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Abstract. We propose a new method for the analysis and classification
of HSI images. The method uses deep learning to interpret the molecu-
lar vibrational behaviour of healthy and tumoral human epithelial tissue,
based on data gathered via SWIR (short-wave infrared) spectroscopy. We
analyzed samples of Melanoma, Dysplastic Nevus and healthy skin. Pre-
liminary results show that human epithelial tissue is sensitive to SWIR
to the point of making possible the differentiation between healthy and
tumor tissues. We conclude that HSI-SWIR can be used to build new
methods for tumor classification.

Keywords: Short-Wave InfraRed · Hyperspectral Imaging · Deep Learn-
ing · Skin Lesions · Dysplastic Nevus · Melanoma.

1 Introduction

Skin cancer is the most diagnosed malignant tumor in the whole world [48]. This
pathology usually presents in two ways: a) Melanoma, originated from skin cells
that produce pigments, called melanocytes and b) the non-melanoma [25].

Although less frequent than other tumors, melanoma is the most aggressive
type of skin cancer due to the high possibility of metastasis and high mortality.
Currently, melanoma accounts of approximately 3% of skin cancer cases and
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à Pesquisa do Estado de Goiás for the scholarship.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_45

https://dx.doi.org/10.1007/978-3-030-50420-5_45


2 D.V. Lucena et al.

74% of deaths [20, 5, 39, 25, 49, 11]. In 2015, it was estimated that in the United
States alone 73,870 new cases of melanoma would be diagnosed with 9,940 deaths
[47]. It was estimated that in 2017 there were 87,110 diagnoses of the disease
with about 9,730 deaths [49]. In Brazil it is estimated for each year of 2018-2019
biennium, the occurrence of 6,620 new cases diagnosed [25].

2 Problem

To increase the chances of survival of patients with melanoma, early diagno-
sis is essential. When detected at early stages, chances of healing are high, but
late diagnosis makes treatment ineffective [20]. However, the traditional method
of skin cancer detection begins with a visual inspection. If a suspicious stain
is identified, the doctor will analyze characteristics such as size, color and tex-
ture, besides questions about the stains [48]. Along with the visual inspection,
some dermatologists apply a technique called dermoscopy, also known as epilu-
minescense microscopy (ELM). This technique uses the dermatoscope, a surface
microscope with a light source that is held close to the skin for a more detailed
view of the lesions [9, 26]. If suspicions remain, then further examinations such
as blood tests, biopsies and imaging tests may be performed to confirm or deny
the diagnosis [48].

To overcome the difficulties inherent in manual physician visual inspection,
the use of an automated method to assist with the task of identifying suspicious
stains may increase the effectiveness of the inspection and reduce the subjectivity
of the examination.

3 Proposed Solution

As an alternative to the traditional method for investigating skin lesions, in par-
ticular, Melanoma, performed by manual dermoscopic inspection, automated in-
spection by Hyperspectral Imaging (HSI) is proposed. In the context of medical
imaging, HSI is an emerging technology that provides, in addition to data such
as size and shape, information on the chemical composition of matter analyzed
from a set of spatially arranged spectral signals, where each spectral signal corre-
sponds to the electromagnetic interaction of light with the material analyzed in
a specific portion of the sample [33]. HSI has been used for the last two decades
in medical applications [1, 7, 8, 29, 37, 52, 44] because it offers great potential for
the diagnosis of noninvasive diseases, surgical guidance [33] and in particular the
diagnosis of tumors [4, 2, 3, 10, 16, 18, 19, 28, 32, 35, 34, 38, 42, 41, 45, 46, 22]. Thus,
automated inspection employing HSI increases the chances of identifying a sus-
picious stain of tumor tissue even when the stain is very small and its shape,
color and texture are insufficient for accurate dermoscopic identification.

