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Abstract. The classification of imbalanced data streams is gaining more
and more interest. However, apart from the problem that one of the class
is not well represented, there are problems typical for data stream clas-
sification, such as limited resources, lack of access to the true labels and
the possibility of occurrence of the concept drift. Possibility of concept
drift appearing enforces design in the method adaptation mechanism. In
this article, we propose the OCEIS classifier (One-Class support vector
machine classifier Ensemble for Imbalanced data Stream). The main idea
is to supply the committee with one-class classifiers trained on clustered
data for each class separately. The results obtained from experiments
carried out on synthetic and real data show that the proposed method
achieves results at a similar level as the state of the art methods com-
pared with it.

Keywords: One-class classification · Imbalanced data · Data streams ·
Ensemble learning

1 Introduction

Currently, the classification of difficult data is a frequently selected topic of
research. One of many examples of this type of data is data streams. Such data
should be processed for a limited time, having appropriate memory restrictions
and performing only one-time use of incoming data. Also, the classifiers are
required to be adaptable. A common phenomenon accompanying streams is the
concept drift, which causes a change in the incoming data distribution. These
changes may occur indefinitely.

Another problem is the imbalance of data, when it is combined with streams,
significantly increases the difficulty. Uneven distribution of the number of classes
is a fairly common phenomenon occurring in real data sets. This is not a problem
when the differences are small, but it becomes serious when the difference be-
tween the number of objects from minority and majority classes is significantly
huge. One of the known ways to deal with these difficulties is data sampling
methods. These methods are designed to reduce the number of objects in the
dominant class or to generate artificial objects of the minority class [2].
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Designing methods with mechanisms for adapting to this type of data is an-
other approach. One of this kind of approach is Learn++CDS [6] method, which
combines the Learn++NSE [7] for nonstationary streams and SMOTE [2] for
oversampling data. The next method in this paper is Learn++NIE, which is
similar to the previous one, but with little difference. The classification error is
introduced and some variation of bagging is used for balancing data. Wang et al.
[19] design a method that uses the k-Mean clustering algorithm for undersam-
pling data by prototype generation from centroids. The REA method proposed
by Chen and He [4]. It is extension of the SERA [3] and the MuSeRA [5]. This
family of methods uses a strategy for estimating similarity between previous
samples of minority classes and the current minority data from the chunk.

One of the demanding situations when classifying imbalanced data streams
is the temporary disappearance of the minority class or their appearance only in
later stages. This type of phenomenon can cause a significant decrease in quality
or sometimes prevent the typical classifier from working. The solution that raises
this type of problem is the use of one-class classifiers that can make decisions
based only on objects from one class only. Krawczyk et al. [11] proposed to the
form an ensemble of one-class classifiers. Clustered data within samples from
each class is used to train new models and expand ensemble. J. Liu et al. [14]
designed a modular committee of single-class classifiers based on data density
analysis. This is a similar approach, where clusters are created as part of a single-
class data set. Krawczyk and Woniak [10] presented various metrics enabling the
creation of effective one-class classifier committees.

This paper proposes an ensemble method for classifying imbalanced data
streams. The purpose of this work is to conduct preliminary experiments and
analyze the obtained results, which will confirm whether the designed method
can deal with imbalanced data streams competing in tests with the methods of
state of the art. The main contributions of this work are as follows:

– A proposal for an OCEIS method for classifying imbalanced data streams
based on one-class SVM classifiers

– Introduction of an appropriate combination rule allowing full use of the
potential of the one-class SVM classifier ensemble

– Designing the proper learning procedure for the proposed method using di-
vision of data into classes and k-mean clustering

– Experimental evaluation of the proposed OCEIS method using real and syn-
thetic generated imbalanced data streams and a comparison with the state-
of-the-art methods

2 Proposed method

The proposed method One Class support vector machine classifier Ensemble
for Imbalanced data Stream (OCEIS ) is a combination of different approaches
to data classification. The main core of this idea is the use of one-class support
vector machines (OCSVM ) to classify imbalanced binary problems. This method
is the chunk-based data stream method.
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(a) Minority classifiers (b) Majority classifiers

(c) Both classifiers (d) Ensemble

Fig. 1: Decision regions visualisation on the paw dataset from the Keel.es repository[1]

In the first step of the Algorithm 1, the chunk of training data is divided
into a minority (Dmin) and a majority set (Dmaj). Then these sets of data are
divided into clusters. Krawczyk et al. [11] indicate the importance of this idea.
This decomposition of data over the feature space allows achieving less overlap
of classifiers decision areas in the ensemble (Figure 1). The k-means algorithm
[15] is used to create clusters. The key aspect is choosing the right number of
clusters. Silhouette Value (SV ) [18] comes with help, which allows calculating
how similar an object is to its own cluster compared to other clusters. Kaufman
et al. [9] introduced the Silhouette Coefficient (SC ) for the maximum value of
the mean SV over the entire dataset.

