
An Information-Theoretic and Dissipative Systems 
Approach to the Study of Knowledge Diffusion and 

Emerging Complexity in Innovation Systems 

Guillem Achermann1 [0000-0003-3821-156X], Gabriele De Luca1* [0000-0001-9728-9581], and 
Michele Simoni2 [0000-0003-1669-3676] ** 

1 RUDN University, Moscow, Russia 
2 University of Naples Parthenope, Naples, Italy 

* Corresponding author: gabriele.deluca@mail.ru 
** Authors are listed in alphabetical order 

Abstract. The paper applies information theory and the theory of dissipative 
systems to discuss the emergence of complexity in an innovation system, as a 
result of its adaptation to an uneven distribution of the cognitive distance be-
tween its members. By modelling, on one hand, cognitive distance as noise, 
and, on the other hand, the inefficiencies linked to a bad flow of information as 
costs, we propose a model of the dynamics by which a horizontal network 
evolves into a hierarchical network, with some members emerging as interme-
diaries in the transfer of knowledge between seekers and problem-solvers. Our 
theoretical model contributes to the understanding of the evolution of an inno-
vation system by explaining how the increased complexity of the system can be 
thermodynamically justified by purely internal factors. Complementing previ-
ous studies, we demonstrate mathematically that the complexity of an innova-
tion system can increase not only to address the complexity of the problems that 
the system has to solve, but also to improve the performance of the system in 
transferring the knowledge needed to find a solution.  
Keywords: Knowledge Diffusion, Innovation System, Hierarchical Networks, 
Dissipative Systems. 

1 A network and systems approach to problem-solving. 

1.1 Networks of innovation as information and knowledge processing systems. 

The analysis of networks through sociometry has encouraged social scientists since 
the beginning of the twentieth century [1] to calculate degrees of strength or density 
of connections between different organisations located in a network. At the same 
time, efforts to understand the innovation process have led researchers to abandon the 
idea of a linear process of innovation, and to propose instead evolutionary models 
where the formalization and organization of a network becomes strategic to accelerate 
the flow of information and knowledge and the emergence of innovation. [2] Several 
forms of reticular organization (hierarchical, heterarchical, according to the centrality 
of elements, according to the transitivity of element, etc.) can be conceptualized with-
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in that context. Evolutionary economics and technology studies highlight (neo-
Schumpeterian) models to understand the plurality of evolution cases, depending on 
the initial forms of organization, but also on the ability of a system to adapt to system-
ic crises. 

In this work we study, from an information-theoretical perspective, the relationship 
between the structure of an innovation network, the noise in its communication chan-
nels and the energy costs associated with the network’s maintenance. An innovation 
network is here considered to encompass a variety of organisations who, through their 
interactions and the resulting relationships, build a system conducive to the emer-
gence of innovation. This system is identified by the literature [3] with different 
terms, such as innovation ecosystem, [4] problem-solving network, [5] or innovation 
environment. [6] In this system, the information channels transfer a multitude of in-
formation and knowledge which, depending on the structural holes, [7, 8] but also on 
the absence of predetermined receivers, are subject to information “noise”. [9] The 
more the information is distorted in the network, the more energy is needed to transfer 
accurate information, in order to keep performance of the innovation network 
high. The idea we propose is that the structure of an innovation system evolves to 
address the heterogeneity in the quality of communication that takes place between its 
members. In particular, we argue that the noise in a network increases the complexity 
of the network structure required for the accurate transfer of information and 
knowledge, and thus leads to the emergence of hierarchical structures. These struc-
tures, thanks to their fractal configuration, make it possible to combine high levels of 
efficiency in the transmission of information, with low network maintenance costs. 
This idea complements previous studies that have analysed the relationship between 
the structure of an innovation network, on one hand, and the complexity of the prob-
lem to be solved and the resulting innovation process, on the other, [10] by focusing 
on communication noise and cost of network structure maintenance. To the existing 
understanding of this phenomenon we contribute by identifying a thermodynamically 
efficient process which the network follows as it decreases in entropy while simulta-
neously cutting down its costs. 
This model is based on the analysis of a network composed of two classes or catego-
ries of organisations, which operate within the same innovation system. [11] These 
classes are represented by a central organisation called seeker, which poses a research 
question to a group of other organisations, called problem-solvers, and from which in 
turn receives a solution. It has been suggested [12] that one of the problems that the 
innovation system has to solve, and for which it self-organises, is the problem of ef-
fective diffusion of knowledge between problem-solvers and solution-seekers, as this 
can be considered as a problem sui generis. The theory on the diffusion of knowledge 
in an innovation system suggests that this problem is solved through the evolution of 
modular structures in the innovation network, which implies the emergence of organi-
sations that act as intermediary conduits of knowledge between hyper-specialised 
organisations in the same innovation environment. [13] A modular structure is, in 
network theory, connected to the idea of a hierarchical or fractal structure of the net-
work, [14] and is also characterised by scale-invariance; [15] the latter is a particular-
ly important property, because if innovation systems have it as an emergent property 
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of their behaviour, this allows them to be considered as complex adaptive systems. 
[16] It has been suggested that scale-invariance property of an innovation system 
might emerge as the result of horizontal cooperation between its elements, [17] which 
try to reach the level of complexity required to solve a complex problem; but it is not 
yet clear how does a complex structure emerge when the complexity of the problem 
does not vary, which is a phenomenon observed empirically. [18, 19] In this paper we 
show how complexity can also vary as a result of a non-uniform distribution of the 
cognitive distance between organisations of the network, and of the adaptation re-
quired to solve the problem of knowledge diffusion among them. Our contribution to 
the theoretical understanding on the self-organising properties of innovation systems 
is that, by framing the problem of heterogeneous cognitive distance between organisa-
tions under the theory of dissipative systems, we can explain in thermodynamically 
efficient terms the reduction in entropy of an innovation system, as an emergent adap-
tation aimed at reducing costs of maintenance of the system’s structure.  

