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Abstract. In the face of endless cyberattacks, many researchers have
proposed machine learning-based network anomaly detection technolo-
gies. Traditional statistical features of network flows are manually ex-
tracted and rely heavily on expert knowledge, while classifiers based on
statistical features have a high false-positive rate. The communications
between different hosts forms graphs, which contain a large number of
latent features. By combining statistical features with these latent fea-
tures, we can train better machine learning classifiers. Therefore, we
propose a novel network anomaly detection method that can use latent
features in graphs and reduce the false positive rate of anomaly detec-
tion. We convert network traffic into first-order and second-order graph.
The first-order graph learns the latent features from the perspective of
a single host, and the second-order graph learns the latent features from
a global perspective. This feature extraction process does not require
manual participation or expert knowledge. We use these features to train
machine learning algorithm classifiers for detecting network anomalies.
We conducted experiments on two real-world datasets, and the results
show that our approach allows for better learning of latent features and
improved accuracy of anomaly detection. In addition, our method has
the ability to detect unknown attacks.

Keywords: Network Anomaly Detection - Graph Embedding - Feature
Engineering - Unknown Attack Discovery

1 Introduction

With the rapid development of the Internet and more network devices are con-
nected to it, modern cyberattacks have emerged in recent years. Attackers aim-
ing to exploit networked systems must take a number of relevant attack steps
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in order to achieve their goals. In order to deal with these attack steps, signifi-
cant attention has been given to identifying correlated anomalous network flow
from the network traffic in recent academic research. In addition, for each of the
attack steps that compose the entire attack scenario to be interconnected, look-
ing at the network context of individual attack steps is helpful to understand
the correlation between anomalous and benign streams and is important in a
counterattack against network attacks.

Since modern network anomaly detection systems should not be highly de-
pendent on human expert knowledge, they need to have the ability to au-
tonomously adapt to the evolution of all network behaviors. Therefore, machine
learning has become a very common method for detecting network anomalies,
and feature engineering has become an important step in machine learning.
However, the quality of the features directly determines the effectiveness of the
machine learning algorithm. Researchers have proposed a number of ways to ex-
tract features from network traffic. Some feature extraction methods have also
published as public tools such as CICFlowMeter[7]. Most of these features are
statistical features. In that way, the existing feature extraction methods rely
heavily on expert knowledge.

The communication between different hosts can be constructed into attributed
graphs. These graphs contain huge number of latent features. For example, if the
port usage of the two hosts is very similar, the distance of the two hosts in graphs
should be close. These latent features cannot be extracted manually, but they
are very helpful for machine learning-based algorithms.

In this paper, we propose a network anomaly detection method based on
graph embedding. We convert the network traffic into first-order graph and
second-order graph. The first-order graph learns the latent features from the
perspective of a single host, and the second-order graph learns the latent fea-
tures from a global perspective. This feature extraction process does not require
manual participation or expert knowledge. We use these features to train ma-
chine learning algorithm classifiers for detecting network anomalies.

In general, our main contributions are as follows:

— We propose first-order and second-order graph of network traffic, and learn
the low-dimensional vector representation of the nodes in the diagram.

— We design a network anomaly detection method based on graph embedding.
By combining first-order and second-order low-dimensional vector represen-
tations of network traffic with several statistical features, it is possible to
improve detection accuracy and detect unknown attacks.

— We built a prototype of the network anomaly detection framework and eval-
uate the detection accuracy and the ability to discover unknown attacks on
real-world datasets.

The rest of the paper is organized as follows. We first introduce the threat
model in Section 2. Section 3 is the graph embedding algorithm. Section 4 defines
the proposed network anomaly detection framework. Experimental results are
presented in Section 5. Finally, we discuss the related work in Section 6 and
conclude in Section 7.
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2 Threat Model

In order to better understand the method proposed in this paper, we will describe
the threat model in this section. The attacker launches an attack on victims
through the network. Here, we take remote control Trojan as an example. The
attacker sends a control command to the Trojan through the C&C server through
the phishing email of the victim, and accepts the stolen data. In many cases, the
attacker will use encryption to communicate, but the victim’s ability to know the
content of the communication is limited. The victim needs to look for abnormal
traffic in the network traffic and find attack information.

aa

Phishing e-mail

Command

o

Stolen data

I
C&C server L

Fig. 1. A use case for the threat model

3 Graph Embedding Algorithm

In this section, we introduce the first-order graph and second-order graph of net-
work traffic, then propose the graph embedding algorithm for these two graphs.
At last, we also adopt two optimization methods to reduce the complexity of the
proposed algorithm.

3.1 First-Order Graph Embedding

Definition 1. (First-Order Graph) A bipartite graph consisting of IP ad-
dresses and ports (e.g. Fig. 2) is denoted as G1 = (Vip U Vport, E), where Vi, is
the set of IP addresses and Vport is the set of ports. E is the set of edges between
IP addresses and ports. w; ; is the weight between v;p, and vport,. The weight
can be the number of packets or the number of bits that flowing out from PORT)
of IP;. In the following experiments, we consider the weight as the number of
packets that flowing out from PORT}; of IP;.

The first-order graph learns the latent features from the perspective of a
single host. The purpose of first-order graph embedding is that if two hosts have
similar port usage distribution, their distance in the vector space should be close.
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192.168.100.5 TCP 445

192.168.220.15 3 TCP 445
192.168.100.5 3 TCP 445

Fig. 2. Example of first-order graph

For V vip, € Vip, vport; € Vport, let W and Uport; are embedding vectors for
Vip;, and vport,. We define the following conditional probabilities:

€xXp (@T : uportj)

HT
EVip exp (uipi/ : uportj)

p(vip, (1)

vportj) = Z

Vip,,

€xXp (uporth : m)

P(Vport; [Vip,) = > (2)

Vport EVport €Xp (uportJ/T ’ 17171))
According to Eq.1 and Eq. 2, we can get the conditional distribution p(:|vpert, )
and p(-|vip, )
To understand the latent features of IP addresses and ports, we minimize the
distance between conditional distribution and empirical distribution. Therefore,
we get the following objective function:

0 = Z distance (p(:|vport, ), P(-[Vport, ) ) +

J (3)
Z distance (p(-|vip, ), p(-|vip,))

Wi,j

where p(vip, [Vport,;) = S distance(-,-) is the distance between two distri-

butions(e.g. Bhattacharyya distance, Jeffries-Matusita distance, KL-divergence
distance). In the following experiments, we use the KL-divergence distance.
We use stochastic gradient descent for optimizing Eq. 3,_t>hen we are able to

get the first-order low-dimensional vector representation {u;” }i:1,2,3,...,|vip| and

{ul”™" Y im12.8,0 Vyorel-

3.2 Second-Order Graph Embedding

Definition 2. (Second-Order Graph) A hypergraph consisting of source IP
addresses, source ports, destination IP addresses, and destination ports (e.g.
Fig. 3) is denoted as Ga = (Veip |J Visport U Vaip U Viaport, E), where Vs, is a set
of all source IP addresses; Vsport 15 a set of all source ports; Vg, is a set of
all destination IP addresses; Vaport 15 a set of all destination ports; E is a set
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of hyperedges consisting of four points: source IP address, source port, destina-
tion IP address and destination ports. w;jr1 € E is the weight of hyperedge

< Usip; 5 Usportj y Udipy, » Vdport, >.

T WD =
é 192 168. 100 5 / TCP 445 < -168.220.16 _— TCP 58844 )
(g 192.168.220.15 TCP 48888 192 168.220. 15 TCP 48888 )
.._ " ‘...—
S5 2 Q

Fig. 3. Example of second-order graph

The second-order graph learns latent features from a global perspective.

For Vv € Viip U Viport U Viaip U Vaport, we define C'is the context of v. For ex-
ample, for a hyperedge < v;, v;, v, v; >, (i, U, vp) is the context of v;. v;, vg, and
vy are similar. Inspired by[6], we define the following conditional probabilities:

exp (Sim(v, C))
> veve €xXp (Sim(v', C)) (4)

where Vi is a set of nodes which context is C. Sim(v,C) = ﬁ >
is the similarity between v and C.

p(v|C) =

v'eVe 'LT'ZT * Uy

Similarity to Eq. 3, we minimize the distance between the conditional distri-
bution and the empirical distribution. Therefore, we get the following objective
function:

Z distance(p(-|C),p(-|C)) (5)

ceP

where P is a set of C, p(v|C) = %707 distance(-,-) is the distance

- ZU’EV W,/
between the two distributions. In the followmg experiments, we use the KL-
divergence distance.
We use stochastic gradient descent for optimizing Eq. 5,*ghen we could
get the second-order low-dimensional vector representation {u}" Fim1,2, | Vein s

