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Abstract. State-of-the-art simulations of detailed neurons follow the
Bulk Synchronous Parallel execution model. Execution is divided in equidis-
tant communication intervals, with parallel neurons interpolation and
collective communication guiding synchronization. Such simulations, driven
by stiff dynamics or wide range of time scales, struggle with fixed step
interpolation methods, yielding excessive computation on intervals of
quasi-constant activity and inaccurate interpolation of periods of high
volatility in solution. Alternative adaptive timestepping methods are in-
efficient in parallel executions due to computational imbalance at the
synchronization barriers. We introduce a distributed fully-asynchronous
execution model that removes global synchronization, allowing for long
variable timestep interpolations of neurons. Asynchronicity is provided
by point-to-point communication notifying neurons’ time advancement
to synaptic connectivities. Timestepping is driven by scheduled neuron
advancements based on interneuron synaptic delays, yielding an exhaus-
tive yet not speculative execution. Benchmarks on 64 Cray XE6 compute
nodes demonstrate reduced number of interpolation steps, higher numer-
ical accuracy and lower runtime compared to state-of-the-art methods.
Efficiency is shown to be activity-dependent, with scaling of the algo-
rithm demonstrated on a simulation of a laboratory experiment.

Keywords: Simulation of Neural Networks · Asynchronous computing
· Variable timestep · Parallel computing · Distributed computing.

1 Introduction

Simulation of the electrical activity of large networks of biologically detailed neu-
ron models is a major impact scientific problem, allowing for a better understand-
ing of the brain. State-of-the-art neuron models follows from the Hodgkin-Huxley
(HH) formalism [5], modeling the electrical currents passing though connecting
sections of neuron morphologies (spatially discretized as a tree of cylindrical
leaky capacitors, henceforth referred to as compartments). Neurons are cou-
pled via electro-chemical transductors, denominated synapses. When the volt-
age at a (pre-synaptic) neuron soma reaches a specific action potential thresh-
old, it spikes (or fires), leading to a chain of biological reactions that changes the
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Fig. 1. Left: A1: a sample neuron morphology; A2: the spatially-discretized model of
a compartmental tree of neuron dendrites; A3: The RC circuit representing the elec-
trical activity of a compartment represented by the extended Hodgkin-Huxley model,
with Sodium (Na), Potassium (K), Calcium (Ca) and leak (L) currents. Right: The
four interpolation methods discussed, illustrated by left-to-right execution timelines of
the simulation of four neurons. Gray cells represent the duration of interpolation steps.
Inverted green triangles represent delivery of synaptic events. B1: Bulk Synchronous
Parallel (BSP) model with fixed timestepping and collective synchronization. Vertical
bars across all neurons represent collective communication; B2: BSP model with vari-
able timestepping and collective synchronization implemented in NEURON [8]; B3:
Fully-asynchronous parallel (FAP) fixed-step method, pioneered by our previous work
[11]. Vertical bars across single neurons represent limit of stepping dictated by synaptic
dependencies; B4: FAP variable-step method presented in this document.

voltage at their post-synaptic counterparts. Due to the long simulation time
required to express biological phenomena such as learning and synaptic plastic-
ity, the acceleration of the simulation of neural networks is a relevant problem.
Existing acceleration efforts follow the Bulk Synchronous Parallel (BSP) exe-
cution model, computing several neurons simultaneously via synchronized mul-
tithredead and distributed execution [4,7] . Execution time is divided in com-
munication intervals equivalent to the time duration of the shortest synaptic
delay across all neuron pairs in the network. Equidistant synchronous collective
communication calls performs both synchronization of stepping and synaptic ex-
change. Interpolation of neurons is performed independently within the bound-
aries of each intervals, typically with fixed timestep methods, as illustrated in
Fig. 1 B1). Variable timestep interpolation on the BSP execution model (Fig. 1
B2) has been presented on single compute nodes, with speculative interpolation
of individual neurons [8]. Further acceleration can be achieved with finer-grained
parallelism of individual neuron models via graph-parallelism of Ordinary Differ-
ential Equations (ODEs) [9] and branch-parallelism of neuron topology sections
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Fig. 2. Illustrative workflow of the two methods for variable timestep (vardt) interpola-
tion described. Left: Speculative interpolation (state-of-the-art): I. Neuron 1 performs
a step (blue area) and spikes during the step interval, with spike time marked with an
inverted triangle, and delivery times marked with blue arrow heads; II. The current
interpolation time of neuron 2 exceeds the spike delivery time. A back stepping to the
delivery time follows (red arrow); III. Neuron 3 interpolates until the next (spike) event
time. Right: Non-Speculative scheduled time-stepping. I. Neuron 1 advances to the
earliest time instant allowed (green area), given by the time instant of pre-syn. neurons
2, 3 and 4 and the shortest synaptic delays 2→1, 3→1, and 4→1, respectively (green
arrow heads); II. Neuron 3 is now the earliest neuron in time, and follows analogously
based on the delays of neurons 1 and 4; III. Neuron 2 advances similarly.

[10]. Cache-efficient acceleration has been demonstrated via a barrier-free fixed-
timestep simulation on a fully-asynchronous parallel (FAP) execution model [11]
(Fig. 1 B3), henceforth referred to as our previous work.

We introduce a method for the distributed fully-asynchronous variable-order
variable-timestep implicit interpolation of detailed neuron models, benefiting
from cache-efficient barrier-free synchronization and performing long variable
timesteps on the FAP execution model, as illustrated in Fig. 1 B4). We study
the numerical instability and performance dependency of our methods on the
biological activity of the network. An implementation of our methods on the
core kernel of the NEURON simulator [4] is detailed and benchmark on 64
Cray XE6 compute nodes. Distributed asynchrony and multicore executions on
a global memory address space are provided by the HPX runtime system [13].
Benchmarks demonstrate lower time to solution, higher numerical accuracy, the
removal of speculative computing and synchronization barriers, and good scaling
properties, tested on a simulation of a laboratory experiment.

The methods presented provide insights for the exploration of modern asyn-
chronous runtime systems on large networks of compute nodes, and for the re-
design of future simulators across a wide range of scientific domains, driven by
large systems of ODEs and highly-heterogeneous activity.
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2 Methods

2.1 Mathematical Model

The RC circuit that models the electrical current passing through the membrane
of a compartment n is modelled as:

C
dVn
dt

= −
∑
i

gixi(Vn − Ei) + I(t) +
∑

c:p(c)=n

Vc − Vn
rc

− Vn − Vp(n)
rp(n)

(1)

where gi and Ei describe the conductance and reversal potential of the ionic
channels. xi models the opening probability of the transmembrane ion channel
currents, typically described by a voltage-gated ODE, and omitted for brevity.
Synaptic currents or injected current stimuli, if any, are included in I(t). The
branching contributions are provided by Ohm’s Law and the neuronal cable the-
ory: the subscript p(n) refers to the index of the parent compartment of n, and
c to an iterator over the indices of its children in the compartmental tree. The
variable r defines the axial resistance as a function of the diameter and the cy-
toplasmic resistivity. The RC circuit underlying the current passing through a
compartment is illustrated in Figure 1, layout A3). The solution of this system is
solved numerically. The complexity of the spatio-temporal model of the neuron
activity is reduced by performing a spatial discretization of the neuronal mor-
phology, from biologically inspired to HH-based compartmental representation,
and assume the spatial discretization to be small enough, so that the state across
compartments’ length is constant (Fig. 1, A1 and A2). Thus, interpolation of so-
lution is performed for consecutive discrete time intervals only. The resolution
follows a fixed step defined as small enough to capture the currents with fastest
dynamics, set to 0.025 milliseconds. The fastest synaptic delay across our net-
work model has been measured as 0.1ms or equivalently 4 computation steps,
accounting for 0.13% of the total synapses.

