
Missing Features Reconstruction Using a
Wasserstein Generative Adversarial Imputation

Network
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Abstract. Missing data is one of the most common preprocessing prob-
lems. In this paper, we experimentally research the use of generative and
non-generative models for feature reconstruction. Variational Autoen-
coder with Arbitrary Conditioning (VAEAC) and Generative Adversar-
ial Imputation Network (GAIN) were researched as representatives of
generative models, while the denoising autoencoder (DAE) represented
non-generative models. Performance of the models is compared to tra-
ditional methods k-nearest neighbors (k-NN) and Multiple Imputation
by Chained Equations (MICE). Moreover, we introduce WGAIN as the
Wasserstein modification of GAIN, which turns out to be the best im-
putation model when the degree of missingness is less than or equal to
30%. Experiments were performed on real-world and artificial datasets
with continuous features where different percentages of features, vary-
ing from 10% to 50%, were missing. Evaluation of algorithms was done
by measuring the accuracy of the classification model previously trained
on the uncorrupted dataset. The results show that GAIN and especially
WGAIN are the best imputers regardless of the conditions. In general,
they outperform or are comparative to MICE, k-NN, DAE, and VAEAC.

Keywords: Imputation Methods · Feature Reconstruction · Missing
Data · Generative Models · Autoencoders · Wasserstein GAN

1 Introduction

When working with real-world datasets one of the standard problems that needs
solving as part of the data preprocessing phase is dealing with missing data.
The missingness can be represented by either individual missing data randomly
located in instances or by the absence of entire features.

To our best knowledge, not much attention is paid to the second scenario
where entire features are missing, i.e., there are no clear answers to questions
such as how to face the situation, how the standard imputation method will
perform or if there is a need to approach this challenge in a different way.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50423-6_17

https://dx.doi.org/10.1007/978-3-030-50423-6_17


2 Friedjungová et al.

The aim of our work is to study these issues by experimentally comparing
several state-of-the art imputation methods in real-world scenarios where one
needs to impute (i.e., reconstruct) entire features. This work follows up on our
previous work presented in paper [12], where we focus on the comparison of
traditional (k-NN, linear regression, MICE) and modern (multi-layer perceptron,
extreme gradient boosted trees) imputation methods.

In the current paper, we research more universal imputers represented by
autoencoders and generative neural network models. These models have a com-
mon advantage in that one does not need to know which features are missing
in advance. On the contrary, regular imputation methods need to be trained for
each combination of missing features separately. A typical example where a uni-
versal imputer is needed is the prediction of a classification model from sensor
data, where a sensor breakdown leads to missing data in one or more features.
Usually, the prediction model itself is not able to handle this situation without a
significant decrease in its performance. Furthermore, one typically does not know
in advance which sensor is going to be broken. The best approach would be to
retrain the model using data without missing features. However, in a production
setting model retraining is impossible as the existing model needs to respond to
corrupted data immediately.

We consider a situation where the prediction model is trained on a complete
preprocessed dataset with numeric features, and we study its accuracy changes
on new unseen data with imputed missing features. The amount of missing data
(i.e. features) varies between 10% and 50%. Experiments are performed on ten
real and two artificial datasets. The impact of imputation is measured as the clas-
sification accuracy change of the best performing from six commonly used clas-
sification models: logistic regression, multi-layer perceptron, k-NN, naive Bayes,
extreme gradient boosted trees [7], and random forest. Besides accuracy we also
use root mean squared error (RMSE) (which was also used in [35,6,17]) as a
measure of the quality of the imputation.

We compare the denoising autoencoder (DAE) [33], Generative Adversar-
ial Imputation Network (GAIN) [35], and Variational Autoencoder with Arbi-
trary Conditioning (VAEAC) [17] with k-NN and MICE [4], which are consid-
ered to be successful traditional imputation methods. Moreover, we introduce
Wasserstein Generative Adversarial Imputation Network (WGAIN), a Wasser-
stein based modification of GAIN, see [2]. WGAIN is a generative imputation
model and generally outperforms other presented models on the tested datasets.
The Earth-Mover distance and the corresponding discriminator’s critic of the
Wasserstein approach do not suffer from vanishing gradients in the way that a
vanilla GAN would. This enables the model to capture the desired distribution
better.