—
dport}

sport dip
(" Yzt 2, WVapore s 15 Yiz1,20 Vi) A0 {0577 Fim 2 Vi -

3.3 Optimization

In order to speed up the calculation speed, we use the following two optimization
methods.
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Fast Sigmoid Algorithm: When optimizing objective function, sigmoid(x)
function needs to be calculated many times. In the computer, the exp(z) func-
tion is usually calculated by the series summation (exp(z) = > po “,’TT =1+
x + % + ””—63 + ---). A large number of multiplications and divisions need to be
calculated, which takes a lot of time. So we use a sigmoid table instead of calcu-
lating sigmoid(x) function. Firstly, we initialize this sigmoid table by calculating
sigmoid(—12lesize ) sjgmoid(—t2esize 4 1) ... | sigmoid(2blesize) When we
need to calculate sigmoid(z) in each iteration, we use the point closest to x in
the sigmoid table as sigmoid(z). The time complexity of calculating sigmoid(z)
is only O(1), and the space complexity is O(table_size). The size of table_size
is related to the precision of sigmoid(x) function. In the following experiments,
table_size takes 2000.

Alias Method for Sampling: The nodes need to be sampled during each
iteration of the training. For nodes that appear frequently, we should have a
greater probability of sampling. Let {2 = {wi,ws,...,w)y|} denotes the weight
set of nodes, wgym = ZLZ!D w; is the sum of all weights. A simple way is that
the sampling probability of each node is w‘:ulm , w:fm s :S‘:;‘q }. There is a very
naive sampling method that satisfies this sampling requirement: randomly se-
lect an integer © from [1, weum], if 7 € [S277) wi, 327, wi), then select the j-th
node. We can use prefix sum array and binary search algorithm to search for

I-lwi <71 < Y2 wi . The time complexity of this method is O(log |V]).
Another faster method is alias table method[8], which is also the method we
used in our experiments. This method generates two auxiliary tables based on
2 at first. Then we can randomly select an integer of [1,|V]] and a decimal of
[0,1) to select a node. This method has a time complexity of O(1) per sample,
which saves a lot of time when the number of iterations is large.

4 Network Anomaly Detection Framework

Our framework is composed of five primary modules: network probe, embedding,
training, detection and database as shown in Fig. 4.

N
|
! First Order
Embedding
Second Order
Embedding

“Detection \ Result

» Detection Model 1

Detection Model n

Fig. 4. Overview of the network anomaly detection framework
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Network Probe. The network probe module captures traffic from network
and generates traffic logs. The network probe module can be deployed on devices
such as personal computers, firewalls, and servers. As mentioned in Section 3,
our algorithm is to calculate the low latitude quantization representation of IP
and port using IP, port, protocol, the number of packets and bytes(e.g. Table
1). So the generated log must contain these fields. There are many open source
tools (e.g. Zeek[20], Packetbeat[4], and Joy[10]) that generate network traffic
logs that meet our requirements. We employ these existing tools to generate and
unify network traffic logs.

Table 1. An example of network traffic logs

Source Source| Destination |Destination
IP Address | Port | IP Address Port Protocol Packets Bytes
192.168.100.5 | 445 |192.168.220.16 58844 TCP 1 108
192.168.100.5 | 445 |192.168.220.15 48888 TCP 1 108
192.168.220.15| 48888 | 192.168.100.5 445 TCP 2 174
192.168.220.16| 58844 | 192.168.100.5 445 TCP 2 174
192.168.100.5 | 445 |192.168.220.15 48888 TCP 1 108
192.168.220.16| 58844 | 192.168.100.5 445 TCP 2 174

Embedding. In the embedding module, we use the method in Section 3
to learn the first-order and second-order low-dimensional vector representation
of the nodes in these graphs. For the initial training, we randomly initialize
the embedding vector of each node. For each subsequent training, we use the
embedding vector of the last training as the initial value of this training, and
then use the new data for iterative training. At the end of each training, we store
the results in the database for later use.

