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Abstract. The phenomenon of dynamic stall produce adverse aerody-
namic loading which can adversely affect the structural strength and life
of aerodynamic systems. Aerodynamic shape optimization (ASO) pro-
vides an effective approach for delaying and mitigating dynamic stall
characteristics without the addition of auxiliary system. ASO, however,
requires multiple evaluations time-consuming computational fluid dy-
namics models. Metamodel-based optimization (MBO) provides an effi-
cient approach to alleviate the computational burden. In this study, the
MBO approach is utilized for the mitigation of dynamic stall character-
istics while delaying dynamic stall angle of the flow past wind turbine
airfoils. The regression Kriging metamodeling technique is used to ap-
proximate the objective and constrained functions. The airfoil shape de-
sign variables are described with six PARSEC parameters. A total of 60
initial samples are used to construct the metamodel, which is further re-
fined with 20 infill points using expected improvement. The metamodel
is validated with the normalized root mean square error based on 20
test data samples. The refined metamodel is used to search for the opti-
mal design using a multi-start gradient-based method. The results show
that an optimal design with a 3◦ delay in dynamic stall angle as well a
reduction in the severity of pitching moment coefficients can be obtained.

Keywords: Dynamic stall · unsteady CFD · surrogate-based optimiza-
tion · regression Kriging · expected improvement.

1 Introduction

The dynamic stall phenomenon was first observed on retreating blades of heli-
copter rotor [6]. Horizontal and vertical axis wind turbines are prone to dynamic
stall. Wind turbines are subjected to dynamic loading from multiple sources,
such as wind shear, turbulence, yaw angles, upwind turbine wake, and tower
shadow, that cause unsteady inflow to the turbine rotor which results in dy-
namic stall. In vertical axis wind turbines (VAWT), dynamic stall arises from
rapid changes in angle of attack on each blade in every rotation cycle [2, 25]. The
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dynamic loading in wind turbines generates adverse loading conditions, signifi-
cantly impacting the blade, hub, tower structure, performance and turbine life.

Significant research has been conducted to mitigate or control dynamic stall
via active and passive control systems [27, 15, 10, 28]. The addition of structures
and control systems to the wind turbines increases their mass as well as their cost
and complexity. Mitigating the adverse dynamic stall characteristics passively
through aerodynamic shape optimization (ASO) has recently received interest
from multiple researchers offering promising improvement in airfoil performance
[26, 16, 12, 24, 23]. ASO studies for dynamic stall mitigation are typically done
with adjoint-based computational fluid dynamics (CFD) simulations [26, 16, 12,
4] and have shown promising results for multiple dynamic stall optimization
cases. Adjoint-based CFD simulations is a modern approach to solve ASO prob-
lems using gradient-based optimization (GBO) algorithms [8]. The advantage of
the adjoint method is the ability to estimate gradient informatio cheaply. The
GBO approach, however, can get easily get stuck in local minima, especially if
the CFD data is noisy. Wang et al. [24, 23] used sequential quadratic program-
ming (SQP) to alleviate aerodynamic loads during dynamic stall cycle on rotor
airfoils.

Genetic algorithms have the ability to search the design space globally, but
they require multiple design evaluations and can be impractical to use for high
dimensional design problems. Ma et al. [11] used a multi-island genetic algo-
rithm, which is a global search method, for VAWT performance improvement.

Metamodel-based optimization (MBO) (also called surrogate-based optimiza-
tion) [22] is an approach to alleviate the computational burden of costly simulation-
based design problems. In MBO, a metamodel (also called a surrogate) of the
objective function is constructed using a limited number of the time-consuming
simulations. The surrogate model is fast to evaluate and can be used within
GBO or with genetica algorithms to search for the optimal design. To the best
of our knowledge, MBO has not yet been utilized for ASO to mitigate dynamic
stall characteristics of airfoils.

In this work, MBO is used for ASO of wind turbine airfoils to delay stall.
The surrogate is constructed using regression Kriging [7] and is sequentially
refinement using expected improvement infill criteria. The PARSEC airfoil pa-
rameterization technique [20] with six design variables is used for generating
the airfoil shapes. The surrogate model is searched using a multi-start gradient-
based optimizer.

The next section presents the problem statement for dynamic stall mitigation
and the setup of the computational model. The following section describes the
MBO approach. Results of numerical experiments are presented for the ASO.
Conclusions and suggestions of future work are then described.