Minority and majority data is divided into clusters sets (Cmint,k, Cmajt,k)
with a different number of centroids from 1 to Kmax. The number of clusters with
the highest value of SC is selected (Kbest). This process is performed for minority
and majority data. Then the formed clusters are used to fit new models (ht,i, ht,j)
of OCSVM. These models are included in the pool of classifier committees (Hmin,
Hmaj). The method is designed by default to operate on data streams. For this
reason, a simple forgetting mechanism, also known as incremental learning, was
implemented. This allows using models trained only on data with a certain time
interval. When the algorithm reaches a set number (S) of chunks (t), in each
iteration, the models built on the oldest chunk are removed from the ensemble.

A crucial component of any classifier ensemble is the combination rule, which
makes decisions based on the predictions of the classifier ensemble. Designing a

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50423-6_9

https://dx.doi.org/10.1007/978-3-030-50423-6_9


4 J. Klikowski et al.

Algorithm 1 OCEIS - Train

Input:
Dt = {(xt

1, i
t
1), (xt

2, i
t
2), (xt

N , itN )} - training chunk of data stream
xt
k ∈ X , where X stands for the feature space

itk ∈M = {minority,majority}, where M denotes set of the possible labels
t - current timestamp
N - chunk size
Dmajt - majority data chunk
Dmint - minority data chunk
OCSVM - SVM classifier for one-class classification
S - maximum size of classifier ensemble
Kmax - maximum number of clusters
k - number of clusters
SilhouetteCoefficient - clusters consistency value [9]
Kbest - number of clusters with best Silhouette Coefficient
KMeanClustering - k-mean clustering algorithm [15]
Cmajt,k - clusters of minority data Dmajt
Cmint,k - clusters of minority data Dmint

ht,j - hypothesis from OCSVM trained on Cmajt,j cluster data
ht,i - hypothesis from OCSVM trained on Cmint,i cluster data
Hmaj - majority hypothesis set (ensemble)
Hmin - minority hypothesis set (ensemble)

1: for t = 1, 2, ... do
2: Split Dt into majority (Dmajt) and minority (Dmint) data
3: for k = 1, 2, ...,Kmax do
4: Cmajt,k ← Call KMeanClustering with k on Dmajt
5: Cmint,k ← Call KMeanClustering with k on Dmint

6: end for
7: Kbest ← max Silhouette Coefficient on Cmajt,k
8: for i = 1, 2, ...,Kbest do
9: ht,i ← Call OCSVM on Cmajt,i cluster data

10: Add ht,i to Hmaj

11: end for
12: Kbest ← max Silhouette Coefficient on Cmint,k

13: for j = 1, 2, ...,Kbest do
14: ht,j ← Call OCSVM on Cmint,i cluster data
15: Add ht,j to Hmin

16: end for
17: if t > S then
18: Remove all ht,i where t = t− S from Hmaj

19: Remove all ht,j where t = t− S from Hmin

20: end if
21: end for
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Algorithm 2 OCEIS - Prediction

Input:
Dt = {(xt

1, i
t
1), (xt

2, i
t
2), (xt

N , itN )} - training chunk of data stream
xt
k ∈ X , where X stands for the feature space

itk ∈M = {minority,majority}, where M denotes set of the possible labels
t - current timestamp
N - chunk size
DecisionFunction - Signed distance to the separating hyperplane.
Returns positive value inside and negative outside hyperplane.
Disti,m - distance from hi decision boundary to xm

Distj,m - distance from hj decision boundary to xm

Dmaj - maximum value of distance from hj decision boundary to xm

Dmin - maximum value of distance from hi decision boundary to xm

1: for t = 1, 2, ... do
2: for each hj in Hmaj do
3: Distj,m ← Compute DecisionFunction for hj on each xm in Dt

4: end for
5: for each hi in Hmin do
6: Disti,m ← Compute DecisionFunction for hi on each xm in Dt

7: end for
8: for m = 1, 2, ..., N do
9: Dmaj ← max value of Distj,m for xm

10: Dmin ← max value of Disti,m for xm

11: if Dmaj > Dmin then
12: Predict majority class for xm

13: else
14: Predict minority class for xm

15: end if
16: end for
17: end for
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good decision rule is vital for proper operation and obtaining satisfactory classi-
fication quality. First of all, OCEIS uses one-class classifiers and class clustering
technique, which changes the way how the ensemble works. Well-known decision
making based on majority voting [20] does not allow this kind of committee to
make correct decisions. The number of classifiers for individual classes may vary
significantly depending on the number of clusters. In this situation, there is a
considerable risk that the decision will mainly base on majority classifiers.

OCEIS uses the original combination rule (Algorithm 2) based on distance
from the decision boundary of classifiers to predicted samples. In the first step,
the distances (Disti,m, Distj,m) are calculated from all objects of the predicted
data to the hypersphere of the models forming the minority and the majority
committee. The DecisionFunction calculates these values. When the examined
object is inside the checked hypersphere, it obtains a positive value, when it is
outside, it receives a negative value. Then the highest value (Dmaj , Dmin) is
determined from the majority and minority committees for each sample. When
the best value (Dmaj) for the model from the majority subensemble is greater
than the best value (Dmin) for the model from the minority subensemble, it
means that this object belongs to the majority class. Similarly, when Dmin is
greater than Dmaj , the object belongs to a minority class.

3 Experimental evaluation

The main purpose of this experiment was to check how good the proposed
method performed with comparison to the other methods for classifying im-
balanced data streams. The following research hypothesis was formulated:

It is possible to design a method with a statistically better or equal classifica-
tion quality of imbalanced data streams compared to the selected state of the
art methods.

3.1 Experiment setup

All tests were carried out using 24 generated streams and 30 real streams (Table
1). The generated data comes from stream-learn [12] generator. These generated
data differ in the level of imbalance: 10%, 20%, 30%. Label noise: 0% or 10%
and type of drift: incremental or sudden. All generated data streams have 10
features, two classes and consist of 100,000 objects each. The proposed method
has been tested with the selected state of the art methods:

– L++CDS [6]
– L++NIE [6]
– KMC [19]

– REA [4]
– OUSE [8]
– MLPC [16] (as a baseline)

The SVM implementation from the scikit-learn framework [17] was used as
the base classifier in all committees. OCEIS implementation and the experi-
mental environment is available on public github repository.1 Four metrics were

1 https://github.com/w4k2/oceis-iccs2020
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used to measure the quality: Gmean, precision, recall and specificity. The results
obtained in this way were compared using Wilcoxon statistical pair-tests. Each
method was compared with OCEIS and these wins, lost and draw are shown in
Figure 2 and Figure 3.

Table 1: Overview of real datasets used in experimental evaluation (KEEL [1]
and PROMISE Software Engineering Repository [13]), IR - Imbalance Ratio

Dataset IR Samples Features

abalone-17 vs 7-8-9-10 39 2338 8
australian 1.2 690 14
elecNormNew 1.4 45312 8
glass-0-1-2-3 vs 4-5-6 3.2 214 9
glass0 2.1 214 9
glass1 1.8 214 9
heart 1.2 270 13
jm1 5.5 2109 21
kc1 5.5 2109 21
kc2 3.9 522 21
kr-vs-k-three vs eleven 35 2935 6
kr-vs-k-zero-one vs draw 27 2901 6
page-blocks0 8.8 5472 10
pima 1.9 768 8
segment0 6 2308 19
shuttle-1vs4 14 1829 9
shuttle-1vsA 3.7 57999 9
shuttle-4-5vsA 3.8 57999 9
shuttle-4vsA 5.5 57999 9
shuttle-5vsA 17 57999 9
vehicle0 3.3 846 18
vowel0 10 988 13
wisconsin 1.9 683 9
yeast-0-2-5-6 vs 3-7-8-9 9.1 1004 8
yeast-0-2-5-7-9 vs 3-6-8 9.1 1004 8
yeast-0-3-5-9 vs 7-8 9.1 506 8
yeast-0-5-6-7-9 vs 4 9.4 528 8
yeast-2 vs 4 9.1 514 8
yeast1 2.5 1484 8
yeast3 8.1 1484 8

3.2 Results analysis

The obtained results of the Wilcoxon rank-sum pair statistical tests show that
OCEIS can classify with the similar quality compared to the tested methods.
For tested synthetic data streams (Figure 2) there is a certain advantage of the
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L++CDS method over other methods. In second place can be put L++NIE and
OCEIS. For the OUSE and L++NIE methods, there is a noticeable tendency to
classify objects of the minority class, which is manifested by the higher results in
the Recall (TPR) metric, but this causes a significant drop in Specifity (TNR).
The worst in this test was the REA method, which shows a huge beat in the
direction of the majority class. The results are more transparent for real data
sets (Figure 3). Despite many ties, the best performing method is OCEIS. The
exceptions are Recall for OUSE and Specifity for REA.

