τ
(wi,j − g (ui,j)) .

Similarly, the semi-discrete approximation of the adjoint equations (4a) is

−dpi,j
dt
− a2Dxqi,j − b2Dyri,j = 0,

−dqi,j
dt
−Dxpi,j = −1

τ
qi,j , (12)

−dri,j
dt
−Dypi,j = −1

τ
ri,j .

Most relaxation schemes can be described as fractional step methods, in which
the relaxation step is just a projection of the system into the local equilibrium.
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The fully-discrete formulation of systems (11) and (12) can be obtained by the
well-established IMEX methods, see for instance [17]. Indeed, the special struc-
ture of the nonlinear terms in (11) and (12) makes it trivial to evolve the flux
terms explicitly and the stiff source terms implicitly.

The semi-discrete formulations (11) or (12) can be rewritten in common
ordinary differential equations notation as

dY
dt

= F(Y)− 1

τ
G(Y), (13)

where the time-dependent vector functions are defined accordingly for the for-
ward problem (11) or for the backward problem (12). Due to the presence of
stiff terms in (13), one can not use fully explicit schemes to integrate the equa-
tions (13), particularly when τ tends to 0. On the other hand, integrating the
equations (13) by fully implicit scheme, either linear or nonlinear algebraic equa-
tions have to be solved at every time step of the computational process. To find
solutions of such systems is computationally very demanding. In this paper we
consider an alternative approach based on the implicit-explicit (IMEX) Euler
method. The non stiff stage of the splitting for F is straightforwardly treated by
an explicit scheme, while the stiff stage for G is approximated by a diagonally
implicit scheme.

Let ∆t = tn+1−tn be the time step and Yn denotes the approximate solution
at t = n∆t. We formulate the first-order IMEX scheme for the forward system
(13) as

K1 = Yn − ∆t

τ
G(K1),

(14)

Yn+1 = Yn +∆tF(K1)− ∆t

τ
G(K1).

For the backward system (13), the IMEX scheme is implemented as

K1 = Yn+1 +∆tF(K1),
(15)

Yn = Yn+1 +∆tF(K1)− ∆t

τ
G(K1).

Note that, using the above relaxation scheme neither linear algebraic equation
nor nonlinear source terms can arise. In addition the relaxation schemes are
stable independently of τ , so that the choice of ∆t is based only on the usual
CFL condition

CFL = max

(
∆t

δ
, a2

∆t

∆x
, b2

∆t

∆y

)
≤ 1, (16)

where δ denotes the maximum cell size, δ = max(∆x,∆y). For the space dis-
cretization, a first-order upwind scheme is applied to the characteristic variables
in (11) to obtain the numerical fluxes as

(v + au)i+ 1
2 ,j

= (v + au)i,j , (v − au)i+ 1
2 ,j

= (v − au)i+1,j ,
(17)

(w + bu)i,j+ 1
2

= (w + bu)i,j , (w − bu)i,j+ 1
2

= (w − bu)i,j+1.
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Thus, a first-order reconstruction of the numerical fluxes in the forward problem
(11) yields

ui+ 1
2 ,j

=
ui,j + ui+1,j

2
− vi+1,j − vi,j

2a
,

ui,j+ 1
2

=
ui,j + ui,j+1

2
− wi,j+1 − wi,j

2b
,

(18)

vi+ 1
2 ,j

=
vi,j + vi+1,j

2
− aui+1,j − ui,j

2
,

wi,j+ 1
2

=
wi,j + wi,j+1

2
− bui,j+1 − ui,j

2
.

The numerical fluxes in the backward problem (12) are obtained by applying
first order upwind scheme to the characteristic variables

(p+ aq)i+ 1
2 ,j

= (p+ aq)i,j , (p− aq)i+ 1
2 ,j

= (p− aq)i+1,j ,
(19)

(p+ br)i,j+ 1
2

= (p+ br)i,j , (p− br)i,j+ 1
2

= (p− br)i,j+1.

