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Abstract. In this paper, the issue of tailoring the soft confusion ma-
trix classifier to deal with imbalanced data is addressed. This is done by
changing the definition of the soft neighbourhood of the classified object.
The first approach is to change the neighbourhood to be more local by
changing the Gaussian potential function approach to the nearest neigh-
bour rule. The second one is to weight the instances that are included in
the neighbourhood. The instances are weighted inversely proportional to
the a priori class probability. The experimental results show that for one
of the investigated base classifiers, the usage of the KNN neighbourhood
significantly improves the classification results. What is more, the appli-
cation of the weighting schema also offers a significant improvement.

Keywords: classification, probabilistic model, randomized reference clas-
sifier, soft confusion matrix, imbalanced data

1 Introduction

Imbalanced dataset, denoting the case when there is a significant difference be-
tween the prior probabilities for different classes, is a difficult problem for classi-
fication. It results from the fact that – on the one hand – for most such problems
it is desirable to build classifiers with good performance on the minority class be-
ing the class of interest, but – on the other hand – in highly imbalanced datasets,
the minority class is mostly sensitive to singular classification errors. Let’s cite
two practical classification problems as examples of such situation. The first ex-
ample concerns fraud detection in online monetary transactions. Although fraud
is becoming more common and this is a growing problem for banking systems,
the number of fraudulent transactions is typically a small fraction of all financial
transactions. So, we have here an imbalanced classification problem in which the
classifier should correctly recognize objects from the minority class, i.e. detect all
fraud transactions and at the same time it should not give false alarms. A similar
situation is in the second example regarding computer-aided medical diagnosis.
In the simple task of medical screening tests we have two classes: healthy people
(majority class) and people suffering from a rare disease (minority class). Re-
quirements for the diagnostic algorithm are the same as before: to successfully
detect ill people.
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There are more negative consequences of imbalanced dataset that hinder
correct classification. We can mention here [28]: overlapping classes (clusters of
minority class are heavily contaminated with majority class), lack of density
(learners do not have enough data to make generalization about the distribution
of minority samples), noisy data (the presence of noise degrades the information
capacity of minority class samples) and dataset shift (training and testing data
follow the different distribution).

The difficulty in classifying imbalanced datasets has caused great interest
among the pattern recognition research community in methods and algorithms
that would effectively solve this problem. The proposed methods of classification
of imbalanced datasets can be divided into two following categories [23,1]:
1. Data level approach (or external techniques) involves manipulating in-

stances of the learning set to obtain a more balanced class distribution. This
goal can be achieved through undersampling and/or oversampling proce-
dures. In the first approach, instances are removed from the majority class,
while in the second technique new artificial instances are added to the mi-
nority class. Different specified algorithms for both methods define the way
of removing (adding) instances from the majority (to the minority) class.
Random undersampling [17], ACOSampling [41], EUSBoost [10,19] for un-
dersampling approach and SMOTE [3], ADASYN [14], SNOCC [42] for over-
sampling procedures are exemplary algorithms for this category of methods.

2. Algorithm level approach (or internal techniques) denotes classifiers which
directly learn class characteristics from the imbalanced data. The leading ap-
proaches in this category of methods are:

– Improved algorithms denote classifiers that are modified (improved)
to fit their properties to the specifics of imbalanced classification. Sup-
port vector machines [15], artificial neural networks [8], k-nearest neigh-
bours [25], decision tree [24], fuzzy inference system [7] and random
forest [40] are the most popular methods which have been adapted to
classification of imbalanced data.

– One-class learning algorithms for imbalanced problem are trained on
the representation of the minority class [32].