0 5 10 15 20

MLPC
OUSE
REA

L++NIE
L++CDS

KMC
Gmean

0 5 10 15 20

MLPC
OUSE
REA

L++NIE
L++CDS

KMC
Precision

0 5 10 15 20

MLPC
OUSE
REA

L++NIE
L++CDS

KMC
Recall

0 5 10 15 20

MLPC
OUSE
REA

L++NIE
L++CDS

KMC
Specifity

Fig. 2: Wilcoxon pair rank sum tests for synthetic data streams. Dashed vertical line
is a critical value with a confidence level 0.05 (green - win, yellow - tie, red - lose)
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L++CDS

KMC
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Fig. 3: Wilcoxon pair rank sum tests for real data streams. Dashed vertical line is a
critical value with a confidence level 0.05 (green - win, yellow - tie, red - lose)

Charts of Gmean score over the data chunks provide some useful information
about obtained results. To get a much better readability, the data before plotting
was processed using a Gaussian filter. This procedure smoothes the edges of the
results, which allows getting much more information from the results. The first
observation is that for an incremental drift stream (Figure 4), OCEIS does not
degrade quality over time. The negative effect of the concept drift can be seen on
the KMC and REA methods, where the quality deteriorates significantly with
the inflow of subsequent data chunks.
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Fig. 4: Gmean score over the data chunks for synthetic data with incremental
drift

In sudden concept drift (Figure 5), a certain decrease is noticeable, which
is more or less reflected on every tested method. However, L++CDS, L++NIE
and OCEIS can quickly rebuild this quality drop. This does not affect the overall
quality of the classification significantly. Other methods perform a little bit ran-
domly on sudden drifts. An example of the real-time shuttle-4vsA stream (Figure
6) shows the clear advantage of the OCEIS method over the other tested meth-
ods. A similar observation can be seen in other figures for real streams.
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Fig. 5: Gmean score over the data chunks for synthetic data with sudden drift
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Fig. 6: Gmean score over the data chunks for real stream shuttle-4-5vsA

When analyzing the results, one should pay attention to the significant di-
vergences in the performance of the proposed method for synthetic and real data
streams. A large variety characterized real data streams, while artificial streams
were generated using one type of generator (of course, for different settings).
However, generated data streams are biased towards one type of data distribu-
tion, which probably was easy to analyze by some of the models, while the bias
of the rest of them was not consistent with this type of data generator. There-
fore, in the future, we are going to carry out the experimental research on the
expanded pool of synthetic streams generated by other different generators.

4 Conclusions

We proposed an imbalanced data streams classification algorithm based on the
one-class classifier ensemble. Based on the results obtained from reliable ex-
periments, the formulated research hypothesis seems to be confirmed. OCEIS
achieves results at a similar level to the compared methods, but it is worth
noticing that it performs best on real stream data, which is its important ad-
vantage. Another advantage is that there is no tendency towards the excessive
classification of objects from one of the classes. This was a problem in experi-
ments carried out for the REA and OUSE methods. Such ”stability” contributes
significantly to improving the quality of classification and obtaining satisfactory
results.

For synthetic data streams, the proposed algorithm is not the worst-performing
one. However, one can see some dominance of the methods from the Learn++
family, because the decision made by OCEIS is built based on all classifiers
as part of the committee. One possible way to change this would be to break
down newly created models by data chunks. This would build subcommittees
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(the Learn++NIE method works similarly). Then decisions would be made for
each subcommittee separately. Expanding this by the weighted voting decision
may significantly improve predictive performance. Another modernization of the
method that would allow for some improvement would be the introduction of
a drift detector. This mechanism would enable the ensemble to clean up after
detecting concept drift.

The conducted research indicates the potential hidden in the presented method.
It is worth considering extending the research to streams with other types of con-
cept drifts. It is also beneficial to increase the number of real streams to test to
get a broader spectrum of knowledge about how this method works on real data.
One of the ideas for further research that arose while working on this paper is
to test the operation on streams where the imbalance ratio changes over time.
A very interesting would be an experiment on imbalanced data streams where
the minority class temporarily disappears or appears after some time.

Acknowledgment

This work was supported by the Polish National Science Centre under the grant
No. 2017/27/B/ST6/01325 as well as by the statutory funds of the Department
of Systems and Computer Networks, Faculty of Electronics, Wroclaw University
of Science and Technology.

References
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