Simple and Complex Neuron Models: A problem specific optimization allows for
a speed-up on the resolution of simple neuron models such as the Hodgkin-
Huxley, where state variables are described by linear ODEs and depend only
on the voltage V , and vice-versa. An implicit resolution based on interleaved
timestepping of voltage and states, by solving voltages at a given time t and
states at time t + ∆t/2, allows for the resolution of the system of ODEs as
a system of linear equations. Resolution of complex models, including non-
linear and/or correlated state equations (such as synaptic plasticity presented
by Graupner et al. [3]) cannot be resolved with the aforementioned method, and
require a fully-implicit (non-staggered) resolution. Reliable resolutions rely on
fixed-step iterative implicit methods such as Backward Euler. Alternatively, an
implicit variable timestep method with variable order is possible. Its implemen-
tation to our use case is detailed next.

Variable Step Implementation: The CVODE (C Variable-step solver for ODEs,
[2]) is an implementation of the Backward Differentiation Formula (BDF) for
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Fig. 3. Voltage potential at soma and interpolation steps for a sample neuron during
6ms (left) and 100ms simulation (right) of a 1.3mA continuous current injection, in-
terpolated with Backward Euler (top) and CVODE (bottom) methods. The reference
implementations are the Backward Euler with ∆t = 1µs and CVODE with abso-
lute tolerance 10−1, presented in black and considered indistinguishable. The standard
NEURON step size and tolerance are ∆t = 25µs and 10−3 and are presented in red.

the variable-step multistep implicit method solving the Initial Value Problem
(IVP, ẏ = f(t, y), y(t0) = y0 where y ∈ RN ) for ODEs as:

q∑
i

αn,iyn−i +∆tnβn ẏ = 0 (2)

where y = [..., Vk−1, Vk, Vk+1, .., xi−1, xi, xi+1, ...] is a vector representing the
state variables of a neuron or a set of neurons following the variable notation
in Equation 1, q is the order of the current iteration, and α and β are the
q-dependent BDF-method coefficients. BDF-1 is the Backward Euler. In brief,
CVODE returns the ∆tn and yn that solve BDF-q for an user-provided tolerance
(atol). The computation is performed iteratively, with a suggested step size
for each iteration based on the solution gradient and order q. Given and user-
provided function that computes the ODE right-hand side and a Jacobian j =
∂f/∂y (or an approximation to it), the resolution relies on Newton iterations,
with a stop condition based on the test ‖yn(m) − yn(0)‖ ≤ ε for iteration m in
step n: If error is greater than threshold, a reiteration follows with a smaller
∆tn(m+1); if error is smaller, proceeds to step n+ 1 with larger ∆t(n+1)(0).

2.2 Asynchronous Timestepping of Neuron Networks

Control of neurons time advancement on synchronized distributed executions is a
solved problem, by enforcing a BSP-like synchronization barrier [4], as in layouts
B1 and B2 in Figure 1. Barrier-free variable-timestep interpolation are possible
with a speculative interpolator on a single compute node and small networks of
neurons. Neurons are described by individual interpolators, and advance in time
under the best assumption that no discontinuity of solution (synaptic current)
will arrive with a delivery time earlier than the neuron current time. Disconti-
nuities lead to a reset of the IVP problem and interpolator state history, and

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50426-7_8

https://dx.doi.org/10.1007/978-3-030-50426-7_8


6 B. Magalhães et al.

consequently to small steps in the following iterations. When a discontinuity is
required to be delivered in a past instant in time, a backstepping operation
must precede, in order to reset the recent step and interpolate neuron state back
to a time instant of confidence (the time of the discontinuity). Simulations of
small neuron networks on single compute nodes are possible and have previously
shown a substantial runtime acceleration utilising this model [8]. Distributed ex-
ecutions and/or large neural network are infeasible with this method due large
number of IVP resets, the complexity of backstepping cascades of events across
several compute nodes, large amount of time spent on speculative stepping, and
computational imbalance at synchronization barriers.

