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Abstract. Assessment and quantification of feature uncertainty in mod-
eling gait pattern is crucial in clinical decision making. Automatic di-
agnostic systems for Cerebral Palsy gait often ignored the uncertainty
factor while recognizing the gait pattern. In addition, they also suffer
from limited clinical interpretability. This study establishes a low-cost
data acquisition set up and proposes a state-space model where the tem-
poral evolution of gait pattern was recognized by analyzing the feature
uncertainty using Dempster-Shafer theory of evidence. An attempt was
also made to quantify the degree of abnormality by proposing gait de-
viation indexes. Results indicate that our proposed model outperformed
state-of-the-art with an overall 87.5% of detection accuracy (sensitivity
80.00%, and specificity 100%). In a gait cycle of a Cerebral Palsy patient,
first double limb support and left single limb support were observed to
be affected mainly. Incorporation of feature uncertainty in quantifying
the degree of abnormality is demonstrated to be promising. Larger value
of feature uncertainty was observed for the patients having higher degree
of abnormality. Sub-phase wise assessment of gait pattern improves the
interpretability of the results which is crucial in clinical decision making.
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1 Introduction

Cerebral Palsy (CP) is a neurological disorder attributed to non-progressive
damage of fetal or infant brain, causing limited movement and postural insta-
bility [1]. Around the world, more than 4 per 1000 children suffer from CP [2].
In developing countries the prevalence of CP is alarming. For example, in India,
more than 15 − 20% of physically disabled children are suffering from CP [3].
Proper therapeutic intervention can improve the quality of gait in children with
CP [4]. Hence, the diagnosis of gait pattern is crucial in investigating the efficacy
of an intervention [5].
Approaches for machine learning (ML)-based automated gait diagnosis can be
broadly divided into two groups: feature-based classification technique and cycle
segmentation-based state-space modeling technique. Feature-based techniques

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50423-6_40

https://dx.doi.org/10.1007/978-3-030-50423-6_40


2 Saikat Chakraborty, Noble Thomas, and Anup Nandy

require extraction of a suitable set of features which is highly depended on ex-
pert knowledge or network architecture type (in deep learning). Despite provid-
ing satisfactory performances this strategy of diagnosis suffers from low clinical
interpretability of the outcome [6]. In clinical diagnosis, the interpretability of
the results carries more importance than just reporting classification accuracy
[7]. On the other hand, state-space models recognize the gait pattern by tempo-
ral segmentation of a gait cycle. It provides sub-phase wise comprehensive gait
analysis with relevant clinical interpretation [8]. Characterization of gait signal
in each sub-phase unfolds the spatio-temporal evolution of the system dynamics
over a period of time.
In coordinative movement, the uncertainty in prediction of the initial state of
system dynamics impacts the measurement of gait variables (i.e. features) [9].
Decision relating to the assignment of a class level (i.e. normal or abnormal)
using such a feature set associates a level of uncertainty [10]. Quantification of
this uncertainty is crucial in clinical decision making [10]. In literature, differ-
ent studies have demonstrated automated gait diagnosis system for people with
CP [5, 11–13]. However, the analysis of feature uncertainty in decision making
was often ignored. Dempster-Shafer theory of evidence (DST) [14, 15] has been
successfully used to map the uncertainty in the classification process [16–18] in
different problem domains. It assign a mass probability to particular class con-
sidering the uncertainty factor associated with the evidence. Hence, the use of
DST in classifying CP gait seems to be promising and clinically viable. Again,
an investigation of the impact of each of gait sub-phases on the overall abnormal
gait pattern of CP patients seems warranted. Another fact is that, the existing
automated CP gait diagnostic systems associates high-cost sensors which make
the overall system expensive. Most of the clinics, specially in developing coun-
tries, are not able to afford those costly systems. Thus, a low-cost automated
diagnosis system is also needed for people with CP.
This study aimed to construct a novel state-space based automated gait diagnosis
system for children and adolescent with CP (CAwCP) by quantifying uncertainty
of the selected feature set. First, a low-cost sensor-based architecture was pro-
posed from which velocity of ankle joints were extracted. Second, a state-space
model was build where state duration and transition was modeled using DST.
Variability of state duration was used to recognize the gait pattern. The use of
DST allows the presence of uncertainty in gait velocity. Quantification and incor-
poration of this uncertainty facilitated subject specific gait modeling. Third, an
index for quantification of the degree of abnormality was also proposed. Finally,
state-of-the-art feature-based gait classification approaches were compared with
the proposed system. The contributions of this work are as follows:

– Establishing a low-cost multi-sensor-based architecture for data acquisition.

