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Abstract. The ability to precisely model mortality rates µx,t plays an
important role from the economic point of view in healthcare. The aim of
this article is to propose a comparison of the estimation of the mortality
rates based on a class of stochastic Milevsky-Promislov mortality mod-
els. We assume that excitations are modeled by second, fourth and sixth
order polynomials of outputs from a linear non-Gaussian filter. To esti-
mate the model parameters we use the first and second moments of µx,t.
The theoretical values obtained in both cases were compared with theo-
retical µ̂x,t based on a classical Lee-Carter model. The obtained results
confirm the usefulness of the switched model based on the continuous
non-Gaussian processes used for modeling µx,t.

Keywords: forecasting of mortality rates · hybrid mortality models ·
switched models · Lee-Carter model · Ito stochastic differential equations.

1 Introduction

The determination of the mortality models is one of the basic problems not
only in the field of life insurance but recently particularly in the economics of
healthcare ([1],[3]-[5]). Currently, the most frequently used model is Lee-Carter
([9], [11], [12], [16], [17]) not only the change in mortality associated with age x
and calendar year t but also takes into account the influence of belonging to a
particular generation (cohort effect) and takes the form: ln(µx,t) = αx + βxkt +
εx,t. The assumption that the estimated ax and bx are fixed at time t causes
a wave of criticism, especially from the point of view of forecasting. Therefore,
there is a need to look for other methods predicting mortality rates that take
into account the variability of parameters over time. One of these propositions
may be the approach recently proposed in Rossa and Socha [18], Rossa et al. [19],
Sliwka and Socha [20], Sliwka ([21],[22]), and based on the Milevsky-Promislov
family of models [15] with extensions ([2],[7],[13]). Methods of modeling µx,t
taking into account the causes of death have been characterized in article [23].

Works on switchings model, which consist of several subsystems with the
same structure and different parameters and which can switch over time ac-
cording to an unknown switching rule, have been taken, among others in Sliwka
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and Socha [20]. In the mentioned paper it was shown that modeling of empiri-
cal mortality coefficients µx,t using the non-Gaussian linear scalar filters model
second order with switchings (nGLSFo2s) allows a more precise estimate of µx,t
than using the Gaussian linear scalar filters model with switchings (GLSFs) and
Lee-Carter with switchings (LCs) model for some fixed ages x.

In this paper we first propose three extended Milevsky and Promislov models
with continuous non-Gaussian filters. We assume that excitations are modeled
not only by the second but also by the fourth (nGLSFo4) and the sixth order
polynomials (nGLSFo6) of outputs from a linear nGLSF. To estimate the model
parameters we use the first and second moments of mortality rates. We show
that in considered models some of the parameters can be estimated. Next, we use
these models to create hybrid models, where submodels have the same structure
and possible different parameters. To estimate the model parameters we use
the first and second moments of mortality rates. According to our knowledge,
the mortality models proposed above, their hybrid versions and methods for
estimating their parameters and switching are new in the field of life insurance.

The paper is organized as follows. In Section 2 basic notations and definitions
of stochastic hybrid systems are entered. Three new basic models represented
by even-order polynomials of outputs from linear Gaussian filter are introduced
and the non–stationary solutions of corresponding moment equations are pre-
sented in Section 3. The derivation of these non–stationary solutions are derived
in Appendix. In Section 4 the procedure of the parameters estimation and deter-
mination of switching points is presented. Based on the adapted numerical algo-
rithm of a nonlinear minimization problem, parameter estimation is performed.
In Section 5 we have compared empirical mortality rates with theoretical ones
obtained from proposed models as well as from standard LC model in two ver-
sions with switchings and without switchings. The last Section summarizes the
obtained results.

2 Mathematical preliminaries

Throughout this paper we use the following notation. Let | · | and < · > be the
Euclidean norm and the inner product in Rn, respectively. We mark R+ = [0,∞),
T = [t0,∞), t0 ≥ 0. Let Ξ = (Ω,F , {Ft}t≥0,P) be a complete probability space
with a filtration {Ft}t≥0 satisfying usual conditions. Let σ(t) : R+ → S be the
switching rule, where S = {1, . . . , N} is the set of states. We denote switching
times as τ1, τ2, . . . and assume that there is a finite number of switches on every
finite time interval. Let Wk(t) be the independent Brownian motions. We assume
that processes Wk(t) and σ(t) are both {Ft}t≥0 adapted.