An alternative approach was implemented, based on the non-speculative
asynchronous stepping methodology detailed in our previous work [11]. Neu-
rons hold a map storing the time instant of their pre-synaptic connectivities.
The map is updated by stepping notifications received actively at a certain fre-
quency, throughout the stepping of its pre-synaptic dependencies. Neurons step
to the maximum time allowed by their synaptic connectivities. This guarantees
synapses to be delivered in future time instants, thus removing backstepping
and reversion of sent synaptic spikes. The method is improved with an earliest
neuron steps first scheduler at each compute node that keeps track of neurons
advancement, and picks the earliest neuron in time as the next to interpolate.
This guarantees the maximisation of the step length and provides a larger vari-
able step interval, with the benefit of reduced communication and computation,
the removal of solution resets and backstepping, and larger stepping intervals.
For completion, both approaches described are pictured in Figure 2.

2.3 Implementation details

Our methods were implemented on the core kernel of the NEURON simulator[7].
Single Instruction Multiple Data (SIMD) capabilities — supported only by fixed-
step method — were added to variable-step implementations. Communication,
synchronisation control objects, memory allocation, threading, distributed mem-
ory space, distributed execution and parallelism were implemented with HPX
[13], the runtime system for the Parallex execution model [6]. The Implemen-
tation details have been covered in our previous manuscript [11], and are omit-
ted for brevity. Efficient point-to-point communication and remote direct access
memory is provided with specialized Infiniband network hardware.

3 Results

3.1 Numerical Accuracy

We compare the numerical accuracy of both fixed and variable step models
by measuring the time difference of the main unit of interest in the activity
of spiking neuron networks — the spiking time instants. Figure 3 presents the
voltage trajectory and number of steps of a 1.3mA current clamp experiment for
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Fig. 4. Interpolation steps and runtime for 1000ms simulation of a pyramidal cell on
an Intel core i5 at 1.6 GHz. Left: injection of a continuous current as a percentage of the
threshold current (0.206mA). Right: injection of short 1µs current pulses of different
amplitudes I at different frequencies. Results presented for the Backward Euler with
∆t = 25µs and CVODE with atol=10−3.

a single (6ms) and several (100ms) spikes of a layer 5 pyramidal cell. Results on
the single spike voltage trajectory (6ms) display a reduced step count and better
adaptation to trajectory change when comparing CVODE to Euler method.
The rationale behind the better performance is adaptive stepping is gradient
sensitive, thus better adapting to the trajectory of a neuron voltage. CVODE
displays less steps during long periods of low gradient (e.g. 1 − 2.5ms), and
greater number of steps for steep trajectories (the spike trajectory). The 100ms
simulation displays a phase shift in solution (measured as the time difference
between peak voltage values of reference and benchmark curves) that increases
with the increase of the step size on the Euler methods. In practice, the timestep
determines the fastest reaction time of the system, thus large timesteps will
inevitably cause the system dynamics to be slow. The analysis show that a
CVODE tolerance value of 10−2 approximates the resolution of the default Euler
method (step size 25µs), with a reduction of 7× in step count. At longer runs, the
variable step demonstrated to be more precise, due to no accumulation of phase
shift, with the maximum trajectory shift measured at approximately 1.1ms.
On the other hand, a tolerance value of 10−3 approximates closely the optimal
solution with 40% less steps, and with a margin of error similar to its 5µs Euler
counterpart for the period of 100ms, while yielding 22× less interpolations.