– Developing a state-space model for automated gait diagnosis for CAwCP
that incorporate uncertainty of features to estimate the temporal evolution
of signal.

– Proposing degree of abnormality indexes based on dynamic stability and
feature uncertainty.
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The rest of the paper is organized as follows: section 2 describes elaborately
the state-of-the-art methods to detect CP gait abnormality. Construction of a
low-cost architecture for data acquisition, description of the proposed state-space
model and degree of abnormality indexes are demonstrated in section 3. Section 4
presents the results with an elaborate discussion. The paper concludes in section
5 by providing a future research direction.

2 Related Work

Several attempts have been made to construct automated gait diagnostic system
for CP patients.
Kamruzzaman et al. [5] proposed an automated gait diagnosis system for children
with CP (CwCP) using support vector machine (SVM). Normalized stride length
and cadence were used as an input features for the classifier. They reported SVM
as comparatively better classifier with an overall abnormality detection accuracy
of 96.80%. Wolf et al. [13] accumulated gait data from different sensors and con-
structed a large feature pool by gait sub-phases analysis. Features were ranked
using mutual information and then used for fuzzy rule-based classification. A
gait deviation index was also introduced in their study. Zhang et al. [11] in-
vestigated the significance of Bayesian classifier to diagnosis CP patients. They
computed normalized stride length and cadence and reported Bayesian classifier
as better than other popular classifiers. Gestel et al.[19] used Bayesian networks
(BN) in combination with expert knowledge to form an semi-automated diagnos-
tic system. They reported a promising detection accuracy (88.4%) using sagittal
plane gait dynamics. Laet et al. [12] obtained joint motion pattern from Delphi-
consensus study [20] and used it to detect CP gait using Logistic Regression and
nave Bayes classifiers. They recommended the inclusion of expert knowledge in
feature selection and discretization of continuous features to detect gait abnor-
mality. Zhang et al. [21] extracted a set of crucial kinematic parameters from
sagittal plane gait pattern of CwCP and given it as input to seven popular su-
pervised learning algorithms. They reported artificial neural network (ANN) as
the best model followed by SVM, decision tree (DT), and random forest (RF).
Krzak et al. [22] collected kinematic gait parameters of people with CP using
Milwaukee Foot Model (MFM). They applied k-means clustering and obtained
five distinct groups having similar gait pattern. Dobson et al. [23] and recently
Papageorgiou et al. [24] have thoroughly analyzed the automated classification
systems available for CP patients and reported cluster-based algorithms as the
most used technique for gait detection in CP patients. But, cluster-based mod-
els may construct clinically irrelevant artificial group and suffer from limited
clinical interpretations [21]. Though the above mentioned models have obtained
satisfactory results, they have ignored the uncertainty factor associated with the
feature set which is crucial in deciding the class label. Again, those systems are
highly expensive also.
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Table 1. Demographic information of the subjects ∗

Participants
(N=30)

CP type GMFCS
levels

Age
(years)

Height
(cm)

Gender

CAwCP (15) Diplegic:5 I, II 11.71 ± 4.46 124.00 ± 16.92 M:3, F:2
Hemiplegic (RS):5 II 10.84 ± 3.6 114.66 ± 15.28 M:2, F:3
Hemiplegic (LS):3 I, II 12.00 ± 6.38 132.25 ± 20.17 M:2, F:1
Athetoid:2 I, II 15.66 ± 2.52 149.67 ± 5.51 M:1, F:1

12.55 ± 2.13 130.15 ± 14.87 M:8, F:7

TDCA (15) 12.45 ± 3.51 132.06 ± 14.09 M:9, F:6

P-value 0.78 0.27 0.71

∗GMFCS: Gross Motor Function Classification System, RS: Right side, LS: Left side, M: male, F: female

3 Methods

3.1 Participants

Fifteen CAwCP patients, without having any other disease or surgical history
that can affect the gait pattern, and who can walk without any aid, were re-
cruited from the Indian Institute of Cerebral Palsy (IICP), Kolkata. Along with
that, fifteen typically developed children and adolescent (TDCA) without having
any type of musculoskeletal or neurological disease that can affect gait pattern,
also were recruited. This work was approved by the ethics board of local insti-
tution. The objectives and protocols of our experiment were explained to the
participants and an informed consent form was signed from each of them. Table
1 shows the demographic information of the subjects which demonstrates that
there was no significant difference (p > 0.05) between the two groups in terms
of anthropometric parameters.

