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Abstract. Electromagnetic (EM) simulation models are ubiquitous in the design of 
microwave and antenna components. EM analysis is reliable but CPU intensive. In 
particular, multiple simulations entailed by parametric optimization or uncertainty 
quantification may considerably slow down the design processes. In order to address 
this problem, it is possible to employ fast metamodels. Here, the popular solution ap-
proaches are approximation surrogates, which are versatile and easily accessible. Not-
withstanding, the major issue for conventional modeling methods is the curse of di-
mensionality. In the case of high-frequency components, an added difficulty are 
highly nonlinear outputs that need to be handled. A recently reported constrained 
modeling attempts to broaden the applicability of approximation surrogates by con-
fining the surrogate model setup to a small subset of the parameter space. The said 
region contains the parameter vectors corresponding to high-quality designs w.r.t. the 
considered figures of interest, which allows for a dramatic reduction of the number of 
training samples needed to render reliable surrogates without formally restricting the 
parameter ranges. This paper reviews the recent techniques employing these concepts 
and provides real-world illustration examples of antenna and microwave structures.  

Keywords: Microwave engineering, antenna engineering, electromagnetic simula-
tion, surrogate modeling, performance-driven modeling, kriging interpolation. 

1 Introduction 

Design of contemporary microwave and antenna components has been increasingly 
dependent on full-wave electromagnetic (EM) simulation tools. EM analysis permits 
reliable evaluation of arbitrary geometries and taking into account cross-couplings be-
tween system components, dielectric anisotropy, or the effects of installation fixtures 
and radomes. The growing involvement of EM simulation packages is especially perti-
nent to parameter tuning also referred to as design closure [1]. This is where the per-
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formance parameters of the structure at hand are enhanced subject to the assumed de-
sign constraints. It is most often achieved through numerical optimization, which en-
tails significant computational expenses. Handling massive EM analyses is one of the 
major challenges pertaining to EM-based design processes even if local optimization is 
of concern. Solving tasks such as global optimization [2], uncertainty quantification or 
tolerance-aware design [3], may become computationally unmanageable when at-
tempted directly at full-wave EM simulation level. 

Reducing the CPU cost of EM-driven design has been the subject of extensive re-
search. One possible option is the development of more efficient numerical algorithms, 
e.g., incorporation of adjoint sensitivities to speed up gradient-based procedures [4], or 
the employment of (local) surrogate models [5]. A notable example of the latter is space 
mapping [6]. Other approaches include response correction methods [7], feature-based 
optimization [8], or machine learning frameworks, often surrogate-assisted [9]. An-
other option is an overall replacement of the EM model by its faster surrogate, which 
permits a rapid execution of all types of simulation-based design procedures. Data-
driven surrogates belong to the most popular ones due to their versatility [10]. They are 
constructed by approximating the data sampled from the original (here, EM) model 
with no physical insight required. Commonly used modeling techniques include poly-
nomial regression [11], radial basis functions [12], kriging [13], support vector regres-
sion (SVR) [14], and polynomial chaos expansion (PCE) [15]. Available alternatives 
include, among others, hybridization of one of the aforementioned methods. One of 
these is PC kriging [16], in which polynomial chaos expansion surrogate becomes a 
trend function, whereas kriging interpolation is employed to account for the residuals. 

Despite their merits and popularity, applicability of approximation models is limited 
by the curse of dimensionality. In the case of high-frequency structures, which often 
feature nonlinear responses, reliable data-driven surrogates can be constructed for sys-
tems described by up to four or five variables. Design utility of such models is of course 
questionable given the complexity of contemporary devices (both antennas and micro-
wave). A range of methods have been developed to mitigate these problems, including 
high-dimensional model representation (HDMR) [17], feature-based modeling [18], or-
thogonal matching pursuit (OMP) [19], as well as variable-fidelity methods (Bayesian 
model fusion [20], co-kriging [21], or two-stage GPR [22]). 