2 Problem Statement

This section describes the problem formulation and the airfoil parameterization
method used for the current study, as well as the CFD modeling and validation.
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2.1 Problem formulation

The dynamic stall phenomenon is generally studied with sinusoidal oscillating
airfoil in a uniform free-stream flow. The pitching motion of the airfoil is de-
scribed using the angle of attack as a function of time t given as

α(t) = αm +A sin(ωt), (1)

where αm, A and ω represent the mean angle of attack, amplitude of oscillation,
and rotational rate, respectively. The reduced frequency, k, is another important
parameter and is defined as

k =
ωc

2U
, (2)

where c is the airfoil chord length, and U is the free-stream speed. In this work,
a deep dynamic stall case from Lee et al. [9] is used. The parameters defining the
case are: αm = 10◦, A = 15◦, k = 0.05, and a Reynolds number of Re = 135, 000.

The objective of the study is to produce an optimum airfoil shape which
mitigates the dynamic stall adverse loading by delaying the dynamic stall angle.
This objective is achieved by delaying the formation of the dynamic stall vortex
responsible for sudden divergence in the drag and pitching moment coefficients.
The optimization problem is formulated as:

min
x

f(x) =

(∑N
i=1 cdi

Fcd0

)
+

(∑N
i=1 |cmi

|
Gcm0

)
(3)

s.t. g1(x) = αds0 +∆α− αds ≤ 0 (4)

xl ≤ x ≤ xu (5)

Here, Fcd0
=
∑N

i=1(cd0
)i, Gcm0

=
∑N

i=1 |(cm0
)i|. x is the design variable vector.

xl and xu are the lower and upper bounds of x, respectively. The parameters cdi
,

cmi
, αds represent the time variant drag coefficient, pitching moment coefficient

at the ith timestep and dynamic stall angle of the airfoil. The subscript ‘0’
represents the baseline airfoil shape, which is the NACA0012 airfoil. ∆α denotes
the minimum delay in the dynamic stall angle expected in the optimum design,
which is set to ∆α = 3◦ in this work. N denotes the number of time steps in
each pitching cycle. For this study, we will only consider the upstroke part of the
pitching cycle, which is predominantly affected by formation of dynamic stall
vortex.

2.2 Design variables

In this work, the PARSEC [20] parameterization technique is used for describing
the airfoil shapes. In PARSEC, there are 12 parameters defining the airfoil shape
of unit chord. The parameters affecting only the upper surface of the airfoil are
considered in this study. The trailing edge offset and thickness are set to zero,
which generates a sharp trailing edge airfoil. For this study, we have selected six
parameters (see Table 1).
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Table 1: Design variables and their bounds for upper airfoil surface
Description x xu xl

Surface crest x coordinate X 0.5011 0.2733
Surface crest z coordinate Z 0.09 0.054
Second order surface derivative Zxx -0.4036 -0.6726
Leading edge radius RLE 0.0222 0.0104
Trailing edge directional angle θTE -7.0294 -11.7156
TE wedge angle βTE 5.8803 3.52818

2.3 Computational fluid dynamics modeling

The current study is performed with the Stanford University Unstructured (SU2)
unsteady compressible Navier-Stokes (URANS) solver [17]. The dynamic stall
simulations are performed using dual time stepping strategy, rigid grid motion
and Menter’s shear stress transport (SST) turbulence model [14]. The convective
fluxes calculated using second-order Jameson-Schmidt-Turkel (JST) scheme [17]
and time discretization is done by the Euler implicit scheme [17] with maximum
Courant-Friedrichs-Lewy (CFL) number selected as 4. The two-level multigrid
W-cycle method [17] is also used for convergence acceleration. The Cauchy con-
vergence criteria [1] is applied with Cauchy epsilon as 10−6 over last 100 itera-
tions. No-slip boundary condition is used on airfoil surface with farfield condition
on external boundary with Reynolds number of 135,000 and Mach number of
0.1. The c-grid mesh is set up an with outer boundary at 55c from airfoil is gen-
erated using blockmesh utility provided by OpenFoam [3]. The mesh is refined
near the airfoil surface with first layer thickness to obtain y+ ≤ 0.5 and growth
ratio of 1.05, which is necessary to accurately capture the onset of the dynamic
stall vortex. Figure 1 show a coarse version of the mesh.