3.2 Experimental setup and data acquisition

We have used low-cost Kinect (v2) sensor for data acquisition which make our
proposed system cost-effective. Inspired by the work of Geerse et al. [25] we have
constructed a three Kinect-based client-server architecture (see figure 1) which
covers 10m walking distance. The Kinects were placed on tripods (Slik F153)
sequentially at 35◦ angle with the walking direction. The arrows emerging from
Kinects cover the horizontal field of view (FoV) of Kinect i.e. 70◦ [26]. The dis-
tance of the Kinects from the left border of the track was 2m. Height and tilt
angle of the Kinects were 0.8m and 0◦ respectively, while the distance between
the Kinects was 3.5m. The width of the track was 0.84m. This setup allowed
≈ 0.5m of overlapped tracking volumes (between two successive sensors) which
was empirically estimated to be sufficient (for both the groups) for the next sen-
sor to recognize a person’s body and start tracking. A computer was set as the
server which controlled each of the Kinect connected to separate computers. Sys-
tem clocks of the computers were synchronized using Greywares DomainTime II
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(Greyware Automation Products, Inc.), which follows PTP protocol. A training
session was provided to the participants before the experiment. Subjects were
asked to start walk at self selected speed from 4m distance from the 1st Kinect
and after walking 1m distance (marked by line) data were started to capture.
Subjects were asked to walk upto the ’End’ line. The total distance of the path
was 12m out of which 10m distance was considered for data collection. The
extra distances (at start and ending points) were given to reduce the effect of
acceleration and deceleration on gait variables. Five trials for each participants
were taken with 2 min of resting gap. The client-server architecture followed the
same protocol like [25, 26] to record, combine, remove noise, and process body
point data series from multiple Kinects.

Fig. 1. Data acquisition in multi-Kinect environment

3.3 Dempster-Shafer Classifier

Our proposed state-space model was constructed by estimating uncertainty of
feature using DST. This section describes the theoretical ground of DST for us-
ing it as a classifier, often termed as Cardiff Classifier [17].
The Cardiff classifier is constructed on the basis of some elementary and mu-
tually exclusive hypotheses which constitute the frame of discernment (FOD)
[16]. If there are two elementary hypotheses, for e.g. h: belongs to class i, and
¬h: not belongs to class i, then FOD is called binary frame of discernment
(BFOD), denoted as Θ. There are 4 number of possible hypotheses derived from
the elementary hypotheses: {{∅}, {h}, {¬h}, {h,¬h}}. On the basis of existing
evidence, each hypothesis is assigned a probability mass value m(.) which is
called degree of belief (DOB) [16]. It refers the strength of support for a classifi-
cation. Each of the hypotheses {θi}, (i = 1, ...., 2|Θ|) having m(θi) > 0 constitute
body of evidence (BOE) [16, 10]. The basic property of m(.) is given by [27]:

0 ≤ m(.) ≤ 1,m(∅) = 0,

2|Θ|∑
i=1

m(θi) = 1 (1)

In DST, the probability masses are assigned to each subset of Θ. This prop-
erty allows uncertainty in classification [16].
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At the first step during the construction of the classifier, each source of evidence
i.e. input variable (v) is mapped to a confidence factor cf(v) (0 - 1 scale) using
some predefined function derived from the pattern of data distribution. cf(v) is
then transformed to BOE as [27]:

m({h}) =
B

(1−A)
cf(v)− AB

(1−A)
,

m({¬h}) =
−B

(1−A)
cf(v) +B,

m({h,¬h}) = 1−m({h})−m({¬h})

(2)

In eqn. 2 the value m({h,¬h}) refers the DOB of either belong to a class
or not belong to a class. Hence, this value quantify the uncertainty associated
with a particular feature (i.e. input variable or evidence). The control variables
A and B define the dependence of m({h}) on cf(v) and the maximal support for
m({h}) or m({¬h}). In case of more than one source of evidence for a hypothesis,
Dempsters rule of combination is used to combine the individual BOEs to get
the final BOE (FBOE) (see [16] for more details). The highest FBOE determine
the class label of a sample.