3.2 Performance Dependency on Stiffness and Discontinuities

We measured the response of both stepping methods to spiking frequency. Per-
formance was measured in terms of steps count and time to solution on an Intel
i5 at 1.6 GHz. Changes in trajectory were enforced by injecting a continuous
current of a given amplitude on a neuron during 1000ms. Current intensity is
measured as a percentage of the threshold current, the minimum continuous
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Fig. 5. Number of incoming spikes (bin size 0.25ms) measured throughout 7.5 secs of
simulation, for a sample neuron collected from the top, median and bottom 1% on a
network of 219K neurons.

current value that needs to be injected to force a neuron to spike. Results are
presented in Figure 4 (left), and demonstrate that high dynamics of the solution
degrade the CVODE performance. This is due to CVODE requiring smaller steps
on high trajectory variations in order to respect the absolute tolerance value. For
the range of tested scenarios, the measured CVODE to Euler reductions were:
(1) 434× in step count and 98× in runtime for injected currents below 50% of
the threshold current; (2) 62× steps and 11.6× runtime for 100%; and (3) 9.4×
and 2.5× runtime for 500%, a worst case scenario of little prob. of occurrence.

We measured the effect of discontinuities on both methods by injecting sev-
eral current pulses at a fixed frequency on a neuron soma, mimicking synaptic
events. The experiment results are displayed in Figure 4 (right) and suggest that
the CVODE performance depends on the trajectory change incurred by each
discontinuity, i.e. the amplitude of the current injected: the larger the voltage
increase, the larger the change in trajectory gradient, thus the more interpola-
tion steps are required. As expected, results demonstrate that the number of
discontinuities plays a major role in performance. CVODE is shown to deliver a
reduction of steps in the order of 153 − 322× for a frequency of 10 discontinu-
ities per second for current values of 1mA to 0.1µA. The step count equilibrium
between Euler and CVODE method lies in the interval of 103.2 − 104.0Hz for
similar currents interval. The runtime demonstrates a similar dependency on
the injected current, yielding a speed-up of 51× for 10Hz decreasing linearly up
to the speed-up equilibrium value at 1000Hz for the strongest current. For the
lightest current injected, a speed-up of 100× is visible for a 10Hz discontinuity
rate, decreasing to an Euler matching value at circa 1600 events/sec (103.2Hz).

3.3 Simulation of a Laboratory Experiment

We tested the suitability of variable step methods to our problem by measuring
the spiking activity of a simulation of 7.5 secs of electrical activity mimicking a
laboratory experiment. The experimental set-up performs a fixed step simula-
tion of the spontaneous activity of 219.247, detailed in section Simulating Spon-
taneous Activity in [12]. A representative distribution of discontinuity events for
three groups of neurons — organized by highest 1%, median 1%, and lowest
1% number of discontinuities — is displayed in Fig. 5. The simulation incurred
a total of circa 155 million events, with the following distribution: (a) top 1%
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Fig. 6. Runtime for the simulation of one second of biological activity described by
five spiking rate dynamics, measured for increasing input network sizes, on 64 Cray
XE6 compute nodes. Key: BSP: Bulk Synchronous Parallel; FAP: Fully-Asynchronous
Parallel; atol: absolute tolerance; EG: event grouping interval; †: able to solve non-linear
ODEs implicitly, and unable to solve correlated mechanism states implicitly.

of neurons, between 3040 and 6146 events in 7.5 secs, or 405-820 Hz; (b) me-
dian 1%, from 541 to 558 events (72-74.4 Hz); and (c) bottom 1%: less than 100
events (≤10 Hz). The average number of events was of 707 events for the 7.5 secs
of simulation, or equivalently, 94 Hz, significantly below the 1000Hz threshold
discussed in the previous section. Moreover, the results on the distributions of
time interval between discontinuities, plotted in red on the right, display large
periods of silence between events arrival in the median and bottom use cases,
but not on the top, suggesting the suitability of adaptive stepping to most (but
not all) neurons in the population.