The grid and time independence study is done in two steps. Initially, the
spatial resolution of the mesh is obtained by grid study. This mesh is then used
to conduct time study to attain accurate physical time step. The flow and motion
parameters are selected from study done by Lee et al. [9] as mentioned in Section
2.1. The grid study is done at Re=135,000, angle of attack α = 4◦ and turbulence
intensity TI = 0.08%. The details of grid study are shown in Table 2. Meshes
2, 3 and 4 show minimal change in lift coefficient ∆cl ≤ 0.003 with the drag
counts variation within 4 counts. Considering the simulation time requirement
and accuracy of the results, mesh 2 with 387,000 cells is selected for the study.

After selecting the spatial resolution, a time independent study is conducted
with multiple time steps of an airfoil in a sinusoidal pitching cycle in order to
select the temporal resolution. This is done using the generalized Richardson
extrapolation method (REM) [18] with the use of average drag coefficient per
oscillation cycle cdavg as a lower order value to an estimation parameter. The
REM estimate cdEst

represents the average drag coefficient per cycle at a zero
time step, which is calculated as cdEst

= 2, 108 counts. Table 3 summarizes the
results. The simulation time and estimated error Esterr are then considered to
select time step of 0.0015 for all further investigations.
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(a) (b)

Fig. 1: Coarse mesh with NACA0012 airfoil (a) computational domain, (b) mesh
around airfoil (zoom view)

Table 2: Grid convergence study at Re=135000, α = 4◦

Mesh Number of cells×103 cl cd, counts *Simulation time (min)

1 259 0.395 174.3 75
2 387 0.414 180.4 146
3 540 0.416 184.7 220
4 720 0.417 184.2 298

*Computed on high-performance cluster with 64 processors

Table 3: Time study at α = 10◦ + 15◦sin(ωt) with k = 0.05 at Re = 135, 000
dt cdavg **Simulation Time Esterr = [cdavg − cdEst ]
[s] [counts/cycle] [hrs/cycle] [counts]

0.004 2,019 51 88.4
0.002 2,093 65 14.9
0.0015 2,103 69 4.8
0.0010 2,105 78 2.1
0.0005 2,107 99 0.52

**Computed on high-performance cluster with 112 processors

3 Methods

This section describes the MBO algorithm and the mathematical details of the
metamodeling. In particular, the details of the workflow, sampling plan, regres-
sion Kriging, infill criteria, and validation are described.
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3.1 Workflow

A flowchart of the MBO algorithm is shown in Fig. 2. The presented algorithm
consist of an automated loop which sequentially improves the metamodel accu-
racy. The optimization algorithm starts with a sampling plan where the design
space is sampled for initial samples. The initial samples are then evaluated with
the CFD model. The regression Kriging metamodel is then constructed for the
objective and constraint functions from the initial samples. The constructed
metamodel is validated against a test data set. If the model does not pass ter-
mination criteria, then an infill strategy is used to refine the metamodel and the
above steps are repeated until the metamodel accuracy satisfies the termination
criteria. Finally, an optimum design is found by optimizing the metamodel.

3.2 Sampling plan

The accurate construction of metamodel requires an appropriate sampling plan
which captures the trend of objective function throughout design space. In this
study, Latin hypercube sampling (LHS)[13, 5] is used to generate initial and test
data samples. For this study, an initial sample size is considered as ten times the
number of design variables.

CFD Model 
(URANS)

Sampling Plan 
(LHS)

Metamodel Construction 
(Regression Kriging)

Termination 
Criteria 

Optimization

Yes

Add the infill 
point 

No

Validation

Observations

Fig. 2: Flowchart of the metamodel-based optimization algorithm
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3.3 Regression Kriging

Kriging [19] is a Gaussian based interpolation method widely used in surrogate
based optimization [19]. It mainly takes the training point as the realization of
the unknown process and approximates as a combination of global trend function
plus a localised departure as

y(x) = G(x) + Z(x), (6)

where x is any sample x = [x1 x2 ... xP ]T ⊂ RP , y(x) is the unknown func-
tion, G(x) is a known polynomial function and Z(x) is a normally distributed
Gaussian process with a zero mean, variance σ2, and non-zero covariance [19]
providing localised deviation to global trend function. The training samples
(x1,x2, ...,xns) in design domain D are correlated with each other through co-
variance matrix of function Z(x) given by

Cov[ Z(xi), Z(xj) ] = σ2 R
( [

R(xi,xj)
] )
, (7)

where R is (ns, ns) symmetric correlation matrix with Rij = R(xi,xj) a corre-
lation function between any two sample points xi and xj . In this work, we have
used the Gaussian spatial correlation function

R(xi,xj) = exp
[
−

P∑
p=1

θp
∣∣xip − xjp∣∣2 ], (8)

where θp denotes pth component of vector θ = [θ1 θ2... θP ]T , a vector of unknown
hyper-parameters to be tuned.