– Cost-sensitive learning is based on a very-well known classification
scheme in which the cost of misclassification depends on the kind of er-
ror made. For example, in the Bayes decision theory this cost is modeled
by loss function (loss matrix), which practically can have any values [6].
Application of this scheme to the classification of imbalanced data de-
notes that first we define cost of misclassification of objects from the
minority (class of interest) and majority class (e.g. using domain ex-
pert opinion) and then we build a classifier (learner) which takes into
account different costs for different classification errors (e.g. minimizing
the expected cost or risk) [18,20,31]

– Ensemble learning – in this approach several base classifiers are trained
and their predictions are combined to produce the final classification
decision [9]. Ensemble methods applied to the imbalanced data classifi-
cation combine ensemble learning algorithms and techniques dedicated
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to imbalanced problems, e.g. undersampling/oversampling procedures
[29,37] or cost-sensitive learning [31].

This paper is devoted to the new classifier for imbalanced data which belongs
to the algorithm level category of methods. The algorithm developed is based
on the author’s method of improving the operation of any classifier called base
classifier. In the method first the local class-dependent probabilities of misclassi-
fication and correct classification are determined. For this purpose two original
concepts of randomized reference classifier (RRC) [39] and soft confusion matrix
(SCM) [34] are used. Then, the determined probabilities are used for correction
of the decision of the base classifier to increase the chance of correct classification
of the recognized object. The developed method has already been successfully
applied for the construction of multi-classifier systems [34], in multi-label recog-
nition [35,36] and in the recognition of biosignals [22]. However, the algorithm is
sensitive to imbalanced data distribution. In other words, its correction ability
is lower when the class imbalance ratio is higher. To make the developed ap-
proach more practical, it is necessary to provide a mechanism of dealing with
imbalanced class distribution. And this paper is aimed at dealing with this issue.
In the proposed algorithm for imbalanced data, the classification functions have
additional factors inversely proportional to the class size with the parameter
experimentally tuned. This mechanism allows a controlled change in the degree
of correction of the base classifier to highlight minority classes.

The paper is organized as follows. Section 2 introduces the formal notation
used in the paper and provides a description of the proposed approach. The
experimental setup is given in section 3. In section 4 experimental results are
given and discussed. Section 5 concludes the paper.

2 Proposed Method

2.1 Preliminaries

Let be given pattern recognition problem in which x denotes d-dimensional fea-
ture vector of an object and j is its class number. Feature vector x belongs
to the feature space X = ℜd and class number j takes value in a finite set
M = {1, 2, 3, ...,M}. Let ψ be a trained classifier which assigns a class number
to the recognized object. In other words, ψn maps the feature space to the set
of class labels, viz. ψ : X → M. Classifier ψ will be called base classifier. We
suppose that ψ is described by the canonical model, i.e. for given object x it first
produces values of normalized classification functions (supports) gi(x), i ∈ M
(gi(x) ∈ [0, 1],

∑
gi(x) = 1) and then classifies object according to the maximum

support rule:
ψ(x) = i⇔ gi(x) = max

k∈M
gk(x). (1)

However, the base classifier ψ and formula (1) will not be used directly for
classification. To classify object x a decision scheme will be used, which indi-
rectly takes into account classification result of ψ and additionally uses the local
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(relative to x) properties of base classifier for correction of its decision to in-
crease the chance of correct classification of the recognized object. The proposed
decision scheme will be further modified in terms of imbalanced data classifica-
tion. Source of information about the properties of the base classifier used in the
correction procedure of ψ is a validation set:

V = {(x1, j1), (x2, j2), . . . , (xN , jN )}; xk ∈ X , jk ∈ M (2)

containing pairs of feature vectors and their corresponding class labels.
The basis for the proposed method of classification is the probabilistic model

meaning the assumption that x and j are observed values of random variables
X and J , respectively.