Thus, a first-order reconstruction of the numerical fluxes in the backward prob-
lem (12) yields

pi+ 1
2 ,j

= −pi,j + pi+1,j

2
− aqi+1,j − qi,j

2
,

pi,j+ 1
2

= −pi,j + pi,j+1

2
− bri,j+1 − ri,j

2
,

(20)

qi+ 1
2 ,j

= −qi,j + qi+1,j

2
− pi+1,j − pi,j

2a
,

ri,j+ 1
2

= −ri,j + ri,j+1

2
− pi,j+1 − pi,j

2b
.

In this study, the characteristic speeds a and b in the relaxation systems (2) and
(4) are calculated locally at every cell as

ai+ 1
2 ,j

= max
u∈
{
ux,−
i+1

2
,j
,ux,+

i+1
2
,j

}∣∣f ′(u)
∣∣, bi,j+ 1

2
= max
u∈
{
uy,−
i,j+1

2

,uy,+

i,j+1
2

}∣∣g′(u)
∣∣. (21)

It is worth saying that, larger a and b values usually add more numerical dissi-
pation.

3.2 Discrete gradient and solution procedure

The implementation of the iterative optimization along with the Eulerian-La-
grangian numerical approach used in the implementation are performed in the
same way as detailed in [7]. Thus, starting from the basic optimal control problem
formulated as follows: Given a terminal state ud(x, y), find an initial datum
u0(x, y) which by time t = T will either evolve into u(T, x, y) = ud(x, y) or will
be as close as possible to ud in the L2-norm. To solve the problem iteratively,

we implement the Algorithm 1 and generate a sequence of solutions u
(m)
0 (x, y),
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Algorithm 1: Optimization procedure used in the present study.

u
(0)
0 (x, y): Chosen initial guess

ud(x, y): Desired solution
ε: Given tolerance
T : Final simulation time
– Solve the problem (2) subject to u(0, x, y) = u

(0)
0 (x, y), v(0, x, y) = f

(
u
(0)
0 (x, y)

)
and w(x, y, 0) = g

(
u
(0)
0 (x, y)

)
forward in time from t = 0 to t = T by using the

relaxation method to obtain u(0)(T, x, y), v(0)(T, x, y) = f
(
u
(0)
0 (T, x, y)

)
and

w(0)(T, x, y) = g
(
u
(0)
0 (T, x, y)

)
.

for m = 0, 1, 2, . . . do

– Compute the cost function J(m) =
1

2

∫∫
Ω

((
u(m)(x, y, T ) − ud(x, y)

)2
+

(
v(m)(x, y, T ) − f(ud(x, y))

)2
+
(
w(m)(x, y, T ) − g(ud(x, y))

)2)
dxdy

while J(m) > ε or
∣∣∣J(m) − J(m−1)

∣∣∣ > ε do

– Solve the linear system (4a) backward in time from t = T to t = 0 using
the relaxation method to obtain p(m)(0, x, y), q(m)(0, x, y) and r(m)(0, x, y).

– Update the control u0, v0 and w0 using either a gradient descent or
quasi-Newton method as described in [7].

– Solve the problem (2) subject to u(0, x, y) = u
(m+1)
0 (x, y),

v(0, x, y) = f
(
u
(m+1)
0 (x, y)

)
and w(0, x, y) = g

(
u
(m+1)
0 (x, y)

)
forward

in time from t = 0 to t = T by using the relaxation method to obtain

u(m+1)(T, x, y), v(m+1)(T, x, y) = f
(
u
(m+1)
0 (T, x, y)

)
and

w(m+1)(T, x, y) = g
(
u
(m+1)
0 (T, x, y)

)
.

end

– Set m:= m + 1.

end

with m = 0, 1, 2, . . . . It should also be pointed out that, the solution u(t, x, y)
does not have to be stored during the iterations by using the developed method.
In addition, although Algorithm 1 is similar to the continuous approach used
in [6], the focus is on the proposed numerical method to solve the problem (2)
and thus, we do not need an approximation to the generalized tangent vectors
to improve the gradient descent method.
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4 Results for an Inviscid Burgers Problem

To examine the performance of the relaxation algorithm to solve optimal control
we present numerical results for a two-dimensional inviscid Burgers problem. In
all the computational results presented in this section, the characteristic speeds
a and b are locally chosen as in (21), the CFL number is fixed to 0.5 and time
steps ∆t are calculated according to the condition (16). Here, the flux functions
are defined by

f(u) =
u2

2
and g(u) =

u2

2
. (22)

The optimal control problems are solved in the domain [0, 1] × [0, 1] subject to
period boundary conditions and equipped with the following initial data

u(0, x, y) = sin2(πx) sin2(πy).