In [23], an alternative approach has been suggested, where the issue of high cost of 
training data acquisition is addressed by confining the surrogate model domain to a region 
that contains the designs that are of high quality with respect to the figures of interest 
relevant for the system at hand. The volume of such a region is dramatically smaller than 
the conventional box-constrained domain so that restricting the model validity (and, con-
sequently, training data allocation) leads to significant computational savings. Determi-
nation of the constrained domain requires additional knowledge, normally in the form of 
the reference designs pre-optimized with respect to the chosen figures of interest of 
choice. Several variations of the constrained modeling have been reported, including ru-
dimentary frameworks rendering surrogates that can handle a single operating condition 
[23], versions that allow accounting for supplementary figures of interest (e.g., substrate 
permittivity [24]), to techniques that permit arbitrary allocation of the reference designs 
[25]. The nested kriging of [26] also allows for straightforward uniform domain sampling 
and surrogate model optimization, which was not possible in the earlier versions. 
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This paper reviews the recent developments of the constrained modeling, focusing 
on three approaches: (i) modeling with structured reference design set [23,24], (ii) tri-
angulation-based modeling [25], as well as (iii) the nested kriging framework [26]. The 
presented methods are illustrated using real-world microwave and antenna structures, 
and benchmarked against conventional surrogate modeling methods. A generic formu-
lation of the constrained modeling concept is also provided. 

2 Surrogate Modeling with Domain Confinement 

We start by formulating the constrained modeling concept. One of the most important 
components is the confined surrogate model domain. The fundamental criterion decid-
ing upon the domain geometry is design optimality for the assumed design objectives. 

 
2.1 Fundamental Concepts. Design Variables and Figures of Interest 

Let us denote by X the parameter space for the design problem at hand. It is delimited 
by the lower and upper bounds on design variables l  x  u, where x = [x1 … xn]T, l = 
[l1 … ln]T, u = [u1 … un]T, or X = [l1 u1]  …  [ln un]. The relevant figures of interest 
are fk, k = 1, …, N. Perhaps the most representative example of a performance figure is 
the operating frequency (or frequencies in the case of multi-band structures) [23]. Another 
example is the substrate permittivity [24]. The objective space F is defined by the ranges 
fk.min  fk(j)  fk.max, k = 1, …, N, i.e., F = [f1.min  f1.max]  …  [fN.min  fN.max]. The design goals 
for a given target vector f = [f1 … fN]T are encoded in an objective function U(x,f). The 
optimum design Uf(f) w.r.t. f, is  

     ( ) arg min ( , )fU U
x

f x f                                                   (1) 

An illustration example follows: if fk are operating frequencies of a multi-band an-
tenna, U() may be defined as –min{B1,…,BN}, where Bj is the fractional bandwidth 
corresponding to fj. Thus, minimization of Uf(f) leads to achieving the largest possible 
bandwidths. 

Uf(F)  X is an N-dimensional manifold (cf. Fig. 1), which determines the region of 
interest from the point of view of the figures fk. It contains the designs that are of high 
quality w.r.t. fk as specified by U. Hence, the surrogate constructed in the vicinity of Uf(F) 
is all one needs to carry out the design tasks where fk are of concern. Focusing on Uf(F) 
yields considerable savings in terms of training data acquisition as compared to building 
the model in X. Yet, some problems arise: (i) how to identify Uf(F), (ii) how to carry out 
design of experiments, and, (iii) how to employ the surrogate (e.g., for parametric opti-
mization) given geometrical complexity of the domain. Sections 3 through 5 address these 
issues when discussing particular realizations of the constrained modeling concept. 

2.2 Modeling Flow 

The modeling flow is shown in Fig. 2. The fundamental step of the process is a definition 
of the model domain. The latter is based on information acquired from a certain number 
of reference designs optimized for the selected values of performance figures. A particular 
way of utilizing this data is what distinguishes different versions of the constrained mod-
eling frameworks. 
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3 Constrained Modeling with Predefined Reference Point 
Allocation 

The initial versions of constrained modeling framework utilized (structurally) fixed set of 
reference points. The advantage of this approach was simpler implementation. The down-
side was limited flexibility. This section describes a specific technique designed to model 
narrowband antennas with two figures of interest: operating frequency, and relative per-
mittivity of the dielectric substrate [24]. 

 
3.1 Constructing the Surrogate 

Here, we assume two figures of interest, specifically, the antenna operating frequency f 
and the relative substrate permittivity r. The goal is to construct the surrogate for fmin 
 f  fmax, and min  r  max. The design that is optimum for particular values of f and 
r will be denoted as Uf(f,r). 

The domain of the model is a neighborhood of the surface defined using 9 reference 
points allocated within the discussed ranges of the operating frequency and substrate per-
mittivity. We have Uf(f*,r

*), where f* {fmin, f0, fmax} and r
*  {min, r0, max}, cf. Fig. 3. 

f1

f2

f1.maxf1.min

f2.min

f2.max

F

x1

x2

x3

Uf(F)

f
Uf(.)

Uf(f)
X

 
                                        (a)                                                            (b) 

Fig. 1. Basic concepts of constrained modeling: (a) the space F of figures of interest, and (b) the 
parameter space X. Note that the set Uf(F) constitutes an N-dimensional object (surface) in the pa-
rameter space. This set contains optimum designs for all f  F. In principle, restricting the modeling 
process only to Uf(F) is sufficient to maintain the design utility of the surrogate [26]. 

Objective    
space F

EM solver

Define surrogate model domain XS

Acquire training data within XS

Identify surrogate model

Parameter   
space X

 
Fig. 2. Performance-driven modeling flow. 
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We define vectors v1 = Uf(fmin,min) – Uf(f0,r0), v2 = Uf(fmin,r0) – Uf(f0,r0), v3 = 
Uf(fmin,max) – Uf(f0,r0), v4 = Uf(f0,max) – Uf(f0,r0), v5 = Uf(fmax,max) – Uf(f0,r0), 
v6 = Uf(fmax,r0) – Uf(f0,r0), v7 = Uf(fmax,min) – Uf(f0,r0), and v8 = Uf(f0,min) – Uf(f0,r0), 
see Fig. 3(a). Let M be a manifold spanned by vectors [v1,v2], [v2,v3], …, [v8,v1] 

8 8

0 0 11 1
{ ( , ) : , 0, 1}k f r k kk k

M M U f        
       y v v        (2) 

For consistency, v9 = v1. Let z be a point in the parameter space, and Pk(z) be its 
projection onto Mk (cf. Fig. 4(b)). We have 

2
#

0 0 1,
arg min ( , )f r k kU f

 
       z v v                               (3) 

where vk+1
# = vk+1 – pkvk with pk = vk

Tvk+1(vk
Tvk). Thus, vk+1

# is a component of vk+1 that 
is orthogonal to vk. Consider 

#
1 0 0( , )

T

k k f rU f         v v z                                     (4) 

The least-square solution to (4) (equivalent to the solution of (3)) is given as 

   1

0 0( , )
T T T

k k k f rU f  


     V V V z                                (5) 

where Vk = [vk vk+1
#]. In practice, the expansion coefficients with respect to vk and vk+1 

are of interest. These are given as ,kp       . Note that Pk(z)  Mk if and only 

if   0,   0, and  +   1.  
Let xmax = max{Uf(f0,r0) + v1, …, Uf(f0,r0) + v8} and xmin = min{Uf(f0,r0) + v1, …, Uf(f0,r0) 
+ v8}; dx = xmax – xmin is the range of variation of geometry parameters within M. Using 
these, we can define the domain XS by imposing the following conditions: a y  XS if 

1. y is close to M in the sense that its orthogonal projection belongs to at least one 
Mk, i.e., we have ( ) { {1,...,8}: ( ) }k kK k P M    y y ; 

2. maxmin{|| ( ( )) / / ||: ( )}kP k K d  y y dx y  (here, // stands for component-wise divi-

sion);  dmax is a domain thickness parameter (typically, 0.1  dmax  0.2). 
Note that dmax in the second condition determines the “perpendicular” size of XS. The 

size of XS is dramatically smaller (volume-wise) than the size of the hypercube containing 
the reference designs. The surrogate itself is constructed using kriging interpolation of 
the EM model response R based on the training data allocated in XS [24]. The design of 
experiments is based on random sampling within the interval [xmin, xmax] assuming uni-
form probability distribution. The samples allocated outside [xmin, xmax] are rejected. 