2.2 Correction of Base Classifier

The corrected base classifier ψ(Corr), using the probabilistic model of the recog-
nition task, acts according to the known Bayes scheme:

ψ(Corr)(x) = i⇔ P (i|x) = max
k∈M

P (k|x). (3)

Now, however, we will express a posteriori probabilities P (j|x), j ∈ M in a
different way than in the classic Bayesian formula, making them dependent on
the probabilistic properties of the base classifier, namely:

P (j|x) =
∑
i∈M

P (i, j|x) =
∑
i∈M

P (i|x)P (j|i, x), (4)

where P (i|x) = P (ψ(x) = i) and P (j|i, x) denotes the probability that x belongs
to the j-th class given that ψ(x) = i. Unfortunately, it should be noted that with
both probabilities there is a serious problem. First, for the deterministic base
classifier ψ probabilities p(i|x), i ∈ M are equal to 0 or 1. Secondly, probabilities
P (j|i, x) are class-dependent probabilities of the correct classification (for i = j)
and the misclassification (for i ̸= j) of ψ at the point x and estimating these
probabilities would require many validation objects at this point.

To give the formula (4) a constructive character and calculate both probabil-
ities we will use two concepts: the randomized reference classifier (RRC) and the
soft confusion matrix (SCM). The RRC is randomized model of classifier ψ and
with its help the probabilities p(ψ(x) = i) ∈ [0, 1] will be calculated. In turn,
the SCM will be used to determine the assessment of correct and misclassifica-
tion of ψ at the point x, i.e. probabilities P (j|ψ(x) = i), i, j ∈ M. The method
defines the surrounding of the point x containing validation objects in terms of
fuzzy sets allowing for flexible selection of membership functions and taking into
account the case of imbalanced classes.

2.3 Randomized Reference Classifier

RRC is a probabilistic classifier which is defined by a probability distribution
over the set of class labels M. Its classifying functions {δj(x)}j∈M are observed
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values of random variables {∆j(x)}j∈M fulfilling the following conditions:

∆i(x) ∈ [0, 1], (5)∑
i∈M

∆i(x) = 1, (6)

E [∆i(x)] = gi(x), i ∈ {0, 1}, (7)

where E is the expected value operator. Conditions (5) and (6) follow from the
normalization properties of class supports, whereas condition (7) provides the
equivalence of the randomized model ψ(RRC) and base classifier ψ. Based on the
latter condition, the RRC can be used to provide a randomized model of any
classifier that returns a vector of class-specific supports g(x).

It is obvious, that the probability of classifying an object x into the class i
using the RRC is as follows:

P (ψ(RRC)(x) = i) = P [∆i(x) > ∆k(x), k ∈ M \ i]. (8)

The probability on the right side of (8) can be easily determined if we assume
– as in the original work of Woloszynski and Kurzynski [39] – that ∆i(x) have
the beta distribution.

Since ψ(RRC) acts – on average – as the modeled base classifier, the following
approximation is fully justified:

P (ψ(x) = i) ≈ P [∆i(x) > ∆k(x), k ∈ M \ i], x ∈ X , i ∈ M. (9)

2.4 Soft Confusion Matrix

Classically, the confusion matrix is in the form of two-dimensional table, in which
the rows correspond to the true classes while the columns match the outcomes
of the classifier ψ, as it shown in Table 1.

Table 1. The multiclass confusion matrix of classifier ψ

Classification by ψ
1 2 … M

1 ε1,1 ε1,2 … ε1,M
True 2 ε2,1 ε2,2 … ε2,M

class
.
.
.

.

.

.
.
.
.

.

.

.
M εM,1 εM,2 … εM,M

The value εi,j is determined from validation set (2) as the following ratio (| · |
is the cardinality of a set):

εi,j =
|V̄j ∩ D̄i|

|V̄j |
, (10)
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where V̄j = {xk ∈ V : jk = j} (class set) denotes the set of validation objects
from the j-th class and D̄i = {xk ∈ V : ψ(xk) = i} (decision set) is the set of
validation objects assigned by ψ to the i-th class.