3.4 Large-Scale Benchmark
We simulate one second of the electrical activity of a digitally reconstructed
neural network extracted from the model of Markram et al. [12]. Execution times
were collected on 64 Cray XE6 compute nodes, powered by an AMD Opteron
6380 with 16 cores at 2.5 GHz, 64 GB of RAM and 256-bit floating point units.
CVODE was defined to utilise the default maximum BDF order value of 5.
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On the set-up of the test bench, it is relevant to mention that neuronal ac-
tivity is highly dependent on the mammal specie, brain region and momentary
activity. Simulations must approximate real use cases, as spiking activity affects
heavily the performance of variable step methods, as shown previously. Thus, our
test bench benchmarks the efficiency of five different brain dynamics described
in literature: (1) a model of quiet dynamics with a mean spiking rate of 0.25
Hz per neuron, representative of circa 90% of neurons in the human brain dur-
ing regular activity; (2) slow dynamics at 1.5Hz, representing the lower bound
of active neurons; (3) moderate dynamics at 6.5 Hz, an approximation of the
regime of slow oscillations regime from the Brunel network model [1] and an
upper limit to the rat frontal cortex; (4) fast dynamics at 38 Hz, characterizing
neuronal activity during periods of high vigilance; and the inhibition-dominated
model of the Brunel Network [1]; and (5) burst dynamics at 55.8 Hz, typically a
byproduct of strong current injections, similar to the first instants of simulation
in Fig. 5; and the fast spiking regime of the Brunel Network [1]. Neurons activity
is triggered by a constant current injection in all neurons throughout the whole
duration of the simulation, strong enough to approximate the spiking rate to
the regimes described. The input neural networks are retrieved from layers 4
and 5 of the rodent brain, where the longest dendritic trees and densest synap-
tic connectivity exist, thus representing a worst-case scenario for variable-step
methods, and favourable to fixed-step methods. Thus, the results presented are
a lower bound of possible acceleration. For complete coverage of the topic, we
include the following state-of-the-art solvers for simple neuron models (labelled
1a to 1c, and restrained to linear ODEs with uncorrelated states) and complex
models (2a-2c): (1a) the cnexp fixed step solver in NEURON, with added SIMD,
providing an interleaved resolution of current and states as linear equations, with
an analytical resolution of first-order ODEs describing state variables; (1b) the
Euler solver in NEURON, with added SIMD, resolving the current-states depen-
dency with an explicit Euler method with staggered timestepping, and as a linear
equations; (1c) the same Euler method on a FAP execution model, presented
in our previous work (Fig. 1 B3); (2a) the BSP fixed step derivimplicit solver
available in NEURON, with added SIMD, with interleaved-timestep resolution
of current as a linear equation, and implicit resolution of individual mechanism
state ODEs; (2b) the BSP variable step method in NEURON with added SIMD
and a collective communication barrier (Fig. 1 B2); and (2c) the SIMD-enabled
FAP with variable timestepping introduced in this paper (Fig. 1 B4). We tested
our methods in neural networks ranging from 1024 to 65536 neurons, a scale that
approximates two columns in the rodent neocortex, and the maximum allowed
due to memory requirements of the BDF order. The benchmark results are pre-
sented in Figure 6. The FAP variable step method (2c•) is presented alongside
two variants — labelled 2c• and 2c•— that group and deliver instantly the dis-
continuity events within an interval equivalent to the timestep ∆t/2 and ∆t of
the interleaved- and fixed timestep methods, respectively. This approach yields
a level of reduced precision in the delivery of events — similar to fixed step
methods — while maintaining the same high variable-order variable-step accu-
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racy during continuous periods of activity and reducing significantly the number
in IVP resets. CVODE-based executions are displayed for an absolute tolerance
(atol) of 10−3, the default value in the NEURON simulator. For brevity, we
omit CVODE executions with an absolute tolerance of 10−2 — tested and deliv-
ering a runtime reduction of 5%-8%) — and the analysis comparing only simple
fixed-step solvers (1a-1c), covered in our previous workx[11].