 
3.2 Case Study: Ring Slot Antenna 

The method is illustrated using a ring slot antenna of Fig. 5(a) [27], implemented on 
the 0.76-mm-thick substrate. The design parameters are x = [lf ld wd r s sd o g εr]T; 
εr represents relative permittivity of the substrate. The feed line width wf is computed 
for each εr to ensure 50 ohm input impedance. The EM is implemented in CST 
(~300,000 cells, simulation time 90 s). The goal is to construct the surrogate for the 
following ranged of the operating frequency and substrate permittivity: fmin = 2.5 GHz 
to fmax = 6.5 GHz, and min = 2.0 to max = 5.0. There are nine reference points generated 
by optimizing the antenna [28] for the pairs {f0,r} with f  {2.5, 4.5, 6.5} GHz and r 
 {2.0, 3.5, 5.0}. The optimization objective is matching improvement at f0.  
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f



min

max

r0

fmin fmaxf0        x1

x2

x3

Uf(fmin,min)

Uf(fmax,max)

Uf(fmax,min)

Uf(fmin,max)

Uf(f0,r0)

 
                                         (a)                                                (b) 
Fig. 3. Graphical illustration of reference points: (a) objective space, and (b) parameter space. The 
domain-defining surface is marked as the dotted area between the reference points [24]. 

                    

vk

vk+1

z

Pk(z)

Uf(f0,r0)  
                                             (a)                                                   (b) 
Fig. 4. Auxiliary concepts for domain definition: (a) the surface of Fig. 3(b); (b) the kth surface 
Mk marked along with its corresponding vectors vk and vk+1. Also shown is an exemplary point z 
and its projection onto Mk [24]. 

 

(a) 

     

 
(b) 

Fig. 5. Ring slot antenna: (a) geometry [27], (b) uniform versus constrained sampling for selected 
two-dimensional projections onto the lf -wd plane and the lf -sd plane [24]. 

 
Fig. 6. Reflection characteristics of the ring-slot antenna at the selected test locations. The surrogate 
constructed with N = 1000 training samples: EM simulations (—), constrained surrogate (o) [24]. 
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For the sake of validation, the surrogate model was constructed using the training set 
of various sizes, from 100 to 1000 samples. In all cases, we used dmax = 0.2. Model vali-
dation was performed using the split-sample method with 100 test designs. The bench-
mark was kriging interpolation surrogate established in the original domain X = [xmin, 
xmax] using 1000 samples. The numerical results are gathered in Table 1, see also Fig. 6. 
Furthermore, Fig. 5(b) illustrates selected projections of the training data set for conven-
tional (uniform) and proposed design of experiments. It can be observed that the accuracy 
improvement due to constrained sampling is considerable (by a factor of about 3.5). The 
constrained surrogate that exhibits the same predictive power as the corresponding con-
ventional model can be obtained using around ten times less data samples.  

4 Constrained Modeling Using Domain Triangulation 

In [25], a generalization of the technique presented in Section 3 has been proposed, 
which is based on triangulation of the reference designs. This technique does not only 
allow for arbitrary distribution of the reference points but it also has no limitations in 
the number of figures of interest that can be handled. 

 
4.1 Constructing the Surrogate 

The parameter and objective spaces are defined as in Section 2. The reference designs x(j) 
= [x1

(j) … xn
(j)]T, j = 1, …, p, are optimized with respect to the figure of interest vectors f(j) 

= [f1(j) … fN(j)]T. The reference designs x(j) are subject to Delaunay triangulation [29] to 
form simplexes S(k), k = 1, …, NS, whose vertices are S(k) = {x(k.1),…, x(k.N+1)}, where x(k.j) 
 {x(1), …, x(N)}, j = 1, …, N + 1 (cf. Fig. 7(a)). 

Table 1. Ring slot antenna: modeling results. 

 

f1

f2

f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

f(7)

f(8)

S(1) = [x(1) x(2) x(4)]
S(2) = [x(1) x(3) x(4)]
S(3) = [x(2) x(5) x(6)]
S(4) = [x(2) x(5) x(7)]
S(5) = [x(2) x(4) x(6)]
S(6) = [x(4) x(6) x(7)]
S(7) = [x(5) x(6) x(8)]
S(8) = [x(6) x(7) x(8)]
S(9) = [x(5) x(8) x(9)]

S(1)

S(2)
S(3)

S(4)

S(5)

S(6)

S(7)

S(8)

f(9)

S(9)

x(2)

x(1)

x1

x2

x3

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

 

v(1)

z

Pk(z)

x(0)

v(2)

 
                                                        (a)                                                                    (b) 

Fig. 7. Surrogate modeling using design reference triangulation: (a) triangulation of the reference 
designs (left plot) and corresponding objective vectors (right plot); (b) simplex S(k) a, point z and its 
projection onto the hyper-plane Hk containing S(k). 
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The model domain XS is determined as a vicinity of the manifold M defined as 
1 1( . )