3.4 State-space model construction

Human gait cycle can be broadly classified into four dominant sub-phases: first
double limb support (FDLS), single limb support for the left limb (LSL), second
double limb support (SDLS), and single limb support for the right limb (RSL)
(see fig.2). Based on this, a hypothetical state-space model was proposed (fig. 3)
which quantify the temporal evolution of gait signal.

Fig. 2. Sub-phases of a normal gait cycle

For CAwCP, gait velocity was reported as one of the most discrimitive feature
[3]. Hence, velocity of both ankle joints (anterior-posterior (A-P) and vertical (V)
direction) were selected as the sources of evidence. DST was used as a binary
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Fig. 3. Hypothetical state-space model

classifier for assigning a frame to a particular state out of two subsequent states.
Twenty-one subjects (11 TDCA, 10 CAwCP) were selected for in-sample group
(i.e. training set), and remaining (4 TDCA, 5 CAwCP) were selected for out-of-
sample (i.e. test set) group. State transition rules was constructed on the basis
of elementary hypotheses. The BFOD was defined as: {present state (PS) i.e.
hypothesis h, next state (NS) i.e. hypothesis ¬h}. Thus the hypothesis space
constitutes: {{∅}, {PS}, {NS}, {PS,NS}}. We assumed that the temporal se-
quence of the states (see fig.3) should not deviate for any subject (both CAwCP
and TDCA). Gait cycle was segmented into 4 states (i.e. FDLS,LSL,SDLS,RSL)
using the gait event detection algorithm described by Zeni et al. [28]. In order
to convert the input variables into confidence factor, we found a suitable proba-
bility distribution that fits the best to our input data. Kolmogorov-Smirnov test
was performed to investigate the distribution pattern of the input data. Frchet
distribution (see eqn.3) was found to fit the best for our input data:

cf(v) = e
−

v −m
s

−α

if v > m (3)

In eqn.3, α > 0 is the shape parameter, m and s > 0 are the location and scale
parameters respectively. Hence, for each input variable 5 control parameters (i.e.
α,m, s,A,B) were considered in this study. For each state, the control param-
eters, α,m and s, were estimated separately based on the nature of the input
variables [10]. Table 2 demonstrates the values assigned to the control variables
(i.e. α,m and s) for the FDLS state.

Following the work of Jones et al.[10], the values of A and B were determined
using expert knowledge. For individual input variable, the limit of uncertainty
was estimated which was used to compute the value of A and B. If for a particular
variable v, the upper and lower limit of uncertainty are φU and φL respectively,
then A and B can be written as [10]:

A =
(φU − φL)

(1 + φU − 2φL)

B = 1− φL
(4)
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Table 2. Values of the control variables α,m and s for FDLS state

Input variable α m s

Left ankle (A-P) 5.60 -0.98 1.72

Left ankle (V) 6.04 0.90 1.02

Right ankle (A-P) 7.05 -1.70 2.12

Right ankle (V) 36.91 -8.45 8.72

Inspired by the work of Safranek et al. [27] and jones et al. [10] which considered
the input variables as low-level measurements (i.e. assessment which associate
substantial level of uncertainty), we assigned 0.98 and 0.2 to φU and φL re-
spectively. Hence, in our experiment the value of A and B were 0.49 and 0.80
respectively. Assignment of values to the control variables was performed using
in-sample data. BOE of each input variable was then combined to get the FBOE
which quantified the support for a frame to assign to a particular state.
It was assumed that a gait cycle can start from any state (out of 4 states). Hence,
for the initial time frame of a gait cycle, the FBOE corresponding to all four
states were computed. The state having the highest FBOE value was selected as
the initial state of the gait cycle. For the subsequent phases the transition of a
frame was govern by the following rules:

– RSPS : if FBOE({PS}) > FBOE({NS}) + FBOE({PS,NS}), OR if FBOE
({PS})> FBOE({NS}) but FBOE({PS})< FBOE({NS}) + FBOE ({PS,NS}),
then the corresponding frame will stay at present state;

– RTNS : if FBOE({NS}) > FBOE({PS}) but FBOE({NS}) < FBOE({PS})
+ FBOE({PS,NS}), then the corresponding frame will transit to the im-
mediate next state.