The Kriging predictor is given by [19]

ŷ(x) = β̂ + rT (x) R−1( y −Gβ̂ ), (9)

where y is the column vector (ns,1) containing response at sample points, G is
a column vector (ns,1) and filled with ones when G(x) is considered constant.
The vector rT (x) = [R(x,x1), R(x,x2), ..., R(x,xns)] is the correlation vector
between known observed points (x1,x2, ...,xns) and the new sample points x.

The vector β̂ in (9) can be evaluated as

β̂ = (GTR−1G) GTR−1y. (10)

The Kriging model is trained over sample data by tuning hyperparameters θ to
maximize concentrated likelihood function [5] given by

l(θ) =
ns
2
ln(σ̂2)− 1

2
ln|R|, (11)

where estimated variance of Kriging model σ̂2 is computed as

σ̂2 =
(y −Gβ̂)T R−1 (y −Gβ̂)

ns
. (12)
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The Kriging method assumes that the sampled responses are true and do not
contain any errors. Typically, most of the engineering functions does have some
inherent errors due to involved evaluation process. The objective function in this
study could involve errors from the CFD simulation of separated flow region in
the dynamic stall cycle. This would produce error in the Kriging approximation
when more points are added in close proximity to each other during the opti-
mization process. This problem can be alleviated by using regression Kriging
[7], which allows the Kriging model to do a regression over the sampled data [7].
This is achieved by the addition of a regularization parameter λ to the diago-
nal terms of the Kriging correlation matrix R, making it R + λI for regression
Kriging method where I is an identity matrix. The regularization parameter λ
is evaluated by maximizing likelihood function along with θ hyperparameters.
The regression Kriging predictor is now given as [5]

ŷr = β̂r + rT (x) (R + λI)
−1

( y −Gβ̂r ), (13)

where
β̂r = (GT (R + λI)−1G) GT (R + λI)−1y (14)

and variance σ̂r
2 of regression Kriging model is computed by

σ̂r
2 =

(y −Gβ̂r)T (R + λI)
−1

(y −Gβ̂r)

ns
, (15)

where the subscript r denotes regression.

3.4 Infill criteria

The metamodel constructed with regression Kriging using the initial sample data
is an approximation of true objective function. The search of the optimal design
depends on the accuracy of the metamodel. Although, higher number of initial
samples will improve model accuracy it is wise to add infill points strategically
in the design space where further improvements in the metamodel are possi-
ble. For this study, we will use the expected improvement (EI) infill criteria to
provide a balanced exploration and exploitation of the objective function. The
EI for regression Kriging is an extension of the EI for Kriging, which uses a
re-interpolation technique to make sure resampling of points are avoided. The
infill points are obtained by the maximizing EI function, which is written as

E[I(x)] =

{
(ymin − ŷ) Φ

(
ymin−ŷr

ŝ

)
+ ŝ φ

(
ymin−ŷr

ŝ

)
when ŝ > 0,

0 when ŝ = 0,
(16)

where ymin is the current minimum response, Φ() and φ() are normal cumulative
distribution and probability density functions, respectively. The mean square
error of the regression Kriging metamodel is given by

ŝri(x) = σ̂ri
2
[
1− rTR−1r +

1−GTR−1r

GTR G

]
, (17)
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where σ̂2
ri is the variance of the metamodel with re-interpolation technique given

as

σ̂2
ri =

(y −Gβ̂r)T (R + λI)
−1

R (R + λI)
−1

(y −Gβ̂r)

ns
. (18)

The EI method for regression Kriging with the re-interpolation technique is
described in detail by Forrester et al. [7].

3.5 Validation

In this work, the global accuracy of the metamodel is validated using the nor-
malized root mean squared error (NRMSE) defined as

NRMSE =

√∑nT

i=1
(yi

Test−ŷi
Test)

2

N

(ymax − ymin)I
, (19)

where yiTest and ŷiTest represent responses from the CFD evaluation and meta-
model prediction at ith test samples, respectively. The response value y could be
an objective function f(x) or constraint function g1(x) values for their respec-
tive error estimation. The nT indicates the number of test data samples. The
denominator of (ymax − ymin)I represents maximum and minimum of response
values of initial sample I data. In this work, NRMSE ≤ 10% and a fixed bud-
get of 20 infill samples are considered as acceptable criteria for accurate global
metamodel.