4 Discussion
4.1 Fixed- vs Variable-Timestep Interpolators

Fixed step methods do not yield significantly-different execution times across dif-
ferent spiking regimes. This is due to the homogeneous computation of neuron
state updates throughout time, and the light computation attached to synaptic
events and collective communication not yielding a substantial increase of run-
time. As expected, variable step executions are penalized on regimes with high
discontinuity rates. Runtimes of fixed- and variable-step solvers approximate as
we increase the spiking rate, i.e. the increase of runtimes with the input size
is steeper for variable timestep (2b• and 2c•••) compared to fixed timestep
methods (2a•). This is due to discontinuities in variable-step being delivered
throughout a continuous time line, compared to the discrete delivery instants of
the fixed-step methods, — therefore increase the number of interpolation steps;
and the iterative model of the variable timestep reinitializing the state compu-
tation with small step sizes on each IVP reset. A remarkable performance is
visible on the quiet dynamics use case, where our fully-implicit ODE solver of
complex models (with Newton iterations), still runs faster than the simple solver
resolving only a system of linear equations. The underlying rationale is that —
despite the inherent computation cost of Newton iterations in the variable step
methods — the low level of discontinuities allow for very long steps, that surpass
the simulation throughput of fixed step methods. The measured speed-up of our
reference method (2c•) compared to the reference fixed step method (2a•) was
of 544-65× across input sizes for the quiet dynamics, down to 7.7-1.8× to the
moderate dynamics. The fast dynamics presented a speed-up of twofold for the
dataset of 1024 neurons, and a similar runtime for the 66K neurons. The burst
dynamics, although of very unlikely probability of occurrence, demonstrated an
acceleration of 1.5× for 1024 neurons and a deceleration of 1.5× for 66K neurons.

4.2 Variable Step Event Grouping

On the analysis of the performance of the CVODE with grouping of events
within half fixed timestep (2c•), when applied to the largest dataset tested, the
previous acceleration was reduced to 47× for quiet, 4.4× for slow, and 1.2×
for moderate dynamics, with an inferior performance on the remaining regimes.
A further reduction of speed-up to 33× for quiet and 1.9× for slow dynamics
was noticeable on the CVODE implementation without events grouping (2c•),
with lower performance for the remaining spike regimes. Although being more
precise and solving correlated states implicitly, this method runs slower than
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the reference implicit fixed step method 2a• in the use cases characterized by a
high number of neurons and/or strong network activity. This goes in line with
the conclusions in Section 3.3, confirming that performance is activity depen-
dent, and the performance depends on the network connectivity. The speed-up
introduced across FAP CVODE variants (2c•••) increases with the amount of
discontinuities in the system — correlated to high network activity or size — as
the efficiency of the event grouping method is related to the amount of events
in the same grouping interval that are delivered at once.

4.3 Fully-Asynchronous vs Bulk-Synchonous Execution Models

We study the performance difference between the BSP and FAP execution mod-
els. Results show that runtimes of both implementations approximate with an
increase of input. This is visible by comparing the fixed step trajectories 1b� and
1c�, and the variable step trajectories 2b• and 2c•. For small network sizes, the
difference in runtime is few orders of magnitude higher than for larger network
sizes. On large models, the runtimes are similar. This property was demonstrated
in our previous work: in brief, an increase of network leads to a higher number
of network connectivity, reducing the maximum stepping interval per neuron,
and approximating it to the communication delay in BSP methods. On fixed
step methods, it is noticeable a similar runtime on large (66K) networks of neu-
rons, as timesteps are computationally homogeneous. On variable step methods,
similar runtimes are only noticeable when significant network activity is present
(moderate, fast and burst dynamics), as little network activity leads to few dis-
continuities and analogously large variable step intervals.