1 1
{ : 0 1, 1}

N Nk j
j j jj j

k

M    

 
     y x                          (6) 

The region is defined using the distance from the surface M in the orthogonal com-
plements of the subspaces containing S(k). Given a point z, it is necessary to find the 
distance from it to M, which can be done by considering a projection Pk(z) onto the 
affine subspace Hk  S(k). We also define the simplex anchor x(0) = x(k.1), and its span-
ning vectors v(j) = x(k.j+1) – x(0), j = 1, …, N (cf. Fig. 7(b)). The projection corresponds 
to the expansion coefficients w.r.t. v(j) [25] 

(1) ( )

2
(0) ( ) ( )

1[ ,..., ]
arg min

N

N j j

j 



   z x v                               (7) 

where the vectors ( )jv  are obtained from v(j) by orthogonalization (i.e., (1) (1)v v , 
(2) (2) (1)

12a v v v  where a12 = v(1)Tv(2)(v(1)Tv(1), etc.). In general 
(1) (2) ( ) (1) (2) ( )... ...N N       V v v v v v v A                              (8) 

Note that A is a triangular matrix that contains coefficients obtained from the above 
orthogonalization procedure. The problem (7) is equivalent to  

(1)

(1) (2) ( ) (0)

( )

... N

N





 
      
  

v v v z x                                    (9) 

The expansion coefficients can be found analytically as 
(1) ( ) 1 (0)... ( ) ( )

TN T T       V V V z x                              (10) 

The critical factor is whether Pk(z)  hull(S(k)) (hull() stands for the convex hull). For 
that, it is necessary to identify the expansion coefficients (j) of z w.r.t. {v(j)}. The latter 
can be obtained as (1) ( ) (1) ( )[ ... ] [ ... ]N T N T    A . It should be noted that Pk(z)  S(k) if 

1. ( ) 0 for 1,...,j j N   , and 

2. (1) ( )... 1N    . 
that is, if Pk(z) is a convex combination of the vectors v(j). 

The next step of surrogate modeling domain definition is to define 
( )

max max{ , 1,..., }k k p x x  and ( )
min min{ , 1,..., }k k p x x . The vector 

max min dx x x  is 

an indication of the geometry parameter variability within the surface M. Using these, 
the surrogate model domain XS can be defined as in [24]. More specifically, a vector y 
 XS if 

1. ( )( ) { {1,..., } : ( ) }k
S kK k N P S    y y ; 

2. 
maxmin{|| ( ( )) / / ||: ( )}kP k K d  y y dx y  (// stands for component-wise divi-

sion); dmax is a user-defined parameter determining the domain thickness. 
The major benefit of this definition is that XS is considerable smaller than the original 

domain min max[ , ]X  x x  volume-wise, thus the surrogate can be constructed using a 

reduced training set. Notwithstanding, the domain still contains the optimum designs 
(with respect to the selected performance figures) so that the surrogate retains its design 
utility. This is demonstrated in the next section by modeling a dual-band antenna over 
broad ranges of both geometry and material parameters.  
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4.2 Verification Case: Uniplanar Dipole Antenna 

For the sake of verification, let us consider a dipole antenna of Fig. 8(a) [30]. The structure 
is realized on Taconic RF-35 substrate of relative permittivity εr = 3.5 and thickness h = 
0.762 mm. There are six adjustable variables x = [l1 l2 l3 w1 w2 w3]T. Other parameters are 
fixed: l0 = 30, w0 = 3, s0 = 0.15 and o = 5 are fixed (dimensions in mm). The computational 
model R is simulated in CST Microwave Studio (~100,000 cells; simulation time 1 minute). 

We aim at constructing the surrogate within the following objective space: 2.0 GHz 
≤ f1 ≤ 4.0 GHz (lower band), and 4.5 GHz ≤ f2 ≤ 6.5 GHz (upper band). Figure 8(b) 
shows the allocation of the reference designs. The latter have been generated using 
variable-fidelity feature-based optimization [28]. 

Validation has been carried out by rendering the surrogates using various numbers 
of training samples, from 100 to 1600. In all cases, dmax = 0.05 was employed. The 
numerical results are gathered in Table 2. Conventional kriging metamodel is used as a 
benchmark. The antenna reflection characteristics according to the surrogate and EM 
simulation have been shown in Fig. 9. 

    
                                          (a)                                                                  (b) 
Fig. 8. Uniplanar dipole antenna: (a) geometry [30], (b) allocation of the reference designs and 
their triangulation [25]. 

 
Fig. 9. Reflection characteristics of the antenna of Fig. 8: electromagnetic simulations (—), trian-
gulation-based surrogate rendered with N = 1600 training samples (o). 

Table 2. Modeling results and benchmarking for antenna of Fig. 8. 
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5 Modeling Using Nested Kriging 

The nested kriging framework proposed in [26] employs two kriging metamodels. One 
of these models is used to establish the surrogate model domain by mapping the figure-
of-interest space into the parameter space and to provide the first approximation of the 
region of interest. The major advantage of [26] is that design of experiments but also 
model optimization can be implemented in a convenient way. 

 
5.1 Surrogate Model Construction 

We use the same definitions as in Section 2.1 for the objective and parameter spaces. 
The reference designs optimized w.r.t. f(j) = [f1

(j) … fN
(j)] are denoted as 

x(j) = [x1
(j) … xn

(j)]T, j = 1, …, p. The technique employs two kriging metamodels. The 
first-level one sI(f) transforms F into the parameter space X. The model sI is set up using 
the training pairs {f(j),x(j)}j = 1,…,p (see Fig. 10 for a graphical illustration). 

The surrogate model domain XS is defined to contain the designs that are optimum 
w.r.t. fk, k = 1, …, N. The information obtained from the reference designs only permits 
for establishing an initial approximation of the optimum design set Uf(f). As the domain 
should contain the entire Uf(f) (or a vast majority of it), sI(F) must be enlarged. This is 
realized by an orthogonal extension of sI(F) towards its normal vectors. We denote by 
{vn

(k)(f)}, k = 1, …, n – N, an orthonormal basis of vectors normal to sI(F) at f, and 
define xmax = [xmax.1 … xmax.n]T, xmin = [xmin.1 … xmin.n]T, with xmax.k = max{xk

(j), j = 1, …, 
p}, and xmin.k = min{xk

(j), j = 1, …, p}. We also define xd = xmax – xmin (parameter vari-
ations within sI(F)). Further, extension coefficients are defined as follows: 

(1) ( )
1 max( ) [ ( ) ... ( )] 0.5 | ( ) | ... | ( ) |

TT n N
n N d n d nd  
     α f f f x v f x v f      (11) 

Similarly as for the method discussed before, dmax denotes the domain thickness. The 
coefficients k are used to delimit XS (see also Fig. 10(b)) [26] by defining 

  ( )

1
: ( ) ( )

n N k
I k nk

M X 

 
   x x s f f v f                      (12) 

Using (12), we get 
( )

1
( ) ( ) ( ) : ,

1 1, 1,...,

n N k
I k k nk

S

k

F
X

k n N

 






      

      

x s f f v f f
                            (13) 

The second-level surrogate is a kriging model rendered in XS based on 
{xB

(k),R(xB
(k))}k = 1, …, NB, where R is the EM-simulation model of the structure of interest.  

Note that the definition of XS facilitates design of experiments which was a problem 
for both [23] and [25]. It is implemented using (13) and the mappings from the unit 
interval [0,1]n onto XS. Let {z(k)}, k = 1, …, NB, where z(k) = [z1

(k) … zn
(k)]T, denote the 

set of uniformly distributed data points in [0,1]n (here, using LHS [31]). The mapping 
is realized in two stages. First, the function h1 

 
1 1 1

1.min 1 1.max 1.min .min .max .min 1

( ) ([ ... ] )

[ ( ) ... ( )] [ 1 2 ... 1 2 ] 14

T
n

N N N N N n

h h z z

f z f f f z f f z z

  

         

y z
 

transforms the unit hypercube onto a F  [–1,1]n–N ( is a Cartesian product). Subse-
quently, a function h2 is defined as  
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( )
2 2 1 1 1 11
( ) ([ ... ] ) ([ ... ] ) ([ ... ] ) ([ ... ] )

n NT T T k T
n I N N k k N n Nk

h h y y y y y y y y y


   x y s v    (15) 

which maps F  [–1,1]n–N onto XS. Hence, uniformly distributed samples xB
(k) in XS are 

obtained as ( ) ( ) ( )
2 1( ) ( ( ))k k k

B H h h x z z .  