An HSI is composed of n two-dimensional images built from the values mea-
sured at a given wavelength [40, 12]. Figure 1 exemplifies the organization of
the n two-dimensional images on an HSI and the spatial arrangement of the
spectrum within the image.
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Fig. 1. Representation of the layer structure of an HSI, the spatial arrangement of
pixels-vectors and their respective spectral signals. Adapted from Akbari et al. [2].

The set of sequentially arranged multicolored frames represent the hyper-
cube. Each frame corresponds to a two-dimensional image of a specific wave-
length within the hypercube spectral range. The vertical arrows indicate two
distinct sets of pixels selected from the same spatial reference in all images.
Each set makes up what is called a pixel-vector. The horizontal arrows indicate
the spectral representations of two HSI pixels-vectors in the Cartesian plane,
where the λ axis corresponds to the HSI wavelengths and the i axis corresponds
to the measured light intensity.

3.1 SWIR Spectroscopy

The construction of an HSI is usually performed employing a particular method
of spectroscopy. Each spectroscopic technique acts on a particular region of the
light wave spectrum. A region still little explored in medical applications, es-
pecially in the diagnosis of tumors is the Short-Wave Infrared (SWIR). SWIR
comprises the wavelengths between 1000nm and 3000nm [51]. Matter when ir-
radiated by electromagnetic waves in the SWIR region, provides a molecular
vibrational behavior which intensity is determined by the energy absorption at
a given wavelength. [6, 23].

Suppose an HSI as illustrated in Figure 1, obtained by SWIR spectroscopy
from an epithelial tissue sample, where the values measured at each wavelength
correspond to the energy absorption due to the molecular vibration of this tissue.
Each pixel-vector of this HSI will correspond to the molecular vibration of the
tissue at that specific location. Thus, the molecular vibration contained in any
HSI pixel-vector can be represented as a spectral signal, as shown in Figure
1, where on the Cartesian plane the λ axis corresponds to wavelengths in the
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SWIR region and the i axis corresponds to the intensity value measured at the
respective wavelength of the λ axis.

Healthy and tumoral epithelial tissues under SWIR radiation may provide
different energy absorption intensities at one or more wavelengths due to chem-
ical variations between tissues. Thus, the existence of any measurable difference
between the spectral signals of different types of epithelial tissues may deter-
mine the feasibility of constructing new tumor diagnosis methods using HSI and
SWIR. Therefore, we proposes within this work to investigate the vibrational
behavior of melanoma, dysplastic nevi and healthy skin epithelial tissues under
SWIR radiation and to employ SWIR-obtained HSI as an alternative method to
manual visual inspection by dermoscopy to identify tumor epithelial tissue.

3.2 HSI Acquisition

Hyperspectral images of skin samples were obtained using a high-speed chemical
performance analyzer called SisuCHEMA SWIR. It uses a Hyperspectral Cam-
era (HSC ) and combines near-infrared spectroscopy (NIR) with high-resolution
spectral images with 256 spectral bands. The spectral range comprises wave-
lengths between 900 and 2500, with a range between 900 and 1700 with a spectral
resolution of 10 nm in the NIR region and a range between 1000 and 2500 nm
with a spectral resolution of 6 nm in SWIR region. Image data is automatically
calibrated for reflectance, however, the HSC software also provides an estimated
absorbance value calculated from the measured reflectance intensity. The calcu-
lated absorbance, denoted pseudo-absorbance [50], is the unit registered in the
HSI and used by the proposed classifier.