The confusion matrix (10) gives an overall (for the whole feature space) image
of the classifier properties, while our purpose is to assess the local probabilities
P (j|i, x). For this reason, we will generalize the term of confusion matrix enabling
free shaping of the concept of ”locality” and assigning weights to individual
validation objects. Generalized confusion matrix, called the soft confusion matrix
(SCM), referred to the recognized object x ∈ X is defined as follows:

εi,j(x) =
|Vj ∩ Di ∩N (x)|

|Vj ∩N (x)|
, (11)

where Vj ,Di and N (x) are fuzzy sets specified in the validation set V and | · |
denotes the cardinality of a fuzzy set [5].

Now we will define and give a practical interpretation of fuzzy sets that create
the proposed SCM concept (11).
The class set Vj . Identically as in (10), this set denotes the set of validation
objects from the j-th class. Formulating the set Vj in terms of fuzzy sets theory
it can be assumed that the grade of membership of validation object xk to Vj is
the class indicator which leads to the following definition of Vj as the fuzzy set:

Vj = {(xk, µVj (xk))}, where µVj (xk) =

{
1 if jk = j,
0 elsewhere. (12)

The decision set Di. For the confusion matrix (10) the crisp decision set D̄i

includes validation objects xk for which ψ(xk) = i. The original concept of fuzzy
decision set Dj is defined as follows:

Di = {(xk, µDi(xk)) : xk ∈ V, µDi(xk) = P (i|xk)}, (13)

where P (i|j, xk) is calculated according to (9). Formula (13) demonstrates that
now the membership of validation object xk to the set Di is not determined
by the decision of classifier ψ. The grade of membership of validation object
xk to Di depends on the potential chance of classifying object xk to the i-th
class by the base classifier. We assume, that this potential chance is equal to the
probability P (i|x) = P (ψ(x) = i) calculated using the randomized model RRC
of base classifier ψ.
The neighbourhood set N (x). As it seems, this set play the crucial role in
the proposed concept of SCM, because it decide which validation objects xk and
with which weights will be taken into account in the procedure of determining
the local properties of ψ(x). Formally, N (x) is also a fuzzy set:

N (x) = {(xk, µN (x)(xk)) : xk ∈ V}, (14)

but its membership function is not defined univocally because it depends on
the adopted concept of ”locality” (relative to x). There are two typical methods
of determining the set V(x). In the first approach the neighbourhood of x is
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precisely defined and only validation objects belonging to this neighbourhood are
used to calculate (11). In the second method all validation points are members of
the set N (x) and its membership functions is equal to 1 for xk = x and decreases
with increasing the distance between xk and x. In the further experimental
investigations two forms of the fuzzy set N (x) were used as representative of
both approaches.

1. KNN Neighborhood. Let first define the K-neighbourhood of the test
object x as the set of K nearest validation objects, viz.

KK(x) = {xn1, . . . , xnK ∈ V : max
l=1,2,...,K

dist(xnl, x)
2 ≤ min

xk /∈KK(x)
dist(xk, x)

2},

(15)
where dist(xk, x)

2 denotes the Euclidean distance in the feature space X .
The KNN-related membership function of N (x) is defined as follows:

µ
(K)
N (x)(xk) =

{
1 if xk ∈ K(x),

0 otherwise.
(16)

This kind of neighbourhood should be more fragile to the local properties of
the data since it completely ignores the instances that are not in K.

2. Gaussian Neighborhood. In this method the Gaussian membership func-
tion was applied for defining the set N (x):

µ
(G)
N (x)(xk) = exp(−βdist(x, xk)2), (17)

where β ∈ R+ is parametr of µ. The Gaussian-based neighbourhood was
originally proposed to use with the SCM classifier in [34].

2.5 Dealing with Imbalanced data

In this paper, the issue of imbalanced class distribution is dealt with via modifi-
cation of the membership function of the neighbourhood set N (x). We propose
to add a new factor (weight) to original membership function µN (x)(xk) which is
inversely proportional to the a priori probability of class P (j), j ∈ M. Assuming
that the minority class is the class of interest, such a method relatively enhances
class proportionally to its importance. The proposed approach also means, that
the neighbourhood set N (x) is now dependent on the class j to which the val-
idation objects used to calculate εi,j(x) in (11) belong. Thus, the membership
function of the neighbourhood set (14) that includes imbalanced classes is as
follows:

µNj(x)(xk) = cµN (x)(xk)P (j)
−γ . (18)

γ ∈ R+ is the coefficient that controls weighting intensity and c is normalized
coefficient.