We solve the optimization problem for terminal time T = 0.2 using a relaxation
rate τ = 10−6 on three different meshes with 100× 100, 200× 200 and 400× 400
control volumes. For each of these runs, we display the initial data u0, reference
solution and the optimized solution ut along with the gradient of the reduced
cost functional defined in (5).

Fig. 1. Numerical results obtained on a mesh with 100 × 100 control volumes.
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In Fig. 1 we present numerical results obtained on a mesh with 100 × 100
control volumes. Those results obtained on meshes with 200×200 and 400×400
control volumes are displayed in Fig. 2 and Fig. 3, respectively. It is clear that the
proposed algorithm resolves the desired solution for this problem and it captures
all small features appearing in computational domain. The reference solution
and the initial condition appear to be similar confirming the convergence of
the proposed numerical techniques. As can be seen in the presented results, a
shock is formed in the solution ut propagating along the main diagonal in the
domain. The effect of mesh refinement on the computed solutions is noticeable in
these figures. It is also clear that our relaxation methods accurately capture the
shock and its propagation along the diagonal. However, due to the numerical
dissipation, the resolved shock has been smeared out in the results obtained
on a mesh with 100 × 100 control volumes. As expected, the numerical results
obtained on this mesh are more diffusive than those computed using meshes
with 200×200 and 400×400 control volumes. To further visualize this effect we
display in Fig. 4 the cross-sections along the main diagonal y = x for the results
on the considered meshes.

Fig. 2. Numerical results obtained on a mesh with 200 × 200 control volumes.
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Fig. 3. Numerical results obtained on a mesh with 400 × 400 control volumes.

Fig. 4. Cross-sectional results at the main diagonal y = x on different meshes.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50426-7_10

https://dx.doi.org/10.1007/978-3-030-50426-7_10


A relaxation algorithm for optimal control problems 13

It is apparent that the gradient resolution is deteriorated with the excessive
dissipation included by the coarse mesh with 100× 100 control volumes. On the
other hand, the solutions are completely free of spurious oscillations and the
shocks are well resolved by the proposed method without nonlinear computa-
tional tools. It should be that the number of iterations in the optimal control
problem does not overpass 23 iterations for all considered meshes. These features
clearly demonstrate the efficiency achieved by the proposed method for solving
optimal control problems for the inviscid Burgers equation. The performance of
the method is very attractive since the computed solution remains stable and
accurate even when coarse meshes are used without requiring Riemann solvers
or complicated techniques to reconstruct the numerical fluxes.

5 Concluding Remarks

A class of numerical methods for solving optimal control problems governed by
nonlinear conservation laws in two space dimensions has been presented and
assessed. As solvers for the forward and backward problems we implement a
relaxation method combining the upwind reconstruction for space discretization
and implicit-explicit scheme for time integration. These techniques solve the non-
linear conservation laws without relying on Riemann solvers or linear solvers of
algebraic equations. The optimal control problem is formulated for the relaxation
system and at the relaxed limit its solution converges to the relaxed equation of
conservation laws. The proposed method has been tested on an optimal control
problem for the two-dimensional inviscid Burgers. The obtained results indicate
good shock resolution with reasonable accuracy in smooth regions and without
any nonphysical oscillations near the shock areas. Although, we have studied
only the case of first-order relaxation methods, the extension to high-order re-
constructions would be an encouraging next step and requires an in-depth study
on optimal control problems to deal with the nonlinear structure of hyperbolic
systems of conservation laws. Finally, we should point out that d the algorithm
presented in this paper can be highly optimized for vector computers, because
it does not require nonlinear solvers and contain no recursive elements. Some
difficulties arise from the fact that for efficient vectorization the data should be
stored contiguously within long vectors rather than two-dimensional arrays.
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