By the stochastic hybrid system we call the vector Itô stochastic differential
equations with a switching rule described by

dx(t) = f(x(t), t, σ(t))dt+ g(x(t), t, σ(t))dW (t), (σ(t0), x(t0)) = (σ0, x0), (1)
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where x ∈ Rn is the state vector, (σ0, x0) is an initial condition, t ∈ T and M
is a number of Brownian motions. f(x(t), t, σ(t)) and g(x(t), t, σ(t)) are defined
by sets of f(x(t), t, l) and g(x(t), t, l),respectively i.e.

f(x(t), t, σ(t)) = f(x(t), t, l), g(x(t), t, σ(t)) = g(x(t), t, l) for σ(t) = l.

Functions f : Rn×T×S → Rn and g : Rn×T×S → Rn are locally Lipschitz and
such that ∀l ∈ S, t ∈ T, f(0, t, l) = g(0, t, l) = 0, k = 1, . . . ,M . These conditions
together with these enforced on the switching rule σ ensure that there exists a
unique solution to the hybrid system (1).

Hence it follows that equation (1) can be treated as a family (set) of subsys-
tems defined by

dx(t, l) = f(x(t), t, l)dt+

M∑
k=1

gk(x(t), t, l)dWk(t), l ∈ S (2)

where x(t, l) ∈ Rn is the state vector of l- subsystem.
We assume additionally that the trajectories of the hybrid system are con-

tinuous. It means, when the stochastic system is switched from l1 subsystem to
l2 subsystem in the moment τj , then

x(τj , l1) = x(τj , l2), l1, l2 ∈ S. (3)

3 Models with continuous non-Gaussian linear scalar
filters

We consider a family of mortality models with a continuous nGLSF described
by

µx(t, l) = µlx0 exp{αlxt+

m∑
i=1

qlxi
yi(t, l)}, (4)

dy(t, l) = −βlx1
y(t, l)dt+ γlx1

dW (t), (5)

where µx(t, l) is a stochastic process representing a mortality rate for a person
aged x (x ∈ X = 0, 1, . . . , ω) at time t; αlx, βlx1

, qlxi
, i = 1, ...,m, µlx0

, γlx1
are

constant parameters, l ∈ S; W (t) is a standard Wiener process.
We will show that the proposed model (4), (5) can be transformed to the

formula (2) for all l ∈ S.
Introducing new variables y1(t, l) = y(t, l), yi(t, l) = yi(t, l), i = 1, ...m,

l ∈ S and applying Ito formula we obtain

dy1(t, l) = −βlx1
y1(t, l)dt+ γlx1

dW (t), (6)

dy2(t, l) = [−2βlx1
y2(t, l) + (γlx1

)2]dt+ 2γlx1
y1(t, l)dW (t), (7)

...
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dym(t, l) =[
−mβlx1

ym(t, l) + m(m−1)
2 (γlx1

)2ym−2(t, l)
]
dt+mγlx1

ym−1(t, l)dW (t).

Taking natural logarithm of both sides of equation (4) and applying Ito
formula for all l ∈ S we find

d lnµx(t, l)=α+

m∑
i=1

qlxi
dyi(t, l) = αlx−

m∑
i=1

[
iβlx1

qlxi
yi(t, l) (8)

+
i(i− 1)

2
qlxi

(γlx1
)2yi(t, l)

i−2

]
dt+

m∑
i=1

iγx1q
l
xi
yi−1(t, l)dW (t) (9)

Now we consider in details three cases of model (4) and (6)-(7), namely for
m = 2, 4 and 6.

3.1 Model with six order output of a scalar linear filter

Equations (4) and (6)-(7) for m = 6 take the form

µx(t, l) = µlx0 exp{αlxt+

6∑
i=1

qlxi
yi(t, l)}, (10)

dy1(t, l) = −βlx1
y1(t, l)dt+ γlx1

dW (t), (11)

dy2(t, l) = [−2βlx1
y2(t, l) + (γlx1

)2]dt+ 2γlx1
y1(t, l)dW (t), (12)

dy3(t, l) = [−3βlx1
y3(t, l) + 3(γlx1

)2y1(t, l)]dt+ 3γlx1
y2(t, l)dW (t), (13)

dy4(t, l) = [−4βlx1
y4(t, l) + 6(γlx1

)2y2(t, l)]dt+ 4γlx1
y3(t, l)dW (t), (14)

dy5(t, l) = [−5βlx1
y5(t, l) + 10(γlx1

)2y3(t, l)]dt+ 5γlx1
y4(t, l)dW (t), (15)

dy6(t, l) = [−6βlx1
y6(t, l) + 15(γlx1

)2y4(t, l)]dt+ 6γlx1
y5(t, l)dW (t). (16)