3.5 Abnormality detection

Dynamic stability, generally quantified by the value of coefficient of variation
(CoV) of a feature [29], was reported to be comparatively low for CAwCP pop-
ulation [3]. In order to detect gait abnormality, we computed mean CoV (ωm)
of the time duration for each state for the in-sample group (both CAwCP (ωabm )
and TDCA (ωnm)). The out-sample subjects, used the values of the control vari-
ables learned from the in-sample group to compute the corresponding FBOEs.
Then the CoV (ωt) vector for a test subject was estimated. Class label (CL) for
an out-sample subject was determined based on L2 norm distance as follows:

ωnm = {ωnmFDLS , ωnmLSL, ωnmSDLS , ωnmRSL}
ωabm = {ωabmFDLS , ωabmLSL, ωabmSDLS , ωabmRSL}
ωt = {ωtFDLS , ωtLSL, ωtSDLS , ωtRSL}
CL = min(L2(ωt, ω

ab
m ), L2(ωt, ω

n
m))

(5)

Performance of the proposed system was assessed using some classical metrics
i.e. accuracy, sensitivity, and specificity. An attempt was also made to quan-
tify the degree of gait abnormality for individual subject using the proposed
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model. In CP patients, GMFCS level indicates the degree of abnormality [30].
We hypothesized that higher value of CoV of the time duration for each state
indicates higher degree of abnormality. Hence, the first abnormality index (A1)
was computed by taking average of CoV values throughout the 4 states:

A1 =
ωFDLS + ωLSL + ωSDLS + ωRSL

4
(6)

Again, we assumed that more abnormal CP should have higher uncertainty in
their gait pattern. On the basis of that we proposed the second abnormality
index (A2):

A2 =

∑N
i=1 FBOE(PS,NS)i

N
(7)

In eqn.7, N refers total number of frames.

4 Results and Discussion

In this study a state-space based automated gait diagnosis system for CAwCP
patients was proposed which perform sub-phase wise gait assessment by quan-
tifying feature uncertainty in temporal evolution of gait cycle. Person specific
degree of abnormality was also analyzed.
Our proposed model charecterize gait cycle with an average ±3 frame differ-
ence from the corresponding ground truth (for both TDCA and CAwCP). For
comparison, we have implemented ML models (i.e. ANN, SVM, and Bayesian
classifier) which were used for CP gait abnormality detection in state-of-the-
art. The same feature set, used for our state-space construction, was given as
input to those models. ANN was implemented with 3-layer architecture (i/p
layer nodes:4, o/p layer nodes:1), while for SVM, three kernel functions (i.e. Ra-
dial basis function(RBF),polynomial,and linear) were tested. Hyperparameters
(ANN: learning rate and hidden nodes; SVM (RBF,polynomial,linear): regular-
ization parameters; SVM (RBF): gamma; SVM (polynomial): degree) was tuned
using grid search. In Bayesian classifier, Gaussian mixture model (GMM) was
used to approximate the class conditional distribution which was trained using
expectation-maximization (EM) algorithm [31]. Leave-one-out cross validation
was used to reduce the generalization error. Following the work of Beynon et al.
[16] and Jones et al. [10], the belief values obtained from the Cardiff classifier
were used for classification also. In that case the FOD was: {normal, abnormal}
and FBOE values were used for class labeling.
Our proposed model outperformed state-of-the-art with an overall 87.5% de-
tection accuracy (see table 3). Figure 4 demonstrates the normalized confusion
matrix for our proposed model and Cardiff classifier. It can be seen that the
false positive value is substantially high for the Cardiff classifier which caused to
degrade its performance compared to other classifiers. Deviation of gait pattern
of a CAwCP patient from TDCA was not uniform for all phases of a gait cy-
cle. The input feature for the Cardiff classifier characterized an entire gait cycle
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from where the control parameters were estimated. Hence, the FBOEs, com-
puted using those control parameters, failed to classify correctly some subjects.
This might be a cause of lower performance of this classifier. Our state-space
model avoids this problem by analyzing the gait sub-phase wise. Specificity is
the highest for our model (see table 3), but sensitivity is lower than SVM(RBF)
and SVM(linear). This might be due to the varied CP gait pattern, where our
model incorrectly performed some state transitions for some of the subjects.

Fig. 4. Normalized confusion matrix. (a) Cardiff classifier, (b) Proposed model

Table 3. Comparative analysis of the proposed model with state-of-the-art

Models State-of-the-art Accuracy (%) Sensitivity (%) Specificity (%)

SVM (RBF) Kamruzzaman et al. [5] 86.27 92.06 70.67

SVM (Linear) Zhang et al. [21] 67.12 94.31 40.41

SVM (Polynomial) Kamruzzaman et al. [5] 61.11 43.26 75.48

ANN Zhang et al. [21] 67.23 59.43 78.23

Bayesian classifier Zhang et al.[11] 80.27 72.71 89.32

Cardiff classifier 49.50 49.60 49.20

Proposed 87.50 80.00 100

In terms of clinical significance, our model also outperformed others by pro-
viding a clear interpretation of the results sub-phase wise, whereas, the compu-
tation for the other ML models (i.e. ANN,SVM) is basically a ’black-box’. The
simplex plots (fig.5(a), 5(b), 5(c), and 5(d)) demonstrate the allocation of data
frames in subsequent states during a gait cycle. It can be observed that the tran-
sition frame (marked by ’red dot’) constitutes high uncertainty which causes it
to move to the immediate next state. Uncertainty value then again decreases for
which the subsequent frames maps to the next state (which become the current
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state now). It was noticed that, on an average, the transition frame uncertainty
for CAwCP patients is higher than TDCA,

Fig. 5. Simplex plots for a gait cycle of Subj.1 (TDCA). (a) FDLS to LSL, (b) LSL to
SDLS, (c) SDLS to RSL, (d) RSL to FDLS

Figure 6 demonstrates sub-phase wise gait distortion of CAwCP compared
to TDCA. It shows that CoV of CAwCP differs in FDLS and LSL phases sig-
nificantly (≈ 37.5% and ≈ 50%) from the corresponding values of TDCA. This
information implies that the dynamic stability of CAwCP mainly reduces in this
two phases, hence, clinicians should take special attention for these two states
during an intervention.

Results in table 4 shows that both A1 and A2 and consequently the total score
are higher for GMFCS II patients than GMFCS I. This implies that dynamic
stability decreases in CP patients having higher degree of abnormality. It also
demonstrates that CP patients of higher degree associate higher uncertainty
value in their gait pattern which may be a consequence to compensate the effect
of lower muscle control [3]. The proposed abnormality indexes exhibit promising
aspect to quantify the degree of abnormality.
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Fig. 6. Sub-phase wise gait assessment

Table 4. Degree of gait abnormality assessment

GMFCS level of CP Average A1 Average A2 Total score

I 0.5807 0.1394 0.7201

II 0.7997 0.3772 1.1769

5 Conclusion

Automatic gait diagnosis with clinical interpretation is crucial for CAwCP pa-
tients. Feature uncertainty takes an important part in abnormal gait detection.
The prime contribution of this study is to propose a state-space model which
recognize temporal evolution of gait pattern by quantifying feature uncertainty.
Data were captured using a low-cost multi-Kinect setup which provided the stan-
dard 10 meter walking path. An attempt was also made to quantify the degree
of abnormality by proposing abnormality indexes. Results shows that the per-
formance of our model is comparable with state-of-the-art. As a future research
aspect, some data-driven constraints may be imposed on the state transition
rules to further reduce the frame offset (frame difference from the ground truth)
of our model. Investigating the performance of the proposed system in detecting
CAwCP gait in more challenged environment (i.e. duel task walking, walking on
uneven ground) seems warrented. The proposed model performs sub-phase wise
gait assessment and provides succinct interpretability of the results which will
help the clinicians in decision making during rehabilitation treatment.
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