3.3 Epithelial Lesion Classifier

For the task of identifying and classifying the vibrational patterns present in the
HSI pixels-vectors as well as the spatial correlation between them, we propose
a classifier that uses the concept of deep learning. The neural network used in
the experiments was RetinaNet. RetinaNet is a single and unified network com-
posed of a backbone and two task-specific subnets. The backbone is responsible
for computing a convolutional feature map across an entire input image. The
first subnet performs the classification of convolutional objects in the backbone
output, and the second subnet performs convolutional bounding box regression
[31]. The rationale for the choice of this approach lies in the heterogeneity of
pixels-vectors present in a single HSI. As the primary reference for identifying
the sample type in advance is a visual inspection by a microscope, the task of
labeling HSI pixels-vectors becomes difficult due to the difference in image pre-
cision and scale. Thus, labeling the entire sample and not the pixels-vectors was
the way adopted in this paper.
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4 Related works

Many methods have been developed to analyze HSI. However, even with this
diversity of methods, exploitation of HSI spatial information for tumor classifi-
cation is limited. Ding et al. [17] categorized the methods for HSI analysis by
the approach used in the classification. These are a) methods based on manual
procedures and b) methods based on deep learning (DL).

Recent work has significantly contributed to improving HSI classification by
employing deep learning. Hu et al. [24] modeled a CNN architecture with five
layers between convolutive layers using basic CNN elements by inserting each
pixel-vector with shared weights into the input layer.

Ma, Geng and Wang [36] proposed a CNN architecture, denoted contextual
deep learning (CDL) that receives as input each pixel-vector and its neighbor-
ing pixels-vectors. This approach allows the extraction of spectral and spatial
information providing a fine-tuning in classification. Chen, Zhao and Jia [15] in-
troduced in 2015 a new architecture employing deep belief networks (DBF) and
restricted Boltzmann machine (RBM) for the extraction of spectral and PCA
characteristics for space extraction. The authors proposed a stacked spectrum-
spatial vector as a network input. In 2016, Chen el. al. [13] introduced a new
network denoted 3-D-CNN that employs multiple convolutive and clustering
layers with combined regularization for extraction of HSI spectral and spatial
characteristics.

Pan, Shi and Xu [40] implemented a new simplified DL model based on rolling
guidance filter (RGF) and vertex component analysis network (R-VCANet), for
training a network when there is not an abundance of samples for training. Ding
et al. [17] developed an adaptive model employing CNN based on the HSI clas-
sification method in which convolutional kernels can be learned automatically
from data through clustering, even without knowing the number of clusterings.
Similar to Chen et al. [14] proposal, Li, Zhang and Shen [30] proposed a 3D
convolutional neural network structure, called 3D-CNN, as a method for ana-
lyzing HSI data, but without any preprocessing or postprocessing to extract the
combined spectral-spatial resources deeply and effectively.

The most recent work in the context of HSI skin tumor detection employs an
approach described as a non-parametric, online and multidimensional probability
density estimate. [43]. Using the concept of deep learning and HSI, Halicek et
al. presented a traditional 6-layer convolutive CNN to classify excised squamous
cell carcinoma, thyroid cancer, and normal head and neck tissue samples from
50 (fifty) patients with an accuracy of 80% [22].

This scenario shows that despite advances in HSI and deep learning, this
approach is little explored in the context of tumor diagnosis. The contributions
of this work are: a) to use SWIR as an acquisition technique of HSI in healthy
and tumoral epithelial tissues and to investigate the vibrational behavior of
the tissues under this spectroscopy technique, b) to develop a new method for
classifying skin lesion samples by object detection through spatial and spectral
classification in HSI employing deep learning.
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5 Samples

All samples used in the experiments are from human epithelial tissue. They
were taken from patients by laboratory procedures performed by physicians and
arranged as pathology. Thus, the following sets of samples were defined: C1)
Melanoma, containing 12 (twelve) samples divided into 34 (thirty four) parts,
C2) Dysplastic Nevi, composed of 18 (eighteen) samples divided into 72 parts
and C3) Healthy Skin that has 5 (five) samples divided into 17 (seventeen) parts.
These samples were fixed on glass slides without the addition of dyes and without
overlapping the sample by coverslipping. Sample thickness is 20 µm.

Fig. 2. Skin sample with melanoma fixed to glass slide.

In Figure 2 are shown two slides referring to the same skin sample with
Melanoma. This sample was divided into 3 (three) parts per slide, (A) the slide
prepared for microscope viewing and (B) the slide prepared for scanning with
SWIR spectroscopy and obtaining the respective HSI.