Training. In the training module, we train multiple machine learning classi-
fiers using features learned in the embedding phase and some statistical features
(e.g. flow duration, total forward packets, total backward packets). There are
differences in the accuracy of different machine learning algorithms for detect-
ing different types of attacks. In order to improve the accuracy of detection, we
calculated the weights of different classifiers on different attack categories on the
test set. acc; ; is the accuracy of the i-th classifier on the j-th attack category.

accq,j

Wij = S~ is the classification weight of the i-th machine learning classifier
[ 2,7
on the j-th attack category.

Detection. In the detection module, we use multiple machine learning clas-
sifiers to detect new network traffic log. p;; is the probability that the i-th
machine learning classifier considers this network traffic log belongs to the j-
th attack category, where > jpij =1 The final category of the output of the
detection phase is argmax) _, w; ;j * p; ;

J
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Database. Database module is mainly to store network traffic logs, em-
bedding vector and detection models. There are many open source data storage
system, including general relational database, distributed storage framework and
so on. In our experimental environment, we use MySQL for storage. When the
network bandwidth is very large, a lot of network traffic logs will be generated.
In this case, we should consider using a distributed storage framework.

5 Evaluation

In this section, we provide three thorough experiments of graph embeddings and
network anomaly detection. The first experiment is a clustering of IP addresses.
We verified on the CIDDS-001 dataset[13] whether the first-order and second-
order low-dimensional vector representation can learn the latent features of IP
addresses. The second experiment is network anomaly detection. We evaluate the
precision, recall and F1 measure of our method on the CICIDS 2017 dataset[15].
The third experiment is an unknown threat discovery. We use a portion of the
attack categories to train our model and then to evaluate if new attack types
can be detected.

5.1 Experiment Setup

A proof-of-concept version of our graph embedding algorithms are implemented
by C++ with compiler version g++ 4.8.5, which are running on CentOS 7.6 OS.
The server is DELL R440 with 48 CPU cores and 128 GB of memory. We also
implement machine learning algorithm for anomaly detection via Python3 and
Scikit-learn[11].

5.2 IP Address Cluster

For an effective graph embedding algorithm, hosts of the same category in the
network should be close in low-dimensional vector space. When running the clus-
tering algorithm, hosts of the same category should be clustered into a cluster.
So in this experiment, we use the DBScan clustering algorithm to cluster IP
addresses.

We evaluate the effects of the clustering algorithm from three indicators:
accuracy, homogeneity, and completeness. Homogeneity and completeness are
independent of the labels.

The baseline method is TP2Vec[12]. IP2Vec obtains the low-dimensional vec-
tor representation of the IP addresses by training a neural network with single
hidden layer. We experimented with the same dataset and experimental method
as IP2Vec.

In the third week of the CIDDS-001 dataset[13], there are a total of 6,439,783
network traffic flows. We use all data during graph embedding, and only cluster
the intranet IP addresses (192.168.100.0/24, 192.168.200.0/24, 192.168.210.0/24,
192.18.220.0/24). We divide the IP address into server and client according to

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-50423-6_12 |



https://dx.doi.org/10.1007/978-3-030-50423-6_12

Towards Network Anomaly Detection Using Graph Embedding 9

the role that the host plays in the network. We treat server and printer as
server; windows client and linuzx client as client. In the end, there are a total of
7 servers and 19 clients.

Table 2. Assignment matrix for the CIDDS-001 dataset

Method |Classes|Cluster 1|Cluster 2|Num. Outliers
server 7 0 0
Our Method —rror s 0 19 0
server 6 0 1
IP2Vee  —fent 0 19 0

Table 2 shows the result of using DBScan to cluster IP addresses. As shown
in the table, our method can distinguish between server and client precisely.
But IP2Vec has a point that cannot be divided into any cluster. Table 3 shows
the results of two methods on accuracy, homogeneity and completeness. For the
accuracy and completeness, our method outperforms IP2Vec.

Table 3. Comparision of our method and IP2Vec for clustering the IP Address within
the CIDDS-001 dataset

Similarity Measure|Accuracy | Homogeneity| Completeness|Num. Outliers
Our Method 1.0 1.0 1.0 0
IP2Vec 0.9615 1.0 0.8406 1

5.3 Network Anomaly Detection

In this experiment, we used the CICIDS 2017[15] dataset. The CICIDS 2017
dataset contains a total of 2,830,743 network flows. The attack types include
DDoS, DoS, Brute Force, XSS, SQL Injection, Infiltration, Port Scan and Bot-
net. We remove the attack categories of less than 100 flows. For the remaining
categories, we used 60% of each category of data as a training set and 40% as a
test set.

There are 80 features in CICIDS 2017. In [15], the authors evaluated the
importance of each feature on detecting attacks and selected eight most impor-
tant features: flow duration, total forward packets, total backward packets, total
length of forward packets, total length of backward packets, flow bytes per sec-
onds, flow packets per seconds, down/up ratio. Most of the feature extraction
tools can extract these eight features. Therefore, in this experiment we use first-
order vector representation, second-order vector representation and these eight
features training machine learning algorithms.
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We did three times evaluations in this experiment. For the first time, we only
use the raw features. For the second time, we only use embedding features. For
the third time, we use both the raw features and the embedding features. We
use the random forest algorithm to train and evaluate the results from three
indicators: Precision, Recall and F1 measure.

Table 4. Performances of random-forest classifier over raw features, embedding fea-
tures and all features

Attack Raw Features Embedding Features All Features
Scenarios Precision| Recall| F1 |Precision| Recall | F1 |Precision| Recall | F1
Benign 0.9862 [0.9860(0.9861| 0.9999 (1.0000{1.0000| 0.9998 |0.9999 | 0.9999
Bot 1.0000 |0.0140(0.0276| 1.0000 {0.9117]|0.9538| 0.9502 |0.8098 | 0.8744
DDoS 0.9969 [0.9929/0.9949| 0.9950 |0.5596 | 0.7163 | 0.9993 |0.9995|0.9994
DoS GoldenEye | 0.9178 |0.7402|0.8195| 0.0000 |0.0000 | 0.0000 | 0.9945 |0.9900(0.9922
DoS Hulk 0.8806 [0.9507|0.9143| 0.7411 |0.9987 | 0.8509 | 0.9979 [0.9998|0.9988

DoS Slowhttptest| 0.9812 [0.8291|0.8987| 0.0000 |0.0000 | 0.0000 | 0.9968 [0.9998|0.9988
DoS Slowloris | 1.0000 |0.4705|0.6399| 0.0000 | 0.0000 | 0.0000 | 0.9857 |0.9885|0.9871
FTP-Patator 1.0000 [0.4921|0.6596| 0.9730 |0.9971 |0.9849 | 0.9979 |1.0000|0.9990

PortScan 0.9936 [0.9912|0.9924| 0.9998 |0.9938 | 0.9968 | 0.9998 |0.9984|0.9991
SSH-Patator 1.0000 |0.4960(0.6631| 0.9650 |0.9977|0.9811| 1.0000 [0.9989/0.9994
Brute Force 1.0000 [0.0381/0.0735| 0.0000 |0.0000 | 0.0000 | 0.7085 |0.9248|0.8023

XSS 1.0000 [0.0077|0.0152| 0.0000 |0.0000 |0.0000| 0.6400 |0.1641|0.2612

Table 4 shows the experimental results. As can be seen from the table, using
only raw features to train the classifier, the detection accuracy of the classifier
is very high, but the recall is relatively low, especially bot, XSS and brute force.
Therefore, the F1 measure of the classifier is low. In addition, the results of a
classifier trained using only embedding features are also less effective. Although
it has high detection accuracy and recall rate for several attack scenarios(e.g.
Benign, Bot and Portscan), it has multiple attack scenarios that cannot be de-
tected (e.g. DoS GoldenEye, DoS Slowhttptest and XSS). If both the raw feature
and the embedding feature are used to train the classifier, the performance of
the classifier can be greatly improved. It not only has a high detection accuracy
rate, but also has a high recall rate.

Fig. 5 shows the confusion matrix of the three times evaluations. As can
be seen from the figure, a classifier trained using only raw features classifies a
large amount of malicious traffic into benign traffic, which has low attack false
positive rate. Although the classifier trained with embedding features cannot
accurately detect the attack scenarios, it rarely categorizes malicious traffic as
benign traffic, and the attack false negative rate is very low. A classifier trained
using both raw features and embedding features has the advantages of both. It
can not only identify malicious traffic, but also accurately detect different attack
scenarios.
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Fig. 5. Confusion matrix of random-forest classifier over different feature sets

5.4 Unknown Threat Discovery

In this experiment, we use 60% of benign traffic and all Bot, PortScan, DoS Hulk,
DoS slowloris, FTP-Patator, Brute Force attack traffic as training set, and the
remaining 40% of benign traffic and other attack types as test set. The raw
random forest algorithm is adopted to train a binary classifier, then to evaluate

the ability of our algorithm to detect unknown attack traffic.

Table 5. Results of unknown threat discovery

True Classes Benign|Anomaly| Total
Benign 906262 173 906435
DDoS 36 127991 |128027

DoS Slowhttptest 0 5499 5499

DoS GoldenEye 0 10293 | 10293

Heartbleed 11 0 11
SSH-Patator 2 5895 5897
Web Attack-XSS 0 652 652
Web Attack-SQL Injection 0 21 21
Infiltration 36 0 36
Total 906347 | 150524 -

Table 5 shows the prediction result on the test set. 173 out of 906435 be-
nign flows in the test set were predicted as anomaly flows, with an accuracy of
99.98%. 83 of the 150436 attack traffic in the test set were predicted as normal
traffic, with an accuracy of 99.94%. Most of the attack traffic can be accurately
detected, but Heartbleed and Infiltration is all predicted to be normal traffic.
We analyzed the reason may be that the behaviours of these two attack cate-
gories are different from the categories of attacks in the training set and were not
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recognized correctly. Our approach can detect variants of known attacks, but is
limited in its ability to detect brand-new attacks.

6 Related Work

The network anomaly detection technology has been divided into three categories
according to [5]: statistical-based, knowledge-based and machine learning-based.
Deep learning-based network anomaly detection has emerged in recent years due
to the development of deep learning.

6.1 Statistical-based Network Anomaly Detection

Caberera et al.[3] proposed a statistical flow modeling method that can detect
unknown network attacks. The authors constructed a Network Activity Models
and Application Models and evaluated it on the DARPA’98 dataset. The exper-
imental results showed that the Network Activity Models can detect Denial-of-
Service and Probing attacks; Application Models can distinguish between the
normal telnet connections and attacks using telnet connections.

6.2 Knowledge-based Network Anomaly Detection

By integrating specification-based with anomaly-based intrusion detection tech-
nology, Sekar et al.[14] proposed a intrusion detection approach by using a state-
machine to begin with the specification of network protocol, then expanding the
state of the state-machine using existing knowledge to detect the anomaly state.

6.3 Machine Learning-based Network Anomaly Detection

Ariu et al.[2] proposed HMMPayl, an intrusion detection system using Hidden
Markov Models(HMM). HMMPayl represented the HTTP payload as a sequence
of bytes, and detected if it is an attack. HMMPayl has a detection rate of over
98% on the DARPA’99 dataset[9]. Syarif et al.[16] evaluated the anomaly de-
tection accuracy of five different clustering algorithms: K-Means, improved K-
Means, K-Medoids, EM clustering and distance-based outlier detection algo-
rithms. Xu et al.[18] proposed an anomaly detection framework integrating arti-
ficial intelligence engine with fog computing, and used semi-supervised machine
learning to train a robust detection model.

6.4 Deep Learning-based Network Anomaly Detection

Zhu et al.[21] proposed a intrusion detection approach based on Attention-based
Multi-Flow LSTM by using features of multiple flows rather than a single flow
as input of LSTM, so that it can capture temporal feature between flows. They
also add the attention mechanism to LSTM by achieving a high accuracy on the
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CICIDS 2017 dataset[15]. Wang et al.[17] proposed a CNN architecture simi-
lar to LeNet-5 to train raw binary traffic and classify it. Aldwairi et al.[1] used
NetFlow to train the Restricted Boltzmann Machine and achieved a high ac-
curacy on the CICIDS 2017 dataset. Yao et al.[19] proposed a framework for
solving network anomaly detection tasks by integrating the graph kernel with
deep neural networks, and evaluated different integrating methods.

7 Conclusion

In this paper, we propose a network anomaly detection framework based on
graph embedding. We convert the network traffic data into first-order and second-
order graph. First-order graphs learn the latent features from the perspective of
a single host, and second-order graphs learn the latent features from a global
perspective. This feature extraction process does not require human involvement
at all. After training the machine learning classifiers using the first-order and
second-order vector representation and some statistical features, we use these
classifiers to detect new network flows. Three experiments on two real-world
datasets showed that our first-order and second-order vector representation can
learn latent features and can improve the efficiency of the anomaly detection
framework. We also used some of the attack types traffic to train and predict
new attack types in network traffic, then evaluated our framework’s ability to
discover unknown attack types.
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