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Abstract. In this work, we develop an adaptive, near-optimal, 3-dimensional 

(3D) to 1D ordering methodology for brain magnetic resonance imaging (MRI) 

data, using a space-filling curve (SFC) trajectory, which is adaptive to brain's 

shape as captured by MRI. We present the pseudocode of the heuristics for de-

veloping the SFC trajectory. We apply this trajectory to functional MRI brain 

activation maps from a schizophrenia study, compress the data, obtain features, 

and perform classification of schizophrenia patients vs. normal controls. We 

compare the classification results with those of a linear ordering trajectory, which 

has been the traditional method for ordering 3D MRI data to 1D. We report that 

the adaptive SFC trajectory-based classification performance is superior than the 

linear ordering trajectory-based classification. 

Keywords:  space-filling curve, classification, MRI, neuroimaging, adaptive 

compression 

1 Introduction 

Magnetic resonance imaging (MRI) is a widely used tomography technology which is 

used to capture the structure of the brain in three dimensions (3D) of space. A specific 

modality of MRI technology, known as functional MRI (fMRI), can capture hemody-

namic response signals from the brain within the order of seconds, in a repeated manner, 

albeit in lower spatial resolution. FMRI therefore includes in time-series data for each 

volume element (voxel) of the brain. Datasets of both structural and functional MRI, 

which are 3D spatial matrices (e.g. a 64×64×64 matrix), generally have to be converted 

to vector arrays of a single dimension (1D), for further analyses (Fig. 1), such as anal-

yses with general linear models, regression, and independent component analysis. Tra-

ditionally, a linear ordering/mapping of data from 3D to 1D have been used for this 

purpose, i.e. 3D data are scanned consecutively along the first, second, third spatial 

dimensions in order to obtain a 1D ordering of volumes. Linear ordering introduces 

large ‘jumps’ or ‘discontinuities’ of the recorded signal; for example, if it is applied to 

structural MRI datasets, it does not preserve the structure of the brain in 1D.  
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Previously, pre-defined space-filling curves such as Hilbert curve and Z-curve have 

been suggested for ordering of the 3D MRI datasets [1]. Hilbert curve, specifically, 

results in better preservation of local features [2-4] when compared to linear ordering; 

it was shown in [1] that it could result in less discontinuities in brain MRI signals, and 

it was also applied for classification based on fMRI brain activation maps [5,6]. In gen-

eral, space-filling curves are used in a wide range of applications [9-27] in reducing 

two or higher dimensional spaces to a one-dimensional space. Hilbert [4,9] and Z [9] 

orderings are among the most widely used methods focused on preserving spatial lo-

cality in the mapping to one dimension. However, as has been noticed by e.g. the image 

compression community [17-24] context-aware, or adaptive [20 - 24] orderings taking 

pixel attributes into account in addition to spatial information leads to better compres-

sion.  

In [1], using a least-squares signal-difference approach which uses sum of squared 

signal intensity differences (TSSID) was proposed as a cost function and measure of 

how adaptive an SFC was to the data/signal being traversed. Since the cost function is 

the sum of signal ‘jumps’, the goal is to minimize the cost function to find the most 

adaptive trajectory. In the context of 3D brain imaging, by traversing 3D volumes using 

a space-filling curve (SFC) that is adaptive to brain’s shape, a 3D MRI image can be 

ordered into 1D space (e.g. into a 643×1 vector from a 64×64×64 volume), which can 

better preserve the brain’s structure in 1D. Although this idea was suggested in [1], it 

was noted that this was inherently a Hamiltonian path problem which also can be for-

mulated as a modified traveling salesman problem (TSP), which is an NP-hard problem 

to solve. With as many nodes as number of voxels, which is on the order of thousands 

for fMRI brain activation datasets, it makes the problem computationally intractable 

[1]. If an approximation of an adaptive SFC could be found and applied for 3D to 1D 

ordering of the dataset, any dimensionality reduction, smoothing, down-sampling, com-

pression, and feature selection/reduction in 1D could benefit from better preservation 

of information, when compared with linear ordering, or other predefined orderings such 

as the Hilbert curve ordering. 

  
(a)                                       (b)                                           (c) 

Fig. 1 Three views of a structural T1 MRI dataset (a), and an fMRI brain activation map (b),  

which is computed from fMRI volumes taken at multiple time-points. Conventionally, fMRI da-

taset voxels are ordered using linear ordering trajectory into rows of a matrix, as a result, a matrix 

of time × voxels is generated for further analyses (c).  
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In this work, we computed an SFC adaptive to brain’s shape (as recorded in a T1 

MRI canonical/template image as an example) and developed an algorithm pipeline 

which uses the computed SFC for ordering of fMRI activation maps from 3D to 1D, 

obtains features from the 1D orderings, and performs classification of participants; we 

applied the pipeline to an fMRI study of two groups of participants: schizophrenia pa-

tients (SP) and healthy controls (HC), and performed classification of a given brain 

activation map belonged to SP or HC.  

2 Materials and Methods 

1.1 Data and Participants 

 

95 schizophrenia patients (SP) and 89 healthy control (HC) participants were scanned 

using 3T Siemens Trio MRI scanners at four different research sites in the USA. Re-

search protocol was reviewed and approved by the institutional review board of the 

local institutions where scans were performed, and written consent was obtained from 

each participant. The parameters for the functional scan were: TR/TE = 2s/30ms, BW 

= ±100 kHz = 3126 Hz/pixel, FA = 90°, slice thickness 4 mm, slice gap 1 mm, voxel 

size = 3.4mm×3.4mm×4 mm, FOV = 22 cm, PACE-enabled, single shot, single-echo 

EPI pulse sequence, oblique axial slice plane; 64×64 acquisition matrix, 27 slices in 

ascending sequential acquisition. Participants performed a sensorimotor (SM) task dur-

ing the scan. After standard pre-processing, MRI volumes were warped to Montreal 

Neurological Institute (MNI) standard canonical/template T1 MRI volume [7]. The 

fMRI activation maps computed as standard parametric maps of t-value with the SM 

task, were resampled to  the 3mm×3mm×3mm standard MNI volume, which resulted 

in 53×63×46 data matrix. An adaptive space-filling curve (SFC) using the 53x63x46 

T1 MRI template volume was computed using a graphical processing unit using a 

greedy search algorithm developed in-house.  

 

1.2 The Adaptive Space-Filling Curve Algorithm for 3D MRI Data 

 

The algorithm proceeds as follows. At any voxel, the signal values of its 26 immediate 

neighbors in 3D is retrieved and sorted based on their signal intensity difference with 

the current voxel. The next voxel along the adaptive SFC is selected as the voxel with 

the minimum absolute signal difference that is not already included in the adaptive SFC. 

The algorithm traverses back in the list of voxels selected for the adaptive SFC until 

one voxel to be included in the SFC is found. Using the list for backtracking in the 

worst case requires a time proportional to the length of the list and hence in the worst 

case is of O(n) where n is the length of the list.  Instead, a hash table is used with key 

value 1 if a voxel is included in the SFC, otherwise the value is zero.  A snapshot of the 

SFC obtained from the T1 image is presented in Fig. 2.  

To make the algorithm faster and reduce memory consumption we remove voxels 

with zero signal intensity in a preprocessing step before applying the algorithm, since 

zero signal voxels provide no useful information for feature selection for classification. 
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In a predefined SFC, such as the Hilbert SFC, voxels with zero signal intensity are not 

consecutive and they are scattered over the SFC, and their indexes have to be traced. In 

the adaptive SFC, these voxels are consecutive and either at the beginning or at the end 

of the curve and they can be easily trimmed reducing the number of useless signals in 

the data.  Figure 3 presents this effect. Using a pre-defined space-filling curve such as 

Hilbert curve results in tracing the full volume (Fig. 3(a)), versus, the adaptive space 

filling curve results in voxels with only non-zero signal values, a 57% reduction in the 

number of voxels (Fig. 3(b)). 

Table 1. SFC algorithm execution flow / pseudocode for traversing 3D MRI signal  

myimage = niftiread(‘ABC.nii’)        

SizeVec = size(myimage) 

M = sizeVec(0), N = sizeVec(1), T = sizeVec(2); 

data = non-zero voxels present in myimage, 

 to keep track of non-zero voxels we define NonZeroVoxels_TBL 

NonZeroVoxels_TBL[all voxels in data] = 1; 

NonZeroVoxels_TBL is used in US_twentysix_neighbors function to find neighboring voxels 

whose values are nonzero, helps not to traverse zero voxels around a non-zero voxel. 

start =data(1,:);    

i = start(1); j = start(2); k = start(3) 

hashTbl(i,j,k) = 1 

for i_SFC = 0 to size(Data) 

       not_found = 0 

       traversed_voxels_lst.add([i,j,k]) 

      neighbors= US_twentysix_neighbors (i,j,k,M,N,T,mat_data) 

      signalNeighs = myimage(neighbors) 

      [index] = sort(SignalNeighs, ‘descending’) 

      [next_i, next_j, next_k] = neighbors(index(0)) 

     i = 0; 

      while(HashTbl(next_i,next_j,next_k) == 1): 

                  i = i + 1 

                 [next_i, next_j, next_k] = neighbors(index(i)) 

     if (i == len(index)) 

               not_found = 1 

     while(not_found): 

               [on_i, on_j, on_k] = traversed_voxels_lst[counter] 

               neighbors= US_twentysix_neighbors (on_i, on_j, on_k ,M,N,T,mat_data) 

              signalNeighs = myimage(neighbors) 

              [index] = sort (SignalNeighs, ‘descending’) 

             [next_i, next_j, next_k] = neighbors (index (0)) 

            i = 0 

            while(hashTbl(next_i,next_j,next_k) == 1) 

                  i = i + 1 

                 [next_i, next_j, next_k] = neighbors(index(i)) 

            if (i== len(index)) 

                not_found = 1; 

     i = next_i, j = next_j, k.= next_k 
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Fig. 2 A color-coded space-filling curve (SFC) trajectory of a template T1 MRI brain in Montreal 

Neurological Institute (MNI) brain template space. This trajectory was applied to the SFC order-

ings of the fMRI brain activation maps in this study. Cold (blue): beginning; hot (yellow): end.  

 

1.3 Using SFC-Ordered fMRI Activation Data as Features for Classification 

 

The 3D fMRI maps from each participant were converted to 1D with linear ordering 

and also with the computed adaptive SFC. The 1D arrays were down-sampled by a bin 

size of 100, values were averaged across each bin (“binning”), which constituted raw 

features. Features were further reduced to 100, and also to 30, by using and support 

vector machine based sequential forward search feature reduction algorithm [8]. The 

reduced features were used to train the classification algorithm by using a random 70% 

of the dataset and were tested on the remaining 30%. The training-testing process was 

repeated 100 times by using new random selection of training and testing datasets. Av-

erage classification accuracies were computed. The results are presented in the next 

section.  

3 Results 

To make the algorithm faster and reduce memory consumption we remove voxels with 

zero signal intensity in a preprocessing step before applying the algorithm. As an ex-

ample, around 57% of voxels in one of the 3D T1 MRI brain were zero. The impact of 

removing zero signal voxels is clearly visible in Figure 3.  

Figure 4 presents a sample progression snapshots of the adaptive SFC at the end of 

the trajectory, where the SFC is traversing mostly along the outer surface of the brain. 

Part of the SFC with length of 1000, 3000, 5000, and 7000 (in red color) are overlaid 

on the full-length adaptive SFC (in gray color). Traversal of the MRI signal along the 

brain’s shape, hence adaptive to the brain’s shape, is visible.   

The signal intensities and absolute signal intensity differences along the Hilbert and 

adaptive SFCs are shown in Figure 5. The adaptive SFC results in less signal intensity 
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difference along successive voxels along the trajectory than Hilbert SFC, and hence it 

results in less total squared signal intensity difference (TSSID). The impact on the total 

squared signal difference between successive voxels along the SFC and the SFC length 

is shown in Table 2. Relative total TSSID between successive voxels along the SFC 

and the relative length of the SFC is computed for the adaptive and the Hilbert SFCs 

for our data, the canonical 3D T1  MRI image. The adaptive SFC has 50.5 times less 

relative TSSID than the Hilbert SFC, and it is 34% shorter.  

Figure 6 (a) shows a 1D-ordered signal array from a participant’s fMRI activation 

map, not by using an SFC, but by using linear ordering, which is the commonly used, 

traditional ordering method of 3D signals to 1D. A zoomed version (b) and a binned 

version (c) are also presented in Fig. 6. Large discontinuities along the slices are visible, 

and further discontinuities inherent in the scheme are visible in the zoomed version, 

hence the result of binning includes many signals of zero-values. Figure 7 shows results 

of the adaptive SFC trajectory-based 1D-ordered signal array. Large clusters can be 

seen in the adaptive SFC trajectory-based array, whereas linear ordering resulted in a 

highly disconnected or un-clustered brain activation signal. Large clusters are also vis-

ible in the zoomed portion (b), and the binning includes no voxels with zero-values (c); 

in general, the binned adaptive SFC array includes only few such voxels.   

Using the SFC trajectory-based ordering, an SVM classification algorithm resulted 

in 72.1% (74.6%) average accuracy in classification of SP vs. HC participants, whereas 

the linear ordering resulted in around 49.9% (50.0%) classification accuracy, using 30 

(100) features, employing a sequential forward search algorithm for the reduction of 

features. SFC-based ordering resulted in significantly higher accuracy, whereas linear 

ordering resulted in just about chance accuracy of 50%. Performing a 4×4×4 down-

sampling of the brain activation maps directly in 3D, and then ordering the resulting 

down-sampled brain with linear ordering, using the resulting signal as features, resulted 

also with chance accuracy of around 50% for participant classification. Overall, SFC-

based classification results were significantly higher. 

 

 
(a) Hilbert SFC                                          (b) the adaptive SFC 

Figure 3 (a) Using a pre-defined space-filling curve such as Hilbert curve here results in trac-

ing of the full volume (high redundancy), versus, (b) the adaptive space filling curve results in 

voxels with non-zero signal values, a 57% reduction in the number of voxels (low redundancy). 
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                      (a) 

 

 

 
                        (b) 

 

    
                    (c) 

 
                    (d) 

Figure 4 Representation of fMRI brain activation traversal by the SFC for the last a) 1000, 3000, 

5000 and 7000 voxels (red), overlaid on the total SFC trajectory (gray), representing a sample 

progression of the SFC trajectory during the last 7000-voxel portion of the SFC.  

 

Table 2.  Merit of the adaptive SFC vs. the Hilbert curve for our data set 

Relative TSSID  between succes-

sive voxels along the SFC 
Relative length of the SFC 

Adaptive Hilbert Adaptive Hilbert 

1 50.5 1 1.53 
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Figure 5 Signal intensity along the trajectory for successive voxels using Hilbert SFC (top) and 

the adaptive SFC (bottom). 

4 Conclusions and Discussions 

An adaptive space-filling curve (SFC) trajectory which is adaptive to brain’s shape can 

be utilized for 1D ordering of 3D MRI data, such as brain activation maps in fMRI, and 

this ordering proves to be better than using the traditional linear ordering  or pre-defined 

ordering such as Hilbert ordering. We have shown that it reduces the amount of discon-

tinuities and results in shorter signal with less redundancy. In this work, we used the 

adaptive SFC for feature reduction in classification using fMRI brain activation maps 

and we showed that SFC ordering resulted in better features from the activation maps, 
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which resulted in higher classification accuracy of two groups of participants, schizo-

phrenia patients and healthy controls.  

The results her need to be replicated with larger sample sizes and with other fMRI 

studies. In addition to using a canonical T1 MRI image, adaptive SFCs can be obtained 

using T2, DTI, echo-planar imaging (EPI) and many more kinds of different canonical 

MRI images in the standard imaging space such as MNI space, and they can be applied 

to traverse participants’ brain imaging data in the standard imaging space, and the trav-

ersed data can be subsequently compressed, binned, features extracted, and many more 

applications can be done.  

Potential future work also involves using different feature reduction methods and 

different classification algorithms, and compression of fMRI data based on SFCs.  

Overall, data-adaptive SFCs have great potential in adaptive compression of datasets 

as well, in order to minimize information loss in compression.  

5 Acknowledgements 

This research was supported by UHCL College of Science and Engineering, and UHCL  

Office of Research and Sponsored Programs. Dr. Unal Sakoglu thanks Dr. Vince Cal-

houn at Tri-institutional Center for Translational Research in Neuroimaging and Data 

Science (TReNDS), Georgia State University, Atlanta, USA, for providing fMRI acti-

vation map data.  

 

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_48

https://dx.doi.org/10.1007/978-3-030-50420-5_48


10 

 

Fig. 6 Top: Linearly-ordered fMRI activation signal in 1D. Middle: A horizontally zoomed por-

tion of the signal. Bottom: Bar plot of the zoomed portion after averaging (binning). 
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Fig. 7 Top: SFC-ordered fMRI activation signal in 1D. Middle: A horizontally zoomed portion 

of the signal. Bottom: Bar plot of the zoomed portion after averaging (binning). 
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