The paper is organized as follows. In Section 2, we briefly review related work
in this field. In Section 3 the WGAIN model is introduced. Section 4 is devoted
to the description of experiments performed, including the evaluation of their
results. Finally, the paper is concluded in Section 5.
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2 Related Work

There are many traditional imputation methods, such as e.g., [11,24,32]. Some of
the most common and successful are k-nearest neighbors imputation (k-NN) [18]
and multivariate imputation by chained equations (MICE) [29,32].

Approaches based on deep learning have been under active development for
the last few years. They use many variants of neural networks starting from
multi-layer perceptron, e.g., in [30,3]. A more advanced approach is based on
the autoencoder as a specific kind of neural network aiming to reconstruct in-
puts on its outputs. Here, one of the most commonly used models is the denoising
autoencoder (DAE) [33], e.g., [34,10,5,15,8]. Typically, they are used in a dis-
criminative way (see [15] for difference), meaning they impute a single value,
which is deterministic once the network is trained.

On the other hand, the most recent research focuses on generative models
which enables one to sample from the distribution conditioned on the observed
features and thus get information about the uncertainty in imputed values.
There are two groups of deep learning generative models. First, there are models
based on the variational autoencoder (VAE) [19] and its conditional alternations,
see [31,26,36,25]. In this group, some of the most successful imputation models
are VAEAC [17] and HI-VAE [27].

The second group contains models based on the Generative Adversarial Net-
work (GAN) [16]. Notably, one can encounter them in image reconstruction tasks
(i.e., image inpainting), see [20,22,28]. One of the most prominent methods based
on GAN is the GAIN [35], which uses the generator discriminator mechanism to
achieve learning of the desired distribution. The generator observes some com-
ponents of a real data vector, imputes the missing components conditioned on
what is observed, and outputs a completed vector. The discriminator then takes
a completed vector and attempts to determine which components were observed
and which were imputed. The GAIN forms the base for our modification of the
imputation method based on Wasserstein GAN [2], which is introduced in the
next section. Only recently, GAIN was outperformed by the previously men-
tioned VAEAC and HI-VAE. However, for numeric variables, HI-VAE achieves
a comparable error to the rest of the methods [27]. Therefore we have chosen
only VAEAC for the experimental comparison.

3 Wasserstein Generative Adversarial Imputation
Network

In this section, the WGAIN model is introduced as GAIN adapting the discrim-
inative approach from Wasserstein GAN.

Let us denote X = Rd the d-dimensional numeric data domain and let X =
(X1, . . . , Xd) be a random vector with values in X whose distribution is denoted
by P(X). Let the mask be a random binary vector M , i.e., random vector with
values in {0, 1}d. The mask corresponds to unobserved values of X so that the
value 0 of its jth component means that the jth feature of Xj is missing and
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the value 1 means that the jth feature of Xj is not missing. The distribution
of M corresponds to the distribution of missingness in the data. Let us further
denote by X̃ the vector X having zeros in place of missing values given by

X̃ = X �M ,

where � denotes element-wise multiplication. Our aim is to impute missing val-
ues in X̃ based on information from non-missing features of X̃ and M . It is
done in a generative way and it means that we want to learn the conditional
distribution P(X|X̃ = x̃,M = m) of X given X̃ = x̃ and M = m. To do this
let Z be a random vector with identically distributed independent components
having normal distribution N(0, σ2) with variance σ2 and define

X̃Z = Z � (1−M) + X �M ,

i.e. X̃Z is X̃ with missing components replaced by normal random variables.

Discriminator

Input matrixOriginal data

MSE Loss

Random matrix

�11 �12 �13

�21 �22 �23

�31 �32 �33

Mask matrix

1 1 0

0 1 0

1 0 1

�11 �12 �13

�21 �22 �23

�31 �32 �33

Critic Loss �
�

�11 �12 �13

�21 �22 �23

�31 �32 �33

Generator

Imputed matrix

�11 �12 �̂ 13

�̂ 21 �22 �̂ 23

�31 �̂ 32 �33

Fig. 1. WGAIN structure and mini-batch data flow.

The WGAIN model consists of two parts, the generator g and the critic f ,
both represented by deep neural networks. The generator g is constructed as a
mapping g : X × {0, 1}d → X so that

X̂Z = g(x̃Z ,m)� (1−m) + x̃�m

is a random vector whose conditional distribution P(X̂Z |X̃ = x̃,M = m),
determined by the distribution P(Z) of Z, should be close to the conditional
distribution P(X|X̃ = x̃,M = m). Note that g(x̃Z ,m) is a random vector
corresponding to x̃ with all missing components imputed.

In order to train it, we employ the standard squared loss function

LMSE(x̂z,x) = ‖x̂z − x‖2,
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forcing the output X̂Z to be close to the original data X. However, it turns
out that this condition alone is not sufficient for learning the proper conditional
distribution. To improve the performance of the generator, one may introduce a
discriminator trying to find out which components of X̂Z were imputed and use
the discriminator for adversarial training. This approach was introduced in [35]
and is the base of WGAIN.

In this paper we present a similar way how to improve the conditional distri-
bution of the generator’s output. It is based on the Earth-Mover (EM) distance
between two probability distributions P(X),P(Y ) defined by

W
(
P(X),P(Y )

)
= inf
γ∈Π(P(X),P(Y ))

E(X,Y )∼γ‖X − Y ‖,

where Π(P(X),P(Y )) denotes the set of all joint distributions (X,Y ) whose
marginals are respectively P(X) and P(Y ). The term E(X,Y )∼γ‖X − Y ‖ might
be understood as a measure of how much probability mass has to be transported
in order to transform the distributions P(X) into the distribution P(Y ) when
the joint distribution is γ. The EM distance can thus be seen as the cost of the
optimal transport plan, see [2] and references therein for more details. The EM
distance is usually expressed using the Kantorovich-Rubinstein duality as

W
(
P(X),P(Y )

)
= sup
‖f‖L≤1

EX∼P(X) f(X)− EY∼P(Y ) f(Y ), (1)

where ‖f‖L means that f is Lipschitz continuous with Lipschitz constant 1 which
might be changed to any constant K since it just multiplies W

(
P(X),P(Y )

)
by

the same constant.

In Wasserstein GAN one approximates (1) by training the neural network
fw parametrized with weights w in some compact space W, thus enforcing the
Lipschitz continuity. The function fw is called the critic and is trained to max-
imize the expectations difference in (1). For a single dimensional generator g
trying to transform random variable Z so that it has the distribution P(X) one
maximizes

max
w∈W

EX∼P(X) fw(X)− EZ∼P(Z) fw(g(Z)).

In our case we want to minimize the EM distance between P(X̂Z |X̃ =
x̃,M = m) and P(X|X̃ = x̃,M = m). Hence, we take the mask M as the
second argument of the critic as additional information to the first argument
given by X with correct features behind the mask M . The critic is therefore a
mapping fw : X × {0, 1}d → R trained to maximize

max
w∈W

EX∼P(X) fw(X,M)− EZ∼P(Z) fw(X̂Z ,M),

which is usually estimated by sample means from mini-batches. The overall
structure of WGAIN is depicted in Figure 1.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50423-6_17

https://dx.doi.org/10.1007/978-3-030-50423-6_17
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Algorithm 1: WGAIN training pseudo-code

Input: α - the learning rate; wmax - maximal norm used in clipping; m - the
mini-batch size

Draw m samples from the dataset {xj}mj=1;
Draw m samples from the mask distribution {mj}mj=1;
Draw m samples from the normal distribution of Z, {zj}mj=1;
while not converged do

x̃zj ← zj � (1−mj) + xj �mj ;
x̂zj ← g(x̃zj ,mj)� (1−mj) + xj �mj ;

Update weights w of fw using RMSProp with learning rate α and gradient
∇J(fw) = λfw∇

[
1
m

∑m
i=1 fw

(
x̂zj ,mj

)
− 1

m

∑m
i=1 fw

(
xj ,mj

)]
;

Clip the norm of w by wmax;

Update weights of g using RMSProp with learning rate α and gradient
∇J(g) = ∇

[
−λg

1
m

∑m
i=1 fw

(
x̂zj ,mj

)
+ λMSE

1
m

∑m
i=1‖x̂zj − xj‖2

]
;

end

3.1 Training

The critic fw is used in adversarial training of both the generator g and the critic
itself. There the generator and the critic play an iterative two-player minimax
game when the critic wants to recognize the imputed values from the real ones
and the goal of the generator is to trick the critic so it cannot recognize them.
Moreover, the generator’s output is tighten to the correct output by the squared
loss function LMSE.

Putting it all together, we have two objective functions to minimize. The
first corresponds to training of the discriminator given by

J(fw) = λfw

(
EZ∼P(Z) fw(X̂Z ,M)− EX∼P(X) fw(X,M)

)
,

where the weight λ enables one to increase or decrease the influence of the
corresponding gradient. Second is the objective for the generator,

J(g) = −λg EZ∼P(Z) fw(X̂Z ,M) + λMSE EX∼P(X),Z∼P(Z) LMSE(X̂Z ,X),

where the first term λg and λMSE are weights enabling one to strengthen or
weaken the influence of squared loss function. The optimization is done via
alternating gradient descent, where the first step is updating the critic fw and
the second step is updating the generator g. Hence, when perfectly trained, the
discriminator gives negative values to cases with imputed features and positive
values for cases with true features. On the other hand, the generator entering
the critic will be pushed to obtain large positive values of the critic as it gives
to real values.

The pseudo-code of the WGAIN training is given in Algorithm 1.
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4 Experiments

An experimental validation of WGAIN using ten real and two artificial publicly
available datasets is presented below. These datasets contain numeric data only
and are devoted to the classification task. Their overview, together with the
corresponding best performing classification models, is given in Table 2.

During the experiments, all datasets were divided as follows: 70% of data was
used to train all classification and imputation models and 30% was used as a test
set to evaluate imputation performance. The imputation models were trained to
impute in scenarios where randomly selected combinations of multiple features
are missing. The amount of missingness varies from 10% to 50% of missing
features. Finally, evaluation of the accuracy of the classification model combined
with all imputation methods is performed on the test dataset.

4.1 Imputation Models and Their Parameters

Let us start with the presented WGAIN model. The generator and the critic
architectures were the same for all datasets and are described in Table 1. During
the training, the following settings were used:

– The original data X are sampled in mini-batches of size m = 128.
– The missingness is introduced using the mask M with the following distri-

bution: for each training point, the portion of missingness is sampled from a
uniform distribution between 0 and maximum missing rate, which was cho-
sen to be 0.3. Then the binary elements of M were independently sampled
with this portion of missingness, i.e., its item is 0 with a probability which
was previously sampled.

– The components of random vector Z are i.i.d. with normal distribution hav-
ing 0 mean and standard deviation 0.01.

– The weights of the objectives functions J(fw) and J(g) are λfw = 10, λg = 2,
and λMSE = 1.

– Maximal norm used in clipping of the critic weights is wmax = 1.
– We use RMSProp with learning rate α = 0.0001 as optimizers.
– The number of training epochs is 8000.

The GAIN implementation follows the original paper [35] and is analogous
to the described WGAIN with the following differences:

– The generator architecture differs only in the sizes of layers, which are all
equal to the input dimension.

– The discriminator architecture is analogous to the generator architecture
except for the sigmoid activation function on the last layer.

– The binary elements of M are independently sampled with the common
portion of missingness, which is 0.2.

– The hint rate used for the hint matrix is 0.9.
– As an optimizer, we use Adam with learning rate of 0.0001.
– The number of training epochs is 7000.
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Table 1. Architecture details of the WGAIN. Abbreviation: FC=fully connected layer.

Layer Generator

concatenate data and mask
1 FC-(1.5 input dimension), ReLU
2 FC-(1.25 input dimension), ReLU
3 FC-(input dimension), Linear

Layer Critic

concatenate data and mask
1 FC-(1.5 input dimension), ReLU
2 FC-(1.25 input dimension), ReLU
3 FC-(1), Linear

In the case of DAE, we follow the structure presented in [15]. For the hyper-
parameters search, the hyperband [21] algorithm was used. The typical best
setup is the following: ELU as an activation function, three layers in both the
encoder and decoder parts, the size of the code is twice the input dimension,
and no regularization is used.

DAE, GAIN, and WGAIN models were implemented in the TensorFlow li-
brary 1.

The implementation of VAEAC was based on the repository 2 corresponding
to the original paper [17]. All hyper-parameters stayed in the default settings.

For the MICE method (mice), we used the IterativeImputer class from
the scikit-learn library3. In the default settings, the implementation uses
Bayesian ridge regression as the internal imputation model and multiple impu-
tations are pooled by the mean.

The k-NN imputation (knn) was implemented using the fancyimpute li-
brary 4. A missing value is imputed by sampling the mean of the values of its
neighbors weighted proportionally to their inverse distances. In the case where
multiple features are missing, we impute all missing values at once (per row). For
the hyper-parameter k values 11, 13, 15, 17, 19, 21, 23, 25 were tested. The best k
was chosen based on the RMSE value.

4.2 Evaluation

The impact of imputation is evaluated using the classification accuracy changes
of the best performing classification model chosen from the six commonly used
ones: logistic regression (LR), multi-layer perceptron (MLP), k-nearest neigh-
bors (k-NN), naive Bayes (NB), extreme gradient boosted trees (XGBT) (for
details see [7]), and random forest (RF). The best hyperparameters for each
model were found using randomized search algorithm. The accuracy of the best

1 TensorFlow platform: https://www.tensorflow.org
2 VAEAC implementation: https://github.com/tigvarts/vaeac
3 Scikit-learn library: https://scikit-learn.org
4 Fancyimpute repository: https://github.com/iskandr/fancyimpute
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performing model for each dataset is shown in Table 2. Furthermore, the root
mean squared error (RMSE) between the original and the imputed data is also
used for evaluation, e.g., [35,6,17].

Table 2. Details of datasets with the corresponding best performing classification
model and its accuracy on the test set. The number of features (# f.) does not include
the target label. The # r. stands for the number of records.

Name Type # f. # r. model name accuracy
Cancer [23] real 9 683 RF 0.975
EEG [23] real 14 14980 k-NN 0.952

MAGIC [23] real 10 19020 XGBT 0.868
Ozone-1 [23] real 72 1846 k-NN 0.977
Ozone-8 [23] real 72 1848 LR 0.941
QSAR [23] real 41 1055 MLP 0.868
Shuttle [23] real 9 57998 RF 0.999

Spambase [23] real 57 4597 MLP 0.940
Waveform [23] real 21 5000 LR 0.869

Yeast [23] real 8 1484 XGBT 0.578
Ringnorm [1] art. 20 7400 NB 0.979
Twonorm [1] art. 20 7400 MLP 0.979

After all classification models were trained, and the most accurate one for
each dataset was chosen, they were combined with imputation methods. Then,
the accuracies of classification models on the imputed test dataset were mea-
sured.

Since it is not sound to compare accuracies for different datasets, we use a
rank comparison. To do so, the algorithms are ranked for each dataset separately,
the best performing algorithm getting the rank of 1, the second-best rank 2, etc.
An example of accuracies and corresponding ranks for 10% of missingness is
presented in Tables 4 and 5. Even in cases when WGAIN is not the best, its
performance is always comparable to the best performers. The only exception is
the EEG dataset, where k-NN imputation performs the best and the WGAIN is
in second place with a difference of almost two percent.

The algorithms can be compared, taking the mean over the datasets. The
results can be seen in Table 9. When the degree of missingness varies from
10% to 30% the WGAIN performs the best. When the degree of missingness is
upwards of 30% the GAIN outperforms the WGAIN.

The results of the ranking evaluation can be statistically evaluated using the
Friedman test [13,14] and the corresponding posthoc tests. For more details,
see [9]. P-values of Friedman χ2

F and FF tests are shown in Table 8. One can
see that from 20% to 40% of missing data the null-hypothesis, that all methods
perform the same, can be rejected at a 10% significance level. However, when
the Bonferroni-Dunn post-hoc test is applied the performance of WGAIN is
significantly better than DAE only and just for 20% and 30% of missing data.

The same ranking process is repeated for RMSE with results in Table 3. An
example of RMSE and corresponding ranks for 10% of missingness is presented

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50423-6_17

https://dx.doi.org/10.1007/978-3-030-50423-6_17


10 Friedjungová et al.

Table 3. Mean ranks of the RMSE for different degrees of missingness.

Degree of missingness
Method 10% 20% 30% 40% 50%
k-NN 2.67 2.67 2.67 3.08 2.75
MICE 3.17 3.50 3.33 3.00 2.91
DAE 5.08 5.08 5.17 5.33 4.91

VAEAC 3.25 3.33 3.42 3.17 3.50
GAIN 2.17 2.08 2.17 2.08 2.50

WGAIN 4.67 4.33 4.25 4.33 4.42

Table 4. Mean of the accuracies for 10% of missing features.

k-NN MICE DAE VAEAC GAIN WGAIN
Cancer 0.9700 0.9744 0.9744 0.9749 0.9739 0.9755
EEG 0.9226 0.9046 0.8994 0.6374 0.9028 0.9052

MAGIC 0.8562 0.8465 0.8459 0.8527 0.8522 0.8511
Ozone-1 0.9754 0.9763 0.9768 0.9762 0.9759 0.9763
Ozone-8 0.9404 0.9407 0.9405 0.9405 0.9406 0.9406
QSAR 0.8608 0.8619 0.8615 0.8619 0.8609 0.8626
Shuttle 0.9995 0.9996 0.9945 0.9994 0.9992 0.9995

Spambase 0.9363 0.9278 0.9307 0.9303 0.9339 0.9296
Waveform 0.8603 0.8604 0.8585 0.8596 0.8605 0.8593

Yeast 0.5516 0.5507 0.5533 0.5496 0.5541 0.5558
Ringnorm 0.9668 0.9671 0.9672 0.9673 0.9674 0.9680
Twonorm 0.9711 0.9716 0.9716 0.9716 0.9719 0.9723

Table 5. Ranks of accuracies of the imputation methods for 10% of missing features.

k-NN MICE DAE VAEAC GAIN WGAIN
Cancer 6 3.5 3.5 2 5 1
EEG 1 3 5 6 4 2

MAGIC 1 5 6 2 3 4
Ozone-1 6 2 1 4 5 3
Ozone-8 6 1 5 4 2.5 2.5
QSAR 6 2.5 4 2.5 5 1
Shuttle 2 1 6 3.5 5 3.5

Spambase 1 6 3 4 2 5
Waveform 3 2 6 4 1 5

Yeast 4 5 3 6 2 1
Ringnorm 6 5 4 3 2 1
Twonorm 6 4 4 4 2 1

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50423-6_17

https://dx.doi.org/10.1007/978-3-030-50423-6_17


Missing Features Reconstruction 11

Table 6. Mean of the RMSE for 10% of missing features.

k-NN MICE DAE VAEAC GAIN WGAIN
Cancer 0.1905 0.1960 0.2219 0.1943 0.1959 0.2087
EEG 16.4752 27.8197 29.1700 293.9315 21.8986 34.2722

MAGIC 0.1821 0.2067 0.2072 0.1866 0.1844 0.1928
Ozone-1 0.1364 0.0826 0.1204 0.1047 0.1038 0.1051
Ozone-8 0.1549 0.0972 0.1473 0.1233 0.1230 0.1206
QSAR 0.2356 0.3115 0.2505 0.2445 0.2376 0.2492
Shuttle 0.0954 0.1022 0.1316 0.1085 0.1053 0.1097

Spambase 0.2404 0.2723 0.2692 0.2659 0.2587 0.2731
Waveform 0.2312 0.2304 0.2690 0.2301 0.2278 0.2429

Yeast 0.3542 0.3610 0.3666 0.3585 0.3560 0.3631
Ringnorm 0.3222 0.3184 0.3187 0.3191 0.3190 0.3282
Twonorm 0.2967 0.2948 0.3081 0.2935 0.2918 0.2975

Table 7. Ranks of RMSE of the imputation methods for 10% of missings.

k-NN MICE DAE VAEAC GAIN WGAIN
Cancer 1 4 6 2 3 5
EEG 1 3 4 6 2 5

MAGIC 1 5 6 3 2 4
Ozone-1 6 1 5 3 2 4
Ozone-8 6 1 5 4 3 2
QSAR 1 6 5 3 2 4
Shuttle 1 2 6 4 3 5

Spambase 1 5 4 3 2 6
Waveform 4 3 6 2 1 5

Yeast 1 4 6 3 2 5
Ringnorm 5 1 2 4 3 6
Twonorm 4 3 6 2 1 5

Table 8. P-values of Friedman χ2
F and FF test.

Degree of missingness
10% 20% 30% 40% 50%

χ2
F test 0.252 0.049 0.106 0.020 0.477
FF test 0.253 0.041 0.099 0.014 0.490
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Table 9. Mean ranks of the accuracy changes for different degrees of missingness.

Degree of missingness
Method 10% 20% 30% 40% 50%
k-NN 4.00 3.54 3.63 3.17 3.25
MICE 3.33 4.04 3.75 4.21 3.71
DAE 4.21 4.79 4.67 4.71 4.33

VAEAC 3.75 3.13 3.50 3.59 3.54
GAIN 3.21 2.83 2.83 2.21 2.79

WGAIN 2.50 2.67 2.63 3.12 3.38

in Tables 6 and 7. Interestingly, the WGAIN performance is one of the worst,
whereas the GAIN performs the best. This is in contrary to the fact that the
WGAIN imputes the best from the accuracy point of view. Hence, we can see
that low RMSE, which is usually taken as a measure of imputation quality may
not lead to the desired performance on the target task. On the other hand, the
RMSE differences are relatively small as can be seen in Table 6.

5 Conclusion

We propose a Wasserstein Generative Adversarial Imputation Network as a new
deep learning imputation model. It is inspired by the GAIN. However, the dis-
criminator is replaced by the Wasserstein critic. It is known that the Wasserstein
approach does not suffer from vanishing gradients in the way that a vanilla GAN
does. This enables the model to capture the desired distribution better. One may
assume such benefits in WGAIN as well. We experimentally showed that in the
imputation performance measured by classification accuracy, the WGAIN out-
performs the other methods when the degree of missingness is lower than or
equal to 30%. In other cases, it is competitive. In future work, we would like to
focus on the use of WGAIN in image inpainting tasks.
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