The surjective mapping H also allows for implementing surrogate model optimiza-
tion in its domain XS. In particular, the optimization process can be formally carried out 
in the primary domain F  [–1,1]n–N, whereas the mapping H can be employed to per-
form evaluation of the structure. 

 
5.2 Verification Case: Miniaturized Impedance Transformer 

The modeling technique described in Section 5.1 has been validated using a miniatur-
ized impedance matching transformer [32]. The structure is shown in Fig. 11(b). It is 
realized on Taconic RF-35 substrate of relative permittivity εr = 3.5 and thickness h = 
0.762 mm. The circuit employes compact microstrip resonant cells (CMRCs) shown in 
Fig. 11(a).  

The adjustable variables are x = [l1.1 l1.2 w1.1 w1.2 w1.0 l2.1 l2.2 w2.1 w2.2 w2.0 l3.1 l3.2 w3.1 
w3.2 w3.0]T. The figure-of-interest space contains the operating bands [f1 f2] with the fol-
lowing ranges: 1.5 GHz ≤ f1 ≤ 3.5 GHz, and 4.5 GHz ≤ f2 ≤ 6.5 GHz. Here, the optimum 
design is understood by minimization of the maximum reflection |S11| within [f1 f2] (which 
is a minimax problem). The allocation of the reference designs has been shown in Fig. 
11(c).  

Surrogate model validation has been carried out for various numbers of training data 
samples from 50 to 800. All models were generated using dmax = 0.05. The modeling error 
was calculated using the split-sample method with 100 random testing designs. The nu-
merical results are shown in Table 3 (see also Fig. 12). The benchmark includes conven-
tional kriging and RBF metamodels. It can be observed that the nested kriging framework 
enables two- or even three-fold reduction of the modeling error assuming the same train-
ing data set size. It should be emphasized that for this case the predictive power of all 
conventional surrogates is poor. The primary reason is a large number of geometry pa-
rameters and, consequently, a large volume of the conventional domain. 

f2

f1

f2.max

f2.min

f1.maxf1.min

F

f (k)

   x1

v1
(k)

M+

XS

x3

x2

sI(F)

sI(f
(k))

M-

 
                           (a)                                                                     (b) 

Fig. 10. The main components of the nested kriging framework: (a) reference points and the space 
of figures of interest F; (b) the domain defining surfaces: sI(F), the exemplary normal vector v1

(k) 
at f(k); the surfaces M– and M+, and the domain XS. The latter is defined as an extension of sI(F) 
according to (13) [26]. 
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(a) 

 

 

(b) 
  

(c) 
Fig. 11. Compact impedance transformer as verification case study for the nested kriging frame-
work: (a) CMRC cell, (b) impedance transformer structure [32], (c) reference points [26]. 

 
Fig. 12. Reflection characteristics of the circuit of Fig. 11(b): full-wave electromagnetic simula-
tions (—), and the nested kriging surrogate rendered with N = 800 training samples (o) [26]. 

Table 3. Modeling results and benchmarking for impedance matching transformer. 

 

6 Conclusions 

This paper discussed the recent developments in constrained modeling of high-frequency 
structures. Domain confinement permits a reduction of the computational overhead re-
lated to training data acquisition. At the same time, reliable surrogates can be rendered 
without formally restricting the ranges of geometry and material parameters as well as the 
operating conditions. There were three specific realizations of this concept discussed in 
the work. The main differences between these were in analytical formulation of the sur-
rogate model domain. The simplest technique, discussed in Section 3, requires structured 
allocation of the reference designs. The second method, the triangulation-based modeling 
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of Section 4, is more flexible, allows for an arbitrary placement of the reference set, and 
it can directly handle arbitrary number of operating conditions. The downside is a non-
trivial design of experiments. The nested kriging framework is the most comprehensive: 
the very formulation of the model domain incorporates the means to carry out uniform 
design of experiments as well as optimization of the surrogate. Notwithstanding, imple-
mentation of this approach is more involved. In general, surrogate modeling with domain 
confinement can be considered a viable workaround dimensionality and parameter range 
issues, both of which are the fundamental challenges of conventional methods. At the 
same time, the initial computational overhead required to generate the reference points is 
well justified when the surrogate is reused, for example, for the purpose of dimension 
scaling for various operating conditions. 
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