4.4 Runtime Dependency on Input Size and Spike Activity

It is known that, on simulations of small networks, variable-timestep methods
yield a significant acceleration in time to solution compared to fixed timestep
methods [8], due to little interneuron connectivity. However, the larger networks
yield up to 10 thousand synapses per neuron, with the number of discontinuities
in the system being related to the network activity. The question lies now on
which conditions are required for similar computation complexity in both inter-
polators. To that extent, we measured the regions of similar runtime growth for
the reference fixed step (2b•) and our variable step methods (2c•). The region
is labelled as in Figure 6. As expected, fixed step methods yield a quasi-linear
runtime growth with the increase of the input size, and are independent of the
spiking regime, due to almost ideal scaling of the algorithm in the BSP model.
On the other hand, the runtime of variable timestep methods — dependent on
the number of discontinuities — demonstrates a rapidly increasing growth with
the input size outside the region of similar growth, and almost linearly inside.
Moreover, as it depends on the network activity, the lower limit of the region
increases with the spiking rate, and is delimited at 16.4K, 32.8K and 32.8K neu-
rons or more for the quiet, slow and moderate dynamics, while not visible in the
fast and burst dynamics. In the three spiking regimes where such region exists,
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the similar growth in both approaches provides a confidence of the scaling ca-
pabilities of our methods in larger network models. This is of high importance
as it provides an estimation of runtime upper bound in simulations combining
neurons with heterogeneous spiking rates, as discussed next.

4.5 Overall Runtime Speed-up Estimation
To conclude our analysis, we computed an estimation of the performance accel-
eration on a simulation combining several spiking regimes. We measured the the
distribution of neuron spike rates and neurons per spiking regime, following the
laboratory experiment simulation described in Section 3.3. Estimations were col-
lected from 2-4s of simulation time from the central minicolumn (31.3K neurons)
of a 219K neurons network, to avoid boundary-effects from reduced connectivity
and the initial artificial synaptic burst from the current injection. The measured
percentage of neurons on each regime is 31.43%, 38.44%, 27.02%, 3.10% and
0.01%, relating to 68.9K, 84.3K, 59.2K, 6.8K and 22 neurons. Following the run-
times described in Section 4.1, the speed-up range for the interval of 1024-66K
neurons when comparing our methods with the state-of-the-art solver for com-
plex models (2a•) are estimated as: 224.5-11.9x for the variable step method
with precise event delivery (2c•); 225.1-17.1x for the similar implementation
with delivery of events within the next half timestep (2c•); and 228.5-24.6x for
the use case with full-timestep event group delivery (2c•). Since the quiet, slow
and moderate dynamics regimes weight over 95% in the runtime calculation, and
as for datasets above 32.8K the reference vs benchmark runtimes have a simi-
lar runtime growth in those regimes, we believe the overall runtime and scaling
properties are almost fully-preserved on larger networks.

Summary and Closing Remarks

This paper presented a distributed simulation of detailed neuron models with
variable-order variable-timestep methods on a fully-asynchronous execution model,
yielding asynchronous computation, communication and synchronisation. We
detailed state-of-the-art approaches based on the Bulk Synchronous Parallel
execution model (BSP), their limitations on the numerical resolution of com-
plex neuron models, computation load imbalance, and speculative computing
in variable-step simulations. We simulate five spiking regimes that characterize
several dynamics of the mammal brain, on up to 65536 neurons on 64 Cray XE6
compute nodes, and compare our methods against five state-of-the-art numerical
solvers. Results demonstrate higher numerical accuracy, with a speed-up of 544-
65× for a quiet spiking regime of 0.25Hz representing a majority of neurons in
regular brain activity, down to 7.7-1.8× to a moderate regime of 6.5Hz, and 2×
to no acceleration for 38Hz, a pattern of unlike occurrence or short duration. An
analysis of performance achievable on the simulation of a laboratory experiment
demonstrates a speed-up of 224.5-11.9x for an execution with precise delivery of
events, increasing to 225.1-17.1x and 228.5-24.6x for two optimized alternatives
that group events delivery in the next half and full timestep. with the scaling
properties of our methods preserved on larger networks of neurons.
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As a final remark, although being applied to a network of neurons, most meth-
ods presented are problem-independent and do not require intrinsic knowledge
of the problem domain, therefore opening the prospectus for the acceleration of
a wide domain of scientific problems modelled by complex systems of ODEs.
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