1.2 Self-organisation and complexity in dissipative innovation systems. 

The theoretical framework which we use for this paper is comprised by four parts. 
First, we will frame the innovation system as a thermodynamically-open system, 
which is a property that derives from the fact that social systems also are. [20] Se-
cond, we will see under what conditions a system can undertake self-organisation and 
evolution. This will allow us to consider an innovation system as a complex adaptive 
system, should it be found that there are emergent properties of its behaviour which 
lead to an increase in complexity. Third, we will frame the innovation system as a 
dissipative system, which is a property also shared by social systems. [21] Dissipative 
systems are characterised by the fact that a variation in the level of their entropy tends 
to happen as a consequence of their changed ability to process inputs, and we will see 
how this applies for innovation systems. Lastly, we will study cognitive distance as it 
applies to a network of innovation, in order to show how a spontaneous reduction in it 
leads to an increase in complexity of the network.  

Thermodynamically-open innovation systems. An open thermodynamic system 
is defined as a system which exchanges matter and energy with its surrounding envi-
ronment, [22] and among them are found all social systems, which are open systems 
due to their exchanging of energy with the surrounding environment. [23] Social sys-
tems are also dynamical systems, because their structure changes over time through a 
process of dynamical evolution. [24] Innovation systems are some special classes of 
social systems, [25] which can thus also be considered as open systems. [26] In addi-
tion to this, like all social systems, innovation systems are also capable of self-
organisation, [27] which is a property that they inherit from social systems. [28] 
There is however a property which distinguishes innovation systems from the generic 
social system: that is, the capacity of the former to act as problem-solving environ-
ments. [29] An innovation system possesses the peculiar function of developing 
knowledge, [30] which is not necessarily possessed by the general social system. [31] 
It has been theorised that developing and distributing knowledge [32] is the method 
by which the innovation system implements the function of solving problems, 
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[33, 34] and we will be working within this theoretical assumption. The innovation 
system, for this paper, is therefore framed as a thermodynamically-open social system 
which solves problems through the development and diffusion of knowledge.  

Evolution and self-organisation. Like all other social systems, [35] an innovation 
system undertakes evolution [36] and changes in complexity over time. [37] The 
change in complexity of a system, in absence of any central planning or authority, is 
called in the literature self-organisation. [38] Self-organisation in a system implies 
that the system’s components do not have access to global information, but only to 
information which is available in their immediate neighbourhood, and that upon that 
information they then act. [39] 

Innovation systems evolve, with a process that may concern either their members, 
[40] their relationships and interactions, [41] the technological channels of communi-
cation, [42] the policies pursued in them, [43] or all of these factors simultaneously. 
[44] For the purpose of this work we will limit ourselves to consider as evolution of 
an innovation system the modification of the existing relationships between its mem-
bers, and the functions which they perform in their system. This process of evolution 
of the innovation system is characterised by self-organisation, [45] and it occurs along 
the lines of both information [46] and knowledge flows within the system. [47] The 
self-organisation of an innovation system is also the result of evolutionary pressures, 
[48] and we will here argue that one form of such pressures is cognitive distance be-
tween organisations within a network of innovation, whose attempt at reduction may 
lead to modifications in the relationships within the system and to the emergence of 
complex structures. While it has also been suggested that variations in the complexity 
of an innovation system might be the consequence of intrinsic complexity of the prob-
lems to be solved, [49] it has also been suggested that problems related to the transfer 
of knowledge within the elements of the system can, by themselves, generate the 
emergence of complex network structures, through a process which is thermodynami-
cally advantageous.  

Dissipative innovation systems. As the innovation system acquires a more com-
plex structure, its entropy decreases. If one assumes that the decrease in entropy fol-
lows the expenditure of some kind of energy by the system, without which its evolu-
tion towards a lower-entropy state is not possible, then it follows that the innovation 
system can be framed as a dissipative system. This is a consequence of the theory 
which, in more general terms, suggests that all social systems can be considered as 
dissipative systems; [50] and, among them, innovation systems can thus also be con-
sidered as dissipative systems. [51]  
The application of the theory of dissipative structures [52] to the study of social sys-
tems has already been done in the past, [53, 54] and it has also been applied to the 
study of innovation systems specifically, [55, 56] to understand the process by which 
new structures evolve in old organisational networks. [57]  
By framing the problem in this manner the emergence of a hierarchical structure in a 
dissipative innovation system can be considered as a process through which the inno-
vation system reaches a different level of entropy in its structure, [58] by means of a 
series of steps which imply sequential minimal variations in the level of entropy of 
the system, and lead to the emergence of complexity. [59] 

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50423-6_19

https://dx.doi.org/10.1007/978-3-030-50423-6_19


5 

Cognitive distance as noise. The process of transferring knowledge between or-
ganisations presumes the existence of knowledge assets that are transferred. [60] 
Companies embedded in an innovation system are therefore characterised by an intel-
lectual or knowledge capital, [61] which is the sum of the knowledge assets which 
they possess, [62] and which in turn are the result of the individual organisation’s 
path of development, [63] and of the knowledge possessed by the human and techno-
logical components of the organisation. [64] Any two organisations do not generally 
share the same intellectual capital, and therefore there are differences in the 
knowledge assets which they possess, and in the understanding and representation 
which they create about the world. This difference is called “cognitive distance” in 
the literature on knowledge management, and it refers to the difficulty in transferring 
knowledge between any two organisations. [65]  
The theory suggests that an innovation network has to perform a trade-off between 
increasing cognitive distance between organisations, which means higher novelty 
value, and increasing mutual understanding between them, which gives higher trans-
fer of knowledge at the expenses of novelty. [66] It has been argued that if alliances 
(that is, network connections) are successfully formed between organisations with 
high cognitive distance between their members, this leads to a higher production of 
innovation by that alliance, [67] as a consequence of the relationship between cogni-
tive distance and novelty, as described above. It has also been argued that the measure 
of centrality of a organisation in an innovation network is a consequence of the organ-
isation’s impact on the whole knowledge governance process, with organisations 
contributing more to it located more centrally in the network. [68] We propose that 
this known mechanism might play a role in the dynamic evolution of an innovation 
system, in a manner analogous to that of noise in an information system. The idea is 
that an organisation generally possessing a lower cognitive distance between multiple 
components of a network might spontaneously become a preferential intermediary for 
the transfer of knowledge within the innovation system, and as a consequence of this 
a hierarchical network structure emerges out of a lower-ordered structure. 

2 The structure of the network and its evolution. 

2.1 The structure of the network. 

The modeling of the process of evolution of a network of innovation is conducted 
as follows. First, we imagine that there are two different structures of the ego-network 
of an innovation seeker company that are the subject of our analysis. The first is a 
horizontal network, in which a seeker organisation is positioned in a network of solv-
ers, which are all directly connected with the seeker organisation in question. The 
second is a hierarchical or fractal network, in which a structure exists that represents 
the presence of intermediaries in the transfer of knowledge between the seeker organ-
isation and the solving organisations in the same network.  

All nodes besides the seeker organisation being studied in the first scenario, and all 
nodes at the periphery of the hierarchical structure of the second scenario, are from 
here on called solvers. There are N nodes in the ego-network of an innovation seeker 
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company. The N nodes in the horizontal network are all solver nodes, while the N 
nodes in the hierarchical network are divided into two classes of nodes: the interme-
diaries comprised of M nodes, and the solvers, comprised of 𝑀2 nodes. 

 
 

Fig. 1. In a horizontal network (to the left), all nodes in the ego-network of a seeker organisa-
tion are solver nodes (in green). In a hierarchical network (to the right), all nodes in the ego-
network are either solver nodes (in green), or intermediaries (in grey). 

In order to make the two network structures comparable we impose the additional 
condition that the total number of nodes in the two networks is the same, which is 
satisfied for 𝑁 =  𝑀2 + 𝑀. We also impose the additional condition that each of the 
N solver nodes in the periphery of the horizontal network has at least M link neigh-
bours belonging to N, as this allows us to describe a dynamical process which leads 
from the horizontal network to the hierarchical network without the creation of new 
links. 

2.2 The entropy of the network. 

The hierarchical network always possesses a lower entropy than the horizontal 
network comprised of the same number of nodes. This can be demonstrated by using 
as a measure of entropy Shannon’s definition, [69] which calculates it as the amount 
of information required to describe the current status of a system, accordingly to the 
formula below: 

 𝐻(𝑋) =  −∑ 𝑝(𝑥𝑖)𝑛
𝑖=1 log2𝑝(𝑥𝑖)  (1) 

This measure of entropy can be applied to a social network by assigning the ran-
dom variable X to the flattened adjacency matrix of the edges of the network, as done 
by others. [70] The adjacency matrices of the two classes of networks in relation to 
the size N+1 of the same network are indicated in the tables below, for the specific 
values 𝑀 = 2 → 𝑁 = 6. 
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Table 1. Adjacency matrices of two network structures for 𝑀 = 2. 

Horizontal Network Hierarchical Network 
node 1 2 3 4 5 6 7 

1 0 1 1 1 1 1 1 
2 1 0 0 1 1 0 0 
3 1 0 0 0 0 1 1 
4 1 1 0 0 0 0 1 
5 1 1 0 0 0 1 0 
6 1 0 1 0 1 0 0 
7 1 0 1 1 0 0 0 

 

node 1 2 3 4 5 6 7 
1 0 1 1 0 0 0 0 
2 1 0 0 1 1 0 0 
3 1 0 0 0 0 1 1 
4 0 1 0 0 0 0 0 
5 0 1 0 0 0 0 0 
6 0 0 1 0 0 0 0 
7 0 0 1 0 0 0 0 

 

In general, for any value 𝑀 ≥ 2, if a horizontal network has N solver nodes, one 
seeker node is connected to all other N nodes, and all solver nodes are additionally 
connected to M solver nodes each, where 𝑀 + 𝑀2 = 𝑁. In a hierarchical network 
with M intermediary nodes and 𝑀2 solver nodes, the seeker node is connected to M 
intermediary nodes, and each of the intermediary nodes is connected to M solver 
nodes. The general formulation of the adjacency matrix is indicated below, in relation 
to the value of M. 

Table 2. General structure of the adjacency matrices 

Horizontal network Hierarchical network 
Potential links Existing links Potential links Existing links 

(𝑁 + 1)2 2𝑁 +𝑁𝑀 (𝑁 + 1)2 2𝑀 + 2𝑀2 
The adjacency matrices can be flattened by either chaining all rows or all columns 

together, in order to obtain a vector X which univocally corresponds to a given matrix. 
This vector has a dimensionality of (𝑁 + 1)2, having been derived from an N+1 by 
N+1 matrix. The vector X which derives from flattening can then be treated as the 
probability distribution over a random binary variable, and Shannon’s measure of 
entropy can be computed on it. For the horizontal network, the vector 𝑋ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 has 
value 1 two times for each of the peripheral nodes because of their connection to the 
centre, and then again twice for each of the peripheral nodes. This means that the 
vector 𝑋ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙  corresponds to the probability distribution (2). 

 𝑋ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 =  �𝑝
(𝑥1) = 2𝑁+𝑁𝑀

(𝑁+1)2
=  (𝑀+𝑀2)(𝑀+2)

(𝑀+𝑀2+1)2
; 

𝑝(𝑥0) = 1 − 𝑝(𝑥1)
�  (2) 

For the hierarchical network, the vector 𝑋ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙  has value 1 two times for 
each of the M intermediary nodes, and then 2 times for each of the 𝑀2 nodes. The 
probability distribution associated with the vector 𝑋ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙  is therefore (3) 

 𝑋ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙 = �𝑝
(𝑥1) = 2𝑀+2𝑀2

(𝑀+𝑀2+1)2
; 

𝑝(𝑥0) = 1 − 𝑝(𝑥1)
� (3) 

The hierarchical network systematically possesses a lower level of entropy than a 
horizontal network with the same number of nodes, as shown in the graph below. 
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Fig. 2. Comparison between the levels of entropy of the two types of network structures. 

Since we consider the network as a dissipative system, the lower level of entropy 
implies an expected higher energetic cost of maintenance for the lower-entropy struc-
ture. It follows from this theoretical premise that the hierarchical network should ei-
ther allow the system to receive a higher input, or emit a lower output, or both simul-
taneously, lest its structure would decay to a higher entropy form, the horizontal one. 

2.3 The evolutionary dynamics of the network. 

An innovation system which starts evolving from a horizontal structure would tend 
to develop a hierarchical structure as a solution to the problem of transfer of 
knowledge in a network where cognitive distance is not uniformly distributed, as we 
will see in this paragraph. This can be shown by considering the hierarchical network 
as an attractor for the dynamical evolution of a horizontal network, under condition 
that the cognitive distance between pairs of nodes is distributed non-uniformly. 

Stationary states. For the context of this paper, as we model a finite-state network 
which operates on discrete time, which models the dynamics of a dissipation systems 
which evolves over time. [71] These functions have the form depicted below, with 
𝑥(𝑘) being the state of the system at time k, 𝑢(𝑘) being the input to the system at k, 
and 𝑦(𝑘) being the output of the system . 

 𝑥(𝑘 + 1) = 𝑓�𝑥(𝑘),𝑢(𝑘)� (7) 

 𝑦(𝑘) = ℎ�𝑥(𝑘),𝑢(𝑘)� (8) 

If the system does not undertake change in its internal structure, having already 
reached a stationary state, then 𝑥(𝑘 + 1) = 𝑥(𝑘). As we want to study whether the 
system spontaneously evolves from a horizontal to a hierarchical structure, we can 
assume that 𝑥(𝑘 + 1) = 𝑓ℎ𝑖𝑒𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙�𝑥(𝑘),𝑢(𝑘)� = 𝑥(𝑘) which can only be true if 
either the input 𝑢(𝑘) is 0, which is not the case if the system is active, or if 𝑢(𝑘 +
1) = 𝑢(𝑘). For the innovation system this condition is valid if minor variations in the 
structure of the network associated with it do not lead to a significant variation of the 
input to the system, which means that no advantages in the receipt by the seeker of 
solutions found by the solver should be found. If this is true, and if the hierarchical 
structure is an attractor for the corresponding horizontal network, then we expect the 

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50423-6_19

https://dx.doi.org/10.1007/978-3-030-50423-6_19


9 

input of the horizontal network to increase as it acquires a modular structure and de-
velops into a hierarchical network.  

Input of the system. The input function of the system depends on the receipt by 
the seeker organisation of a solution to a problem found by one of the peripheral solv-
er organisations, as described above. Let us imagine that at each timestep the solver 
organisations do indeed find a solution, and that thus the input 𝑢(𝑘) depends on the 
number of solver nodes, and for each of them on the probability of correct transmis-
sion of knowledge from them to the seeker organisation, which increasesas the cogni-
tive distance between two communicating nodes decreases. If this is true, then the 
input to the horizontal network is a function of the form 𝑢ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙(𝑁𝑘 , 𝑝𝑘), where N 
is the number of solver nodes, and p is the cognitive distance in the knowledge trans-
mission channel. Similarly, the input to the hierarchical network is a function of the 
form 𝑢ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙(𝑀2

𝑘, 𝑞𝑘) which depends on the 𝑀2 solver nodes in the hierarchical 
network, and on the parameter q which describes the cognitive distance. N and M are 
such that as they increase so do, respectively¸ 𝑢ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙  and 𝑢ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙; while p 
and q are such that, as they decrease, so do respectively 𝑢ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙  and 𝑢ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙  
increase. It can be also noted that 𝑀2 < 𝑁 → ∀(𝑀,𝑁) ∈ ℕ , under condition 
𝑁 =  𝑀2 + 𝑀 defined above. It can then be argued that if 𝑝 ≤ 𝑞 then 𝑢ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 >
 𝑢ℎ𝑖𝑒𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙 , which means that the system would not evolve into a hierarchical net-
work. It can also be noted that, if 𝑁 and 𝑀2 are sufficiently large, then 
lim𝑁,𝑀→+∞ �𝑁 𝑀2� � = 1 and therefore any difference between the number of solvers 
in the two network structures would not play a role in the input to the innovation sys-
tem. From this follows that 𝑢ℎ𝑖𝑒𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙 > 𝑢ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙  → 𝑞 < 𝑝; that is, that the input 
to the innovation system with a hierarchical structure is higher than the input to the 
innovation system with a horizontal structure, if the cognitive distance between the 
members of the former is lower than the cognitive distance between the members of 
the latter.  

Output of the system. As per the output of the system, we can imagine that there 
is a cost to be paid for the maintenance of the communication channels from which 
the seeker receives solutions from the solvers. If the system is in a stationary state, the 
condition 𝑦(𝑘 + 1) = 𝑦(𝑘) must be valid, as it follows from the considerations that 
𝑢(𝑘 + 1) = 𝑢(𝑘). If the system is not in a stationary state, as the input to the system 
increases, so should the output, under the hypothesis of dissipative system described 
above. A graphical representation of the evolution of the system from higher to lower 
entropy state is thus presented below.  

Horizontal network Evolution Hierarchical network 

   
Fig. 3. Evolution of a branch of the innovation network from a higher to a lower entropy struc-
ture, from left to right. The letters p and q define respectively a high and a low cognitive dis-
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tance between peers. 

The seeker organisation would at each step receive a solution transferred by one of 
its link neighbours, with the indication of the full path through which the communica-
tion has reached it. The seeker would then pay a certain cost, an output with the ter-
minology of dissipative systems, for the maintenance of the channel through which 
the solution has been transferred to it successfully. Such channels increase in intensity 
or weight, and are more likely to be used in subsequent iterations. On the contrary, 
channels through which a solution has not been received in a given iteration are de-
creased in intensity or weight, and are less likely to be used in the future. A process 
such as the one described would eventually, if enough iterations are performed, lead 
to the withering links between nodes with higher cognitive distance, and to the 
preservation of links between nodes with a lower cognitive distance. New connections 
are not formed, because cognitive distance is considered to be an exogenous parame-
ter in this model, which does not vary once the innovation system starts evolving. 
Real-world phenomena are not characterised by this restriction, which should be con-
sidered when analysing real-world systems under this model. 

3 Conclusions and future work. 

The originality of this paper consists in the framing of an innovation system under 
different theoretical approaches, such as that of thermodynamically-open systems, 
self-organisation and evolution, dissipative systems, and cognitive distance, which, 
when combined, highlight another way of understanding the overall operation and the 
evolution of innovation systems. From this perspective, the process which we here 
describe accounts for an emergent complexity of the innovation system, which can 
occur without central planning and on the basis of information locally available by its 
members. This seems to confirm the theory according to which innovation systems 
can self-organise to solve, among others, the problem of transfer of knowledge among 
their members. This seems also to suggest that, if the only form of proximity which 
matters is cognitive, and not geographical, organisational, or other, it might be possi-
ble to infer cognitive distance between the members of an innovation system on the 
basis of the way in which their relationships change over time. The theoretical predic-
tion which this model allows to make is that, should a connection between members 
of an innovation system be preserved while others are dropped, this means that the 
cognitive distance between pairs of nodes with surviving connections is lower than 
that of other nodes in their ego-networks.The modelling of the evolution of an innova-
tion system that we propose also shows that, if an innovation system starts its evolu-
tion with a centrally, highly-connected organisation in a largely horizontal network of 
solver, where the cognitive distance between each pair of nodes is not uniformly dis-
tributed, then the system would evolve towards a lower-entropy hierarchical structure, 
in order to solve the problem of transfer of knowledge from the organisations at the 
periphery of the innovation system to the central organisation. Our finding is con-
sistent with the theory on modularity as an emergent property of complex adaptive 
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innovation systems. Subsequent research might apply the mathematical model de-
scribed in this paper to a longitudinal study of the evolution of real-world innovation 
networks, in order to test whether the theory related to the spontaneous emergence of 
a hierarchical structure of innovation networks can be empirically supported. On the 
theoretical plane, further research could expand the understanding of the evolution of 
an innovation network by adding considerations related to the role which geograph-
ical and organisational proximity have in the development of the network, and add 
these factors to the model proposed. Issues related to perturbation of the network, 
limit cycle of its evolution, and self-organised criticality in connection to our model 
may also be explored in subsequent works. 
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