Introducing a new vector state

zx(t, l) = [zx1
(t, l), zx2

(t, l), · · · , zx7
(t, l)]T = (17)

[lnµx(t, l), y1(t, l), y2(t, l), y3(t, l), y4(t, l), y5(t, l), y6(t, l)]T , (18)

equations (10) - (16) one can rewrite in a vector form

dzx(t, l)=
[
A6
x(l)zx(t, l) + b6

x(l)
]
dt+

[
C6
x(l)zx(t, l) + g6

x(l)
]
dW (t) (19)

where

A6
x(l) = [alij ],b

6
x(l) = [bli],C

6
x(l) = [cij ]

l,g6
x(l) = [gli]. (20)

The elements of the matrices A6
x(l), C6

x(l) and vectors b6
x(l), g6

x(l) are de-
fined by:
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al12 = −βlx1
qlx1

+ 3qlx3
(γlx1

)2, al13 = −2βlx1
qlx2

+ 6qlx4
(γlx1

)2,

al14 = −3βlx1
qlx3

+ 10qlx5
(γlx1

)2, al15 = −4βlx1
qlx4

+ 15qlx6
(γlx1

)2,

al16 = −5βlx1
qlx5

, al17 = −6βlx1
qlx6

, al22 = −βlx1
, al33 = −2βlx1

, al42 = 3(γlx1
)2,

al44 = −3βlx1
, al53 = 6(γlx1

)2, al55 = −4βlx1
, al64 = 10(γlx1

)2, al66 = −5βlx1
,

al75 = 15(γlx1
)2, al77 = −6βlx1

, bl1 = αlx + qlx2
(γlx1

)2, bl3 = (γlx1
)2,

cl12 = 2qlx2
γlx1

, cl14 = 4qlx4
γlx1

, cl15 = 5qlx5
γlx1

, cl16 = 6qlx6
γlx1

, cl32 = 2γlx1
,

cl43 = 3γlx1
, cl54 = 4γlx1

, cl65 = 5γlx1
, cl76 = 6γlx1

,

gl1 = qlx1
γlx1

, gl2 = γlx1
.

We note that similarly to equation (2) we may treat equation (19) as a family
(set) of subsystems. It means, we have obtained new mortality hybrid model.
The unknown parameters in family of equations (19) are

lnµlx0
(= αl0x), αlx, β

l
x1
, qlx1

, qlx2
, qlx3

, qlx4
, qlx5

, qlx6
, γlx1

. (21)

3.2 Nonstationary solutions

Using linear vector stochastic differential equation (19) and Ito formula we derive
differential equations for the first order moments E[zxi

(l)] and second order
moments E[zxi

(l)zxj
(l)], i, j = 1, ..., 7. Next, we find the nonstationary solutions

of the first moment of the processes zxi
(t, l) for nGLSF of all order models, i.e.

(nGLSFo1), (nGLSFo2), ... (nGLSFo6) models

E[zx1
(t, l)] = αlxt+ αl0x , l ∈ S (22)

In the case of second moment of the processes zxi
(t, l) we find first the non-

stationary solutions for nGLSF even order models. In the case of sixth order
model it has the form

E[z2x1
(t,l)]= (αlx)2t2 − 2αlx

[
−αl0x + qlx2

(γlx1
)2

2βlx1

(23)

+3qlx4

(
(γlx1

)2

2βlx1

)2

+ 15qlx6

(
(γlx1

)2

2βlx1

)3
 t+ cl0x (24)

where l ∈ S, qlx2
= qlx4

= qlx6
= 1, qlx2

= qlx4
= qlx6

= 1, and αl0x , c
l
0x are

constants of integration (see section 7).
To obtain the moment equations for nGLSF second and fourth order models

and the corresponding stationary and nonstationary solutions we assume that:
- in the case of second order model the parameters qlx2

= 1, and qlx4
= qlx6

= 0,
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- in the case of fourth order model the parameters qlx2
= qlx4

= 1, and qlx6
= 0.