Finally, from (14) and modification (18) we get the following approximation:

P (j|i, x) ≈ εi,j(x)∑
j∈M εi,j(x)

, (19)
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which together with (9), (4) and (3) give the corrected base classifier ψ(Corr)(x)
in the version tailored for the case of imbalanced data.

3 Experimental Setup

To validate the classification quality obtained by the proposed approaches the
experimental evaluation, which setup is described below, is performed.

The following base classifiers were employed:

– ψNB – Naive Bayes classifier with kernel density estimation [13].
– ψJ48 – Weka version of the C4.5 algorithm [27] with Laplace smoothing [26]
– ψNC – nearest centroid (Nearest Prototype) [21]

The classifiers implemented in WEKA framework [12] were used. If not stated
otherwise, the classifier parameters were set to their defaults. For each base
classifier, the training dataset is resampled with weights inversely proportional to
the a priori probability of instance-specific class. This is to make base classifiers
robust against imbalanced data.

During the experimental evaluation the following classifiers were compared:

1. ψR – unmodified base classifier,
2. ψG – SCM classifier with unmodified Gaussian neighbourhood,
3. ψGw – SCM classifier with weighted Gaussian neighbourhood,
4. ψK – SCM classifier with unmodified KNN neighbourhood,
5. ψKw – SCM classifier with weighted KNN neighbourhood.

The size of the neighbourhood, expressed as β coefficient, the number of near-
est neighbours K and the weighting coefficient γ, were chosen using a fivefold
cross-validation procedure and the grid search technique. The following values of
β, K and γ were considered: β ∈

{
2−2, 2−1, 21, · · · , 26

}
, K ∈ {1, 3, 5, 7, · · · , 15},

γ ∈
{
0, 2−6, 2−5, 2−4, · · · 22

}
. The values were chosen in such a way that mini-

mizes macro-averaged kappa coefficient.
The experimental code was implemented using WEKA framework. The source

code of the algorithms is available online 1.
To evaluate the proposed methods the following classification-loss criteria

are used [30]: Macro-averaged FDR (1- precision), FNR (1-recall), F1, Matthews
correlation coefficient (MCC) ;Micro-averaged F1, MCC. More quality measures
from the macro-averaging group are considered because this kind of measures is
more sensitive to the performance for minority classes.

Following the recommendations of [4] and [11], the statistical significance
of the obtained results was assessed using the two-step procedure. The first
step is to perform the Friedman test [4] for each quality criterion separately.
Since the multiple criteria were employed, the familywise errors (FWER) should
be controlled [2]. To do so, the Bergman-Hommel [2] procedure of controlling
FWER of the conducted Friedman tests was employed. When the Friedman

1https://github.com/ptrajdos/rrcBasedClassifiers/tree/develop
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test shows that there is a significant difference within the group of classifiers,
the pairwise tests using the Wilcoxon signed-rank test [38,4] were employed.
To control FWER of the Wilcoxon-testing procedure, the Bergman-Hommel
approach was employed [2]. For all tests the significance level was set to α = 0.05.

The experimental evaluation was conducted on the collection of the 78 bench-
mark datasets taken from the Keel repository containing imbalanced datasets
with imbalance ratio higher than 9 2.

During the preprocessing stage, the datasets underwent a few transforma-
tions. First, all nominal attributes were converted into a set of binary vari-
ables. The transformation is necessary whenever the distance-based algorithms
are employed [33]. To reduce the computational burden and remove irrelevant
information, the PCA procedure with the variance threshold set to 95% was ap-
plied [16]. The features were also normalized to have zero mean value and zero
unit variance.

