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Abstract. Tuberculosis (TB), is an ancient disease that probably affects humans 

since pre-hominids. This disease is caused by bacteria belonging to the mycobac-

terium tuberculosis complex and usually affects the lungs in up to 67% of cases. 

In 2019, there were estimated to be over 10 million tuberculosis cases in the 

world, in the same year TB was between the ten leading causes of death, and the 

deadliest from a single infectious agent. Chest X-ray (CXR) has recently been 

promoted by the WHO as a tool possibly placed early in screening and triaging 

algorithms for TB detection. Numerous TB prevalence surveys have demon-

strated that CXR is the most sensitive screening tool for pulmonary TB and that 

a significant proportion of people with TB are asymptomatic in the early stages 

of the disease. This study presents experimentation of classic convolutional neu-

ral network architectures on public CRX databases in order to create a tool ap-

plied to the diagnostic aid of TB in chest X-ray images. As result the study has 

an AUC ranging from 0.78 to 0.84, sensitivity from 0.76 to 0.86 and specificity 

from 0.58 to 0.74 depending on the network architecture. The observed perfor-

mance by these metrics alone are within the range of metrics found in the litera-

ture, although there is much room for metrics improvement and bias avoiding. 

Also, the usage of the model in a triage use-case could be used to validate the 

efficiency of the model in the future. 

Keywords: Tuberculosis, Chest X-Ray, Convolutional Neural Networks. 

1 Introduction 

1.1 Tuberculosis 

Tuberculosis (TB), is an ancient disease that affects humans and probably existed in 

pre-hominids, and still is nowadays an important cause of death worldwide. This 
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disease is caused by bacteria belonging to the mycobacterium tuberculosis complex and 

usually affects the lungs, although other organs are affected in up to 33% of cases [1]. 

When properly treated, tuberculosis caused by drug-sensitive strains is curable in al-

most all cases. If left untreated, the disease can be fatal in 5 years in 50 to 65% of the 

cases. Transmission usually occurs by the aerial spread of droplets produced by patients 

with infectious pulmonary tuberculosis [1]. 

Despite the progress achieved in TB control over the past two and a half decades, 

with more than 50 million deaths averted globally, it is still the leading cause of death 

in people living with HIV, accounting for one in five deaths in the world [2]. In 2019, 

there were estimated to be over 10 million TB cases in the world, in the same year TB 

was between the ten leading causes of death, and the deadliest cause from a single in-

fectious agent [3]. 

Most people who develop TB can be cured, with early diagnosis and appropriate 

drug treatment. Still, for many countries, the end of the disease as an epidemic and 

major public health problem is far from the reality. Twenty–five years ago, in 1993, 

WHO declared TB a global health emergency [4]. In response, the End TB Strategy has 

the overall goal of ending the global TB epidemic, to achieve that goal it defines the 

targets (2030, 2035) and milestones (2020, 2025) for the needed reductions in tubercu-

losis cases and deaths. The sustainable development goals include a target to end the 

epidemic by 2030[4]. 

One of these efforts supports the continued collation of the evidence and best prac-

tices for various digital health endeavors in TB prevention and care. This will make a 

stronger ‘investment case’ for innovative development and the essential implementa-

tion of digital health initiatives at scale [5]. Adequate triage and diagnosis are a prereq-

uisite for the prognosis and success of any treatment and may involve several profes-

sionals and specialties. In this context, the choice of the essentially clinical mechanism 

that allows the measurement of the evaluator's impression becomes an important tool 

in helping a more accurate diagnosis [6]. 

1.2 Chest X-ray for detecting TB 

Chest X-ray (CXR) has recently been promoted by the WHO as a tool that can be placed 

early in screening and triaging algorithms (see Fig. 1). A great number of prevalence 

surveys on TB demonstrated that CXR is the most sensitive screening tool for pulmo-

nary TB and that TB is asymptomatic on a significant proportion of people while still 

in the early course of the disease [7]. When used as a triage test, CXR should be fol-

lowed by further diagnostic evaluation to establish a diagnosis, it is important that any 

CXR abnormality consistent with TB be further evaluated with a bacteriological test 

[8]. 
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Fig. 1. Using chest radiography as a triage tool (Source: Chest radiography in tuberculosis de-

tection – summary of current WHO recommendations and guidance on programmatic ap-

proaches, p. 11). 

More than identifying active TB disease, CXR also identifies those who have inactive 

TB or fibrotic lesions without a history of TB treatment. Once active TB has been ex-

cluded, patients with fibrotic lesions should be followed-up, given this population is at 

the highest risk of developing active TB disease and/or other respiratory complications 

[9]. 

In Porto Alegre city, located in the southern region of Brazil, a projection of the 

impact on case detection and health system costs of alternative triage approaches for 

tuberculosis found that most of the triage approaches modeled without X-ray were pre-

dicted to provide no significant benefit [10]. The same study also found that adding X-

ray as a triage tool for HIV-negative and unknown HIV status cases combined with 

appropriate triage approaches could substantially save costs over using an automated 

molecular test without triage, while identifying approximately the same number of 

cases [10]. 

In many high TB burden countries, it has been reported a relative lack of radiology 

interpretation expertise [11], this condition could result in impaired screening efficacy. 

There has been interest in the use of computer-aided diagnosis for the detection of pul-

monary TB at chest radiography, once automated detection of disease is a cost-effective 

technique aiding screening evaluation [12,13]. There are already studies in the medical 

literature using artificial intelligence tools to evaluate CXR images, but the developed 

tool’s availability is limited, especially in high burden countries [14]. 

This study presents experimentation of classic convolutional neural network archi-

tectures on public CRX databases in order to create a tool applied to the diagnostic aid 

of TB in chest X-ray images. 
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2 Methods 

2.1 Google Colab 

Google Colaboratory (Colab) is a project with the goal of disseminating education and 

research in the machine learning field [15]. Colaboratory notebooks are based on Jupy-

ter and work as a Google Docs object, thus they can be shared as such and many users 

can work simultaneously on the same notebook. 

Colab provides pre-configured runtimes in Python 2 or 3 with TensorFlow, Mat-

plotlib, and Keras, essential machine learning and artificial intelligence libraries. To 

run the experiments, Google Colab tool provides a virtual machine with 25.51 GB 

RAM, GPU 1xTesla K80, having 2496 CUDA cores, CPU 1x single-core hyper-

threaded Xeon Processors @2.3Ghz (No Turbo Boost), 45MB Cache. 

The images were loaded into Google Drive, which can be linked to Colab for direct 

access to files. Google Drive provides unlimited storage disk due to a partnership be-

tween Google and the University of São Paulo (USP). 

2.2 Image Datasets 

PadChest. PadChest is a dataset of labeled chest x-ray images along with their associ-

ated reports. This dataset includes more than 160,000 large-scale, high-resolution im-

ages from 67,000 patients that were interpreted and reported by radiologists at Hospital 

San Juan (Spain) from 2009 to 2017. The images have additional data attached contain-

ing information on image acquisition and patient demography [16]. This dataset con-

tains a total of 152 images classified with TB label. 

 

National Institutes of Health. In 2017 the National Institutes of Health (NIH), a com-

ponent of the U.S. Department of Health and Human Services, released over 100,000 

anonymized chest x-ray images and their corresponding data from more than 30,000 

patients, including many with advanced lung disease [17]. Other two notorious and 

vastly used publicly available datasets maintained by the National Institutes of Health, 

are from Montgomery County, Maryland, and Shenzhen, China [18] which contains 

respectively 58 and 336 images labeled as TB. 

2.3 Network Architectures 

AlexNet. In the ILSVRC classification and the localization challenge of 2012, the 

AlexNet architecture came on top as the winner [19]. The network architecture has 60 

million parameters and 650 thousand neurons [20]. The standard settings were em-

ployed in this study: Convolutional, maxpooling, and fully connected layers, ReLU ac-

tivations and the SGD optimization algorithm with a batch size of 128, momentum of 

0.9, step learning annealing starting at 0.01 and reduced three times, weight decay of 

0.0005, dropout layers with p = 0.5 design patterns, as in the original architecture arti-

cle[20]. 
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GoogLeNet. In the year of 2014, GoogLeNet was the winner of the ILSVRC detection 

challenge, and also came in second place on the localization challenge [21]. The stand-

ard settings were employed in this study: Convolutional, maxpooling, and fully con-

nected layers are used, in addition, has a layer called an inception module that runs the 

inputs through four separate pipelines and joins them after that [22]. Also, ReLU acti-

vations, asynchronous SGD, momentum of 0.9, step learning annealing decreasing with 

4% every eight epochs, a dropout layer with p = 0.7, as in the original architecture 

article [22]. 

 

ResNet. In 2015 ResNet won the classification challenge with only provided training 

data [23]. ResNet enables backpropagation through a shortcut between layers, this al-

lows weights to be calculated more efficiently [24]. ResNet has a high number of layers 

but can be fast due to that mechanism [24]. The standard settings were employed in this 

study: momentum of 0.9, reduction of step learning annealing by a factor of ten every 

time the rate of change in error stagnates, weight decay of 0.0001 and batch normaliza-

tion, as in the original architecture article [25]. 

2.4 Auxiliary Tools 

HDF5 Dataset Generator. Functions responsible for generating the training, valida-

tion and test sets. It begins by taking a set of images and converting them to NumPy 

arrays, then utilizing the sklearn train_test_split function [26] to randomly split the im-

ages into the sets. Each set is then written to HDF5 format. HDF5 is a binary data format 

created by the HDF5 group [27] to store on disk numerical datasets too large to be 

stored in memory while facilitating easy access and computation on the rows of the 

datasets. 

 

Data Augmentation Tool. Set of functions responsible for zooming, rotating and flip-

ping the images in order to higher the generalization of the model. The Keras ImageDat-

aGenerator class function [28] was utilized, with parameters set as: rotation range of 90 

degrees, max zoom range of 15%, max width and height shift range of 20% and hori-

zontal flip set as true. 

2.5 Results Validation 

In the experiments presented in this analysis, we choose a set of metrics based on con-

fusion matrix [29]. Table 1 shows a confusion matrix 2x2 for a binary classifier. 

Table 1. Confusion Matrix 

 Actual class negative Actual class positive 

Predicted class negative True Negative (TN) False Negative (FN) 

Predicted class positive False Positive (FP) True Positive (TP) 

 

The used metrics are described in the equations below: 
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• Sensibility (also called true positive rate, or recall) 

 Sens = TP / (TP + FN) (1) 

• Specificity (or true negative rate) 

 Spec = TN / (TN + FP) (2) 

• Precision 

 Pr = TP / (TP + FP) (3) 

• F1-Score 

 F1 = 2 * ((Pr * Sens) / (Pr + Sens)) (4) 

Another metric used is the AUC - The area under the Receiver Operating Characteristic 

Curve (ROC) which plots the TPR (true positive rate) versus the FPR (false positive 

rate) [29]. 

3 Results 

The first step was creating a new database merging the images from the Montgomery, 

Shenzhen, and PadChest datasets. The number of images from each dataset is described 

in Table 2. 

Table 2. Number of images by dataset and class. 

Dataset Number of “no_tb” images Number of “yes_tb” images Total 

Montgomery 80 58 138 

Shinzen 326 336 662 

PadChest 140 152 292 

Total 546 546 1092 

 

The image data set was split into 3 sets of images: training, validation and test sets using 

the HDF5 Dataset Generator. During each training the data augmentation function was 

responsible for preprocessing the images in order to higher the generalization of the 

model. The datasets sizes are described in Table 3. 

Table 3. Number of images by set. 

Set Number of “no_tb” images Number of “yes_tb” images 

Training 446 446 

Validation 50 50 

Test 50 50 
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The first model used the AlexNet architecture by Krizhevsky et al implemented in 

Keras, the images were resized to 227 × 227 × 3 pixels utilizing the CV2 library, in 

order to fit the net architecture input size. The training and validation loss/accuracy 

over the 75 epochs is shown in Fig. 2.  

 

Fig. 2. AlexNet Loss and Accuracy history per Epoch. 

The test confusion matrix, test performance, classification metrics and area under the 

ROC curve are shown in Table 4, Table 5, Table 6 and Fig. 3, respectively. 

Table 4. AlexNet main classification metrics. 

 Precision Recall F1-score Support 

Class: no_tb 0.68 0.86 0.76 50 

Class: yes_tb 0.81 0.60 0.69 50 

Accuracy - - 0.73 100 

Macro avg 0.75 0.73 0.73 100 

Weighted avg 0.75 0.73 0.73 100 

Table 5. AlexNet confusion Matrix. 

 Actual no_tb Actual yes_tb 

Predicted no_tb 43 7 

Predicted yes_tb 20 30 
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Table 6. AlexNet model performance. 

Metric Value 

Accuracy 0.73 

Sensitivity 0.86 

Specificity 0.60 

 

Fig. 3. AlexNet ROC curve and Area Under the Curve. 

Following the first experiment, the GoogLeNet architecture was implemented, the input 

size for this CNN model is 224 x 224 x 3. The same database and datasets were utilized 

in the training. The training loss/accuracy over the 100 epochs is shown in Fig. 4 and 

Fig. 5. 

 

Fig. 4. Accuracy history per Epoch. 
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Fig. 5. GoogleNet Loss history per Epoch. 

The test confusion matrix, test performance, classification metrics and area under the 

ROC curve are shown in Table 7, Table 8, Table 9 and Fig. 6, respectively. 

Table 7. GoogleNet main classification metrics. 

 Precision Recall F1-score Support 

Class: no_tb 0.75 0.76 0.75 50 

Class: yes_tb 0.76 0.74 0.75 50 

Accuracy - - 0.75 100 

Macro avg 0.75 0.73 0.75 100 

Weighted avg 0.75 0.73 0.75 100 

Table 8. GoogleNet confusion Matrix. 

 Actual no_tb Actual yes_tb 

Predicted no_tb 38 12 

Predicted yes_tb 13 37 

Table 9. GoogleNet model performance. 

Metric Value 

Accuracy 0.75 

Sensitivity 0.76 

Specificity 0.74 
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Fig. 6. GoogleNet ROC curve and Area Under the Curve. 

The ResNet architecture was also implemented, trained and validated utilizing the same 

parameter as the other experiments. The input size for this CNN model is 224 x 224 x 

3. Training and validation loss/accuracy over the 100 epochs is shown in Fig. 7. 

 

Fig. 7. ResNet Loss and Accuracy history per Epoch. 

The test confusion matrix, test performance, classification metrics and area under the 

ROC curve are shown in Table 10, Table 11, Table 12 and Fig. 8, respectively. 
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Table 10. ResNet main classification metrics. 

 Precision Recall F1-score Support 

Class: no_tb 0.64 0.76 0.70 50 

Class: yes_tb 0.71 0.58 0.64 50 

Accuracy - - 0.67 100 

Macro avg 0.68 0.67 0.67 100 

Weighted avg 0.68 0.67 0.67 100 

Table 11. ResNet confusion Matrix. 

 Actual no_tb Actual yes_tb 

Predicted no_tb 38 12 

Predicted yes_tb 21 29 

Table 12. ResNet model performance. 

Metric Value 

Accuracy 0.67 

Sensitivity 0.76 

Specificity 0.58 

 

Fig. 8. ResNet ROC curve and Area Under the Curve. 

4 Discussion 

To gather information about a higher number of articles, as well as to evaluate the qual-

ity and possible biases of each, a systematic review was chosen as a base for comparison 

and discussion. According to the definition presented in Harris et. al [30] this study is 
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classified as a Development study, that focuses on reporting methods for creating a 

CAD program for pulmonary TB, and includes an assessment of diagnostic accuracy. 

Of the 40 studies evaluated by Harris’s review, 33 reported measures of accuracy 

assessments, these studies had the AUC ranged from 0.78 to 0.99, sensitivity from 0.56 

to 0.97, and specificity from 0.36 to 0.95. The WHO states that it is necessary for 

screening tests to have sensitivity greater than 0.9 and specificity greater than 0.7 [31]. 

This study had an AUC ranging from 0.78 to 0.84, sensitivity from 0.76 to 0.86 and 

specificity from 0.58 to 0.74 depending on the network architecture. The observed per-

formance by these metrics alone are within the range of metrics found in the literature, 

although still far from the highest metrics obtained and did not meet the WHO stand-

ards. 

The reason for such results can be speculated. One of the main possible reasons is 

the size of the image dataset as well as the number of datasets from different sources. 

A higher number of images, with high quality diagnosis, could improve the model’s 

performance. A higher number of datasets from different sources could increase the 

model’s generalizability. 

Observing the three architecture’s loss curve during training (Fig. 2, Fig 5 and Fig. 

7) they seem to indicate a good fit, once training and validation loss curves both de-

crease to a point of stability maintaining a minimal gap between them. Although, the 

noisy movements on the validation line indicate an unrepresentative dataset. The per-

formance could be improved by increasing the validation set size compared to the train-

ing set. 

To further improve the model not only the metrics should be considered, but there 

are also many bias factors that should be avoided. The FDA (The US Food and Drug 

Administration) requires standards to be met for clinical use in their guidelines of CAD 

applied to radiology devices [32]. Those standards include a description of how CXRs 

were selected for training and testing, the use of images from distinct datasets for train-

ing and testing, evaluation of the model accuracy against a microbiologic reference 

standard and a report of the threshold score to differentiate between a positive and neg-

ative classes. 

Of the requirements cited above only the first one was met by this study, which 

leaves open the possibility of bias. 

The potential risk of bias can also be detected by applying tools for systematic re-

views of diagnostic accuracy studies, the Quality Assessment of Diagnostic Accuracy 

Studies (QUADAS)-2 [33] is one of the approaches. 

5 Conclusion 

The preliminary results are between the range of metrics presented in the literature, 

although there is much room for improvement of metrics and bias avoiding. Also, the 

usage of the model in a triage use-case could be used to validate the efficiency of the 

model. 
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