The corresponding nonstationary solution for the second moment of the pro-
cess zx1

(t, l) takes the form:

E[z2x1
(t,l)]= (αlx)2t2 + 2αlxα

l
0xt− 2αlxq

l
x2
pt+ cl0x (25)

for nGLSF second order model, where cl0x is an integration constant, and

E[z2x1
(t,l)]= (αlx)2t2 − 2αlx

[
−αl0x + qlx2

p+ 3qlx4
p2
]
t+ cl0x (26)

for nGLSF fourth order model, where cl0x is an integration constant and

p =
(γl

x1
)2

2βl
x1

.

It can be proved that in the case odd order models the nonstationary solutions
have similar forms, i.e. in the case of the first order (nGLSFo1) model

E[z2x1
(t,l)]= (αlx)2t2 + 2αlxα

l
0xt+ cl0x (27)

and in the case of other odd order models, i.e. (nGLSFo3), (nGLSFo5), (nGLSFo7)
models the nonstationary solutions are the same as the nonstationary solutions
for nGLSF even order models, i.e. (nGLSFo2), (nGLSFo4), (nGLSFo6) models,
respectively.

4 The procedure of the parameters estimation and
determination of submodels (based on switching
points)

4.1 The procedure

Simultaneous estimation of parameters: αl0, α
l
x, β

l
x, γ

l
x, c

l
0x , q

l
x (where l ∈ S) nGLSF

models of 2, 4 or 6 order given by formulas (22)-(26) using traditional methods
does not provide unambiguous results (this problem has already been consid-
ered in [20] part 4.1.1, in particular by considering the analytical formula for
estimating parameters of GLSFo2 model). Therefore, in this case, a two-step
procedure was used to estimate the parameters. In the first step, the α0x and αx
of the first moment E[zx1(t)] of the process zx1(t) were estimated. In the second
step, c0x and px of the second moment E[z2x1

(t)] were estimated based on the

already known α̂l0x , α̂
l
x,where px was defined as follows: px =

γ2
x1

2βx1
. The applied

procedure allows to obtain unambiguous estimates of all parameters assuming
that qxi

= 1,∀i=1,...,6.
One of the fundamental problems in the field of switching models is to find

the set of switching points. This problem is closely related to the problem of
segmentation of a time series discussed in many papers (see for instance [10],[14]).

In our considerations we propose a procedure which is a combination of a
statistical test (based on [6]) and so called Top-Down algorithm. It has the
following form.
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First we introduce some notations. We assume that an extracted time series
(Input) consists of n empirical values yemp1 , yemp2 , . . . , yempn defined in time
points t1, t2, ..., tn, respectively. By < t1, t2 > we denote an interval that begins
at t1 and ends in t2. We define three sets
P - the set of non-verified intervals,
R - the set of intervals without switching points,
T - the set of switching points.
Then the initial conditions have the form
< t1, tn >∈ P, R = φ, T = φ.

Step 1.
We calculate the values of function L(∗) given by formula (28)

L(αl0x , α
l
x, σ

2, τ) = −τ
2
ln(2π)− τ

2
ln(σ2)− 1

2σ2

τ∑
i=1

(yempi − E[zx1
(i, l)])2

−n− τ
2

ln(2π)− n− τ
2

ln(σ2)− 1

2σ2

n∑
i=τ+1

(yempi − E[zx1
(i, l)])2

(28)

for all points from an interval< t1, tn > and assuming the random component
εt ∼ N(µ, σ2).

If L̃(τ1) = maxL(∗) is found at the beginning or at the end of the considered
interval, then there is not a switching point in this interval. Then we receive
P = φ, < t1, tn >∈ R, T = φ,

If L̃(τ1) = maxL(∗) is found inside the interval for τ1 = tk, then
< t1, tk >,< tk+1, tn >∈ P, R = φ, τ1 ∈ T .

Step 2.
Choose an interval from the set P and check if its length is greater than 2.

Step 3.
If ”no”, then transfer this interval from the set P to the set R and go back

to Step 2, if ”yes”, go back to Step 1.

Step 4.
The procedure is ended when
P = φ,
R consists only with subintervals without switching points,
T consists of all switching points that can be sorted from the smallest to the

greatest one.

4.2 The determination of submodels

In subsection 4.1 we have established the switching points set, which allow to
define submodels. From (21) and further considerations we find that unknown
parameters in family of (19) are

αl0x , α
l
x, p

l, cl0x (29)
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where p =
(γl

x1
)2

2βl
x1

, and parameters qx2 , qx4 , qx6 are equal 0 or 1.

Based on the numerical algorithm of nonlinear minimization with additional
conditions of αl0x (∀x αl0x < 0) parameters (29) given in the formula (23) -
(26) were assessed. The algorithm works by generating a population of random
starting points and next uses a local optimization method from each of the
starting points to converge to a local minimum. As the solution, the best local
minimum was chosen.

For a fixed sex, fixed age x, and knowing the switching points (designated in
accordance with the procedure described above) two sets of time series of µ̂x,t
values were created. In the first case, the estimation of µ̂x,t was based on empir-
ical data from 1958-2010 (using the next 6 years for ex-post error evaluation).
Similar estimation based on the years 1958-2016 was done in the second case.
In both cases the choice of the theoretical value µ̂x,t at a fixed moment t from
the theoretical values of the models (nGLSFo2), (nGLSFo4) and (nGLSFo6) was
based on minimization of the absolute error (AE), i.e.

min
i=2,4,6

|µ̂x,tnGLSFoi − µx,t|.

In addition, point forecasts for the period 2017-2025 have been determined.
The parameters for the Lee-Carter model with switchings were estimated based
on the formulas given in the literature [11] and using the same set of switches
as in the case of the nGLSF model.

We note that the hybrid model (19) is continuous. However, the moment
equations of the first and second-order defined by (22) - (27) are not continuous
in switching points because the empirical data of mortality rates we have used
were discrete, and these moments are determined separately for every submodel.

5 Results

Selected results for a 45-year old and a 60-year old woman and man presented in
Figures 1-2 (source of empirical data: [8]). In figures 1 and 2, blue circular points
indicate empirical data, red, black and green solid lines indicate the theoretical
values of the models: Lee-Carter (LCs), nGLSF order 2 (nGso2) and nGLSF
mixed order 2,4, and 6 (nGs) with switchings respectively, while the solid purple
line indicates the forecast of the nG (nGsf) for the next five years.

To verify the goodness of fit of the proposed nGs models with switchings to
the empirical mortality rates and compared with Lee-Carter model the mean
squared errors (MSE) between empirical mortality µx,t and theoretical values
µ̂x,t in the years 1958-2010 (‘10) and 1958-2016 (‘16) as well as the 95% con-
fidence interval for MSE has been calculated. Selected results (45 and 60-year
old female and male) are presented in Table 1 (where: CIL-lower -, CIU -upper
confidence interval, {W,M}X,MSE - MSE value for {female, male} aged X). The
results in column 5th illustrate the model (nGso2) considered in [20].

MSE values calculated on the basis of empirical and theoretical data from
1958-2016 and included in Table 1 and Figures 1-2 provide the following conclu-
sions:
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Fig. 1. Mortality rates for women (left side) and men (right side) aged 45 and empirical,
theoretical values based on the following models: LCs, nGs, and forecasts
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Fig. 2. Mortality rates for women (left side) and men (right side) aged 60 and empirical,
theoretical values based on the following models: LCs, nGs, and forecasts
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Table 1. Goodness of fit measures (woman-W, man-M) based on MSE.

Sex & Age EMP-LCs‘10 EMP-nGs‘10 EMP-LCs‘16 EMP-nGso2‘16 EMP-nGs‘16

W45,CIL 7.145E-09 8.373E-09 9.468E-09 9.296E-09 7.380E-09
W45,MSE 1.010E-08 1.190E-08 1.320E-08 1.290E-08 1.030E-08
W45,CIU 1.541E-08 1.806E-08 1.960E-08 1.925E-08 1.528E-08
W60,CIL 8.639E-08 8.983E-08 8.351E-08 9.293E-08 8.190E-08
W60,MSE 1.220E-07 1.270E-07 1.160E-07 1.290E-07 1.140E-07
W60,CIU 1.863E-07 1.937E-07 1.729E-07 1.924E-07 1.696E-07

M45,CIL 3.176E-07 5.247E-08 2.882E-07 7.714E-08 4.546E-08
M45,MSE 4.490E-07 7.430E-08 4.010E-07 1.070E-07 6.330E-08
M45,CIU 6.851E-07 1.132E-07 5.967E-07 1.597E-07 9.412E-08
M60,CIL 1.995E-06 8.113E-07 1.827E-06 9.966E-07 6.578E-07
M60,MSE 2.820E-06 1.148E-06 2.540E-06 1.390E-06 9.160E-07
M60,CIU 4.303E-06 1.750E-06 3.784E-06 2.063E-06 1.362E-06

– the theoretical values of the mortality rate µ̂nGsx,t based on the non-Gaussian
linear scalar filters with switching provide closer estimates to empirical values
than µ̂x,t

LCs
based on LC model and µ̂x,t

nGso2
with switching for both a

45-year-old and a 60-year-old woman and man,

– the range confidence interval is the smallest for the nGs model compared
to all other models given in Table 1, which means greater precision of the
proposed nGs for forecasting than the other models presented here,

– the empirical mortality rates for women are more accurately fitted using the
proposed nGs model than for men (lower MSE value),

– based on graphical results (Figure 1 - Figure 2), it can be seen that the pro-
posed method of modeling µx,t using nGs more precisely adapts to empirical
data, especially for data with a large variance than the LC model (e.g. see
empirical data from 1980-1990 for a 60-year-old man on Figure 2, right side).

Moreover, taking into account all results for people aged x = 0, . . . , 100 years
(also partly included in Table 1) it can be seen that the proposed nGs model fits
more accurately to the empirical data for younger than older (lower MSE for 45
years old than for 60 years old man and woman).

6 Conclusions

In this paper, three extended Milevsky and Promislov models with excitations
modeled by the second, the fourth and the sixth order polynomials of outputs
from a linear non-Gaussian filter are proposed and adopted to Polish mortality
data. To obtain hybrid models the procedures of parameters estimation and
the determination of switching points were proposed. Based on the theoretical
values obtained from these three models, one series of theoretical values based on
the AE criterion was constructed and compared with the theoretical mortality
rates based on classical the Lee–Carter model. In addition, a point forecast was
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computed. The obtained results confirm the usefulness of the switched model
based on the continuous non-Gaussian process for modeling mortality rates.

A natural extension of the research contained in this article is the Markov
chain application (homogeneous or heterogeneous), which will be used to describe
the space of states built on extended Milevsky and Promislov models with exci-
tations modeled by the second, the fourth and the sixth order polynomials. The
issues discussed above will be examined in the next article.

7 Appendix

The derivation of stationary and nonstationary solutions of moment
equations in nGLSF six order model

Using linear vector stochastic differential equation (19) and Ito formula we
derive differential equations for the first order moments E[zxi

(l)] and second
order moments E[zxi

(l)zxj
(l)], i, j = 1, ..., 7.

Next we find the stationary solutions for the first order moments E[zxi
(l)],

i = 2, 3, ..., 7 and for second order moments E[zxi(l)zxj (l)], i, j = 1, ..., 7, (i, j) 6=
(1, 1) equating to zero the corresponding time derivatives, i.e.

dE[zxi
(t,l)]

dt
= 0, i = 2, 3, ..., 7 (30)

dE[zxi(t,l)zxj(t,l)]

dt
= 0, i, j = 1, ..., 7, (i, j) 6= (1, 1) (31)

Then we obtain

E[zx2
(t, l)] = E[zx4

(t, l)] = E[zx6
(t, l)] = 0, E[zx3

(t, l)] =
γ2x1

2βx1

, (32)

E[zx3
(t, l)] =

γ2x1

2βx1

, E[zx5
(t, l)] = 3

(
γ2x1

2βx1

)2

, E[zx7
(t, l)] = 15

(
γ2x1

2βx1

)3

(33)

Hence, from conditions (32)-(33) and equality

E[zx1
(t, l)]

dt
= αlx (34)

we find the nonstationary solution for the first moment of the process zx1
(t, l)

E[zx1(t, l)] = αlxt+ αl0, (35)

where αl0 is an integration constant.
Next, taking into account conditions (30)-(31), (32)-(33) and (35) we obtain

E[z2x2
(l)] =

(γlx1
)2

2βlx1

, E[z2x3
(l)] = 3

(
(γlx1

)2

2βlx1

)2

, E[zx2
zx3

(l)] = 0, (36)
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E[zx2zx4(l)]=3