4 Results and Discussion

To compare multiple algorithms on multiple benchmark sets the average ranks
approach [4] is used. To provide a visualization of the average ranks, the radar
plots are employed. In the plots, the data is visualized in such way that the
lowest ranks are closer to the centre of the graph. The radar plots related to the
experimental results are shown in figures 1a – 1c.

Due to the page limit, the full results are published online 3

The numerical results are given in Tables 2 – 4. Each table table is struc-
tured as follows. The first row of each section contains names of the investigated
algorithms. Then the table is divided into six sections – one section is related
to a single evaluation criterion. The first row of each section is the name of the
quality criterion investigated in the section. The second row shows the p-value
of the Friedman test. The third one shows the average ranks achieved by algo-
rithms. The following rows show p-values resulting from pairwise Wilcoxon test.
The p-value equal to 0.00 informs that the p-values are lower than 10−3 and
p-value equal to 1.00 informs that the value is higher than 0.999.

4.1 Macro Averaged Criteria

Let us begin with the analysis of the results related to KNN neighbourhood.
For the Naive Bayes and J48 classifiers, there are no significant differences be-
tween the Gaussian neighbourhood and KNN neighbourhood. For the Nearest
Centroid classifier, on the other hand, the KNN neighbourhood gives better
results in terms of FNR, F1 and MCC. For the FDR criterion, there is no signif-
icant difference. It means that for ψNC classifier applying KNN neighbourhood

2https://sci2s.ugr.es/keel/imbalanced.php#subB
3https://github.com/ptrajdos/MLResults/blob/master/

RandomizedClassifiers/RRC_Imbalanced_CLDD2020.zip
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improves recall without affecting precision what results in better overall per-
formance. What is more, for the J48 classifier, only the classifiers based on the
KNN neighbourhood offers a significant improvement in terms of F1 criterion.

Now the impact of applying the weighting scheme is assessed. Generally
speaking, the application of the weighting scheme results in improving recall
at the cost of reducing precision. However, in general, the reduction of pre-
cision is not significant (except for ψNC classifier and KNN approach). As a
consequence, the overall classification quality, measured in terms of F1 crite-
rion remains unchanged (no significant difference). This kind of change is the
expected consequence of applying the weighting scheme. On the other hand, in
cases of J48 and NC classifiers, there are significant improvements in terms of
MCC criterion. What is more, for the J48 classifier, only the classifiers based on
the weighted neighbourhood offers a significant improvement in terms of MCC
criterion.

Now the correction ability of the SCM classifier is investigated. As it was
said above, for the J48 base classifier, the overall correction ability depends
on the type of the neighbourhood applied. For ψNB and ψNC classifiers, on
the other hand, there is always a significant improvement in terms of F1 and
MCC. criteria. In general, the application of SCM classifier, when compared to
the base classifier, improves the precision at the cost of decreasing recall. The
recall-decrease is lower for the SCM classifiers using the weighted neighbourhood
approach. So, applying the weighting scheme eliminates the main drawback of
the SCM classifier used to the imbalanced data.

4.2 Micro Averaged Criteria

For the micro-averaged criteria, the statistical tests show that all differences
are significant. Consequently, all investigated approaches improve the overall
majority-class-performance in comparison to the unmodified base classifier. How-
ever, the classifiers with weighted neighbourhood show lower classification qual-
ity compared with classifiers that use no weights. This is an obvious consequence
of trying to improve the performance for the minority class.

Table 2. Statistical evaluation. Wilcoxon test results for J48 classifier.
ΨR ΨG ΨGw ΨK ΨKw ΨR ΨG ΨGw ΨK ΨKw ΨR ΨG ΨGw ΨK ΨKw

Nam. MaFDR MaFNR MaF1
Frd. 4.079e-06 3.984e-02 3.189e-03

Rank 3.846 2.981 2.897 2.532 2.744 2.865 3.385 2.737 3.192 2.821 3.590 3.013 2.987 2.750 2.660
ΨR .002 .000 .000 .000 .128 1.00 .128 1.00 .217 .217 .009 .003
ΨG .933 .491 .491 .003 .952 .007 .985 .572 .206
ΨGw .491 .491 .022 1.00 .572 .217
ΨK .491 .000 .217
Nam MaMCC MiF1 MiMCC
Frd 1.494e-03 1.412e-24 1.412e-24
Rnk 3.564 3.205 2.622 2.910 2.699 4.506 2.064 3.205 2.346 2.878 4.506 2.064 3.205 2.346 2.878
ΨR .603 .009 .129 .026 .000 .004 .000 .000 .000 .004 .000 .000
ΨG .010 .535 .045 .000 .005 .000 .000 .005 .000
ΨGw .173 .717 .000 .003 .000 .003
ΨK .026 .000 .000
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(c) Nearest Centroid classifier.

Fig. 1. Radar plots for the investigated classifiers.

5 Conclusions

This paper addresses the issue of tailoring the soft confusion matrix classifier
to dealing with imbalanced data. Two concepts based on the change of the
neighbourhood were proposed. The experimental results show that, in some cir-
cumstances, these approaches can improve the obtained classification quality. It
shows that classifiers based on the RRC concept and SCM concept, in particu-
lar, are robust tools that can deal with various types of data. The other way of
tailoring the SCM classifier to imbalanced data may be the modification of the
P (i|x) probability distribution. This aspect should be studied carefully.
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Table 3. Statistical evaluation. Wilcoxon test results for NB classifier.
ΨR ΨG ΨGw ΨK ΨKw ΨR ΨG ΨGw ΨK ΨKw ΨR ΨG ΨGw ΨK ΨKw

Nam. MaFDR MaFNR MaF1
Frd. 2.116e-08 1.697e-02 7.976e-18

Rank 3.955 2.494 2.987 2.609 2.955 2.654 3.308 2.872 3.327 2.840 4.417 2.494 2.994 2.564 2.532
ΨR .000 .000 .000 .000 .005 .392 .020 .392 .000 .000 .000 .000
ΨG .103 .612 .501 .001 .511 .006 .197 .664 .664
ΨGw .096 .501 .019 .833 .091 .041
ΨK .074 .006 .749

Nam. MaMCC MiF1 MiMCC
Frd. 1.224e-04 1.226e-31 1.226e-31

Rank 3.737 2.929 2.744 2.923 2.667 4.699 1.878 3.154 2.391 2.878 4.699 1.878 3.154 2.391 2.878
ΨR .004 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
ΨG .145 .894 .300 .000 .002 .000 .000 .002 .000
ΨGw .397 .939 .000 .015 .000 .015
ΨK .397 .000 .000

Table 4. Statistical evaluation. Wilcoxon test results for NC classifier.
ΨR ΨG ΨGw ΨK ΨKw ΨR ΨG ΨGw ΨK ΨKw ΨR ΨG ΨGw ΨK ΨKw

Nam. MaFDR MaFNR MaF1
Frd. 3.149e-10 2.684e-04 4.529e-17

Rank 4.090 2.667 2.827 2.506 2.910 2.865 3.654 2.647 3.096 2.737 4.378 2.942 2.827 2.532 2.321
ΨR .000 .000 .000 .000 .057 .651 1.00 .651 .000 .000 .000 .000
ΨG 1.00 .470 1.00 .000 .004 .000 1.00 .043 .044
ΨGw .171 1.00 .225 1.00 .044 .043
ΨK .043 .056 1.00

Nam. MaMCC MiF1 MiMCC
Frd. 5.340e-11 4.793e-20 4.001e-20

Rank 3.994 3.282 2.397 2.821 2.506 4.404 2.147 3.096 2.500 2.853 4.410 2.147 3.096 2.500 2.846
ΨR .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
ΨG .000 .028 .010 .000 .010 .000 .000 .010 .000
ΨGw .310 .979 .001 .010 .001 .010
ΨK .310 .001 .001
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