3.6 Optimization

Once an accurate metamodel is obtained it is used by the optimizer to find an
optimal design for given problem. For this study, we use a multi-start gradient-
based search algorithm to find the optimal design. The sequential least squares
programming (SLSQP) algorithm offered by Scipy [21] python package is utilized
in this work. A total 240 starting points are used in this study. These start
points are distributed over the design space by using the LHS technique. The
best obtained result is reported as optimal design.

4 Results

This section presents the results of the metamodel generation and the validation
study for the dynamic stall mitigation problem. The optimization results are
discussed.

4.1 Metamodel construction

As discussed earlier, the optimization algorithm generates the metamodel and
sequentially refines it. Initially, the design space is sampled using LHS. A total
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of 60 design samples (10× number of design variables) are generated. Each de-
sign sample is then evaluated with the CFD module to generate the objective
and constraint function values. Note that in this study we only simulated the
upstroke of the pitching cycle where dynamic stall vortex formation occurs. The
obtained observations are used to construct two separate metamodels, one for
the objective and another for the constrained function. Both these metamodels
are validated with 20 test data points (one third of initial samples). The test
data points are also generated using LHS technique separately and evaluated
with the CFD module. The global accuracy of the metamodel is tested using the
NRMSE metric. If the accuracy of the model satisfies the termination criteria
then it is passed to the optimizer, else an infill point is evaluated and added to
the initial sampling plan to construct a new metamodel. This process is iterated
until the metamodel satisfies the termination criteria of NRMSE ≤ 10% and
fixed budget of 20 infill points.

Figure 3 shows a plot of the NRMSE for the objective and constraints
functions every 5 infill points. It can be seen that both the metamodels satisfy
global accuracy error criteria well before infill points reach the fixed budget
criteria. The constraint function metamodel shows a higher accuracy than the
objective function metamodel reaching 2.4% and 8.8%, respectively, by total 80
sample points (60 initial samples plus 20 infill points).

4.2 Optimal design

Figure 4 shows the baseline and optimum airfoil results. Table 4 gives the aero-
dynamic characteristics of the airfoils. There are major shape variations be-
tween the baseline (NACA0012) and the optimized airfoil. The optimized airfoil
has a higher maximum thickness (t/cmax = 0.146) with a maximum camber
(M) = 1.89% located at x/c = 0.62. The optimum design is able to delay the
dynamic stall angle (αds) by more than 3◦, whereas the moment stall angle αms
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Fig. 3: Objective (f) and constraint (g1) function metamodel validation
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Fig. 4: Comparison between baseline and optimized designs (a) airfoil shapes
(b) lift coefficient, (c) drag coefficient, (d) pitching moment coefficient. Time
dependant aerodynamic coefficients results are with oscillation cycle parameters
α = 10◦ + 15◦ sin(ωt) and k = 0.05

is delayed to 20.26◦. The αms indicates formation of dynamic stall vortex which
is responsible for sudden divergence in drag and pitching moment coefficients.
The delay in dynamic stall vortex formation provides an increase in operational
range without adverse loading on the airfoil. Moreover, optimum shape also
shows the reduction in severity of pitching moment (Fig. 4d).

Figure 5 shows z-vorticity contour plots of baseline and optimum airfoil near
moment stall and dynamic stall angles. It can be seen that near the moment
stall and dynamic stall point of baseline airfoil, the optimal shape does not show
any signs of dynamics stall vortex formation which verify details given in Table
4.

5 Conclusion

In this work, efficient aerodynamic shape optimization using regression Kriging
metamodeling is used for mitigating the adverse effects of dynamic stall on wind
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Table 4: Aerodynamic and shape characteristics of baseline and optimized airfoil
Airfoil αds αms (t/c)max M(%)

Baseline (NACA0012) 19.15◦ 16.55◦ 0.12 0
Optimized 22.52◦ 20.26◦ 0.146 1.89

(a) (b)

(c) (d)

Fig. 5: Z-vorticity contour plot for (a) baseline at α = 16.55◦ (b) optimized at
α = 16.55◦, (c) baseline at α = 18.9◦, (d) optimized at α = 18.9◦

turbine airfoil shapes. The optimal airfoil shape shows a significant delay in the
dynamic stall angle when compared to a baseline airfoil. It was found that the
optimal shape has a higher maximum thickness and maximum camber compared
to the baseline airfoil. Future work will consider global sensitivity analysis to
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provide the sensitivities of the individual variables with respect to objective and
constraint functions, and to explore the interaction effects of variables. This will
reveal how the airfoil aerodynamics affects dynamic stall response.
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