(
(γlx1

)2

2βlx1

)2

, E[z2x4
(l)] = 15

(
(γlx1

)2

2βlx1

)3

, E[zx4zx5(l)] = 0, (37)

E[zx3
zx4

(l)] = 0, E[zx2
(l)zx5

(l)]=0, E[zx3
zx5

(l)] = 15

(
(γlx1

)2

2βlx1

)3

, (38)

E[z2x5
(l)] = 105

(
(γlx1

)2

2βlx1

)4

, E[zx2
zx6

(l)]=15

(
(γlx1

)2

2βlx1

)3

, E[zx3
zx6

(l)] = 0

(39)

E[zx4zx6(l)]=105

(
(γlx1

)2

2βlx1

)4

, E[zx5zx6(l)] = 0, E[z2x6
(l)] = 945

(
(γlx1

)2

2βlx1

)5

(40)

E[zx2
(l)zx7

(l)]=0, E[zx3
zx7

(l)] = 105

(
(γlx1

)2

2βlx1

)4

, E[zx4
zx7

(l)] = 0, (41)

E[zx5(l)zx7(l)]=945

(
(γlx1

)2

2βlx1

)5

, E[zx6zx7(l)] = 0, E[z2x7
(l)] = 10395

(
(γlx1

)2

2βlx1

)6

(42)

E[zx1
(l)zx2

(l)]=qlx1

(γlx1
)2

2βlx1

+ 3qlx3

(
(γlx1

)2

2βlx1

)2

+ 15qlx5

(
(γlx1

)2

2βlx1

)3

, (43)

E[zx1
(l)zx3

(l)]=
1

2βlx1

(γlx1
)2E[zx1

(l)] + αlx
(γlx1

)2

2βlx1

+ 4βlx1
qlx2

(
(γlx1

)2

2βlx1

)2

+24βlx1
qlx4

(
(γlx1

)2

2βlx1

)3

+ 180βlx1
qlx6

(
(γlx1

)2

2βlx1

)4
 ,

(44)

E[zx1
(l)zx4

(l)]=3qlx1

(
(γlx1

)2

2βlx1

)2

+ 15qlx3

(
(γlx1

)2

2βlx1

)3

+ 105qlx5

(
(γlx1

)2

2βlx1

)4

(45)

E[zx1(l)zx5(l)]=
1

4βlx1

6(γlx1
)2

(γlx1
)2

2βlx1

E[zx1(l)] + 9αlx

(
(γlx1

)2

2βlx1

)2

+

+384βlx1
qlx4

(
(γlx1

)2

2βlx1

)4

+ 3600βlx1
qlx6

(
(γlx1

)2

2βlx1

)5
 ,

(46)

E[zx1
zx6

(l)]=15qlx1

(
(γlx1

)2

2βlx1

)3

+105qlx3

(
(γlx1

)2

2βlx1

)4

+945qlx5

(
(γlx1

)2

2βlx1

)5

, (47)
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E[zx1
(l)zx7

(l)]=15(
(γlx1

)2

2βlx1

)3E[zx1
(l)] +

55

4β1
αlx

(
(γlx1

)2

2βlx1

)3

+ 90qlx2

(
(γlx1

)2

2βlx1

)4

+ 900qlx4

(
(γlx1

)2

2βlx1

)5

+ 10170qlx6

(
(γlx1

)2

2βlx1

)6

.

(48)

Substituting quantities (36) - (48) to equation for the derivative
dE[z2x1

(t,l)]

dt
we obtain

dE[z2x1
(t,l)]

dt = 2αlxE[zx1
(t,l)]

−2αlx

[
qlx2

(γlx1
)2

2βlx1

+ 3qlx4
(
(γlx1

)2

2βlx1

)2 + 15qlx6
(
(γlx1

)2

2βlx1

)3

]
(49)

Hence, from equation (49) and equality (35) we find the nonstationary solu-
tion for the second moment of the process zx1(t, l)

E[z2x1
(t,l)]= (αlx)2t2 − 2αlx

[
−αl0x + qlx2

(γlx1
)2

2βlx1

(50)

+3qlx4

(
(γlx1

)2

2βlx1

)2

+ 15qlx6

(
(γlx1

)2

2βlx1

)3
 t+ cl0x (51)

where cl0x is an integration constant.
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