6 Methodological procedures

The application of the proposed solution described in section 3 in the analysis of
the samples presented in section 5 occurred through the following methodological
procedures: A) Sample scanning, B) Annotation, C) Training and D) Detection.
Figure 3 illustrates the activities of the Annotation, Training, and Detection
procedures represented by a gray-colored bounding box and the flow of activities
with their inputs and outputs.

6.1 Sample Scanning

The scanning of samples is intended to generate the hyperspectral images by
SWIR spectroscopy for each sample. This procedure is fairly simple as it consists
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Fig. 3. Methodology of activities with execution flow and inputs and outputs.

of selecting the lens to be used for HSI acquisition, arranging the sample in the
reading tray, adjusting the distance from the sensor to the sample, adjusting
the lens focus, adjusting the exposure time parameters of the sensor during
acquisition and, finally, tray speed during scanning. The images resulting from
this procedure are inputs for annotation, training and detection procedures.

6.2 Annotation

Annotation of hyperspectral images is divided into two activities: 1. Generate
visual representation, which consists of transforming one of the layers of the HSI
into a visible image to identify the position of the sample within the image.
This visual representation is intended to enable the analyst to view the HSI
scanning result, to alow the annotation of the images for classifier training and,
in the Detection procedure, to view the classification result of the already trained
classifier and; 2. Annotate regions and labels, from the visible image it is possible
to delimit the region of the sample within HSI and its respective type.

6.3 Training

The construction of the classifier begins with the reduction of the spectral dimen-
sion of each HSI, performed in activity 3. Reduce data size and obtain coefficients.
This activity aims to minimize information overlays that may exist at different
wavelengths and to simplify the mathematical model by reducing data. For this
purpose, we used Principal Components Analysis (PCA) [27]. For each train-
ing set HSI, X′ = [x1,x2, . . . ,xp] of n pixels-vectors per p possibly correlated
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variables a new cube of uncorrelated axes with ordered variances is generated
PC′ = [pc1,pc2, . . . ,pcp], preserving the spatial arrangement of pixels-vectors.
The obtained coefficients of PCA allow to reconstruct the original HSI from PC
or transform a new HSI in PC. In activity 4. Training neural network, the PC
is used in training a neural network built from a RetinaNet implementation us-
ing the TensorFlow and Keras [21] frameworks. A minor adaptation was made
to the original implementation to allow training from n layered images and the
image resizer has been disabled for not changing the spectral dimension data.
The RetinaNet configuration consist in Resnet50 model on backbone, 250 (two
hundred and fifty) epochs with 1000 (one thousand) steps each, batch size 4
(four), optimizer Adam and learning rate 0.0001. The code of neural network is
avaliable on https://gitlab.com/dvlucena/deep-hsi-swir.

6.4 Detection

Detection is the final procedure of the methodology to evaluate the trained net-
work through object detection and its classification under new HSI. The first
activity, 5. Transforming data, consists in placing each new HSI in the same di-
mensional space as the samples used in training, using the coefficients obtained
in activity 3 of the Training procedure (6.3). Finally, each image is subjected
to a trained neural network that will detect skin lesions and produce a two-
dimensional visible representation of HSI, equivalent to 1. Generate visual rep-
resentation activity of the Annotation procedure, however, with the respective
demarcation of the region where the lesion is present and its respective label.

7 Results

A HSI for each sample of sets C1, C2, and C3 defined in the section 5 was
generated using the Sample Scanning procedure described in the section 6.

Fig. 4. Two-dimensional representation of HSI from slide-set C1 (Melanoma) sample
set.

Shown in Figure 4 is a two-dimensional visual representation of each HSI
of set C1 constructed from conversion of pseudo-absorbance intensity measure-
ments at wavelength λ 1320nm to whole gray scale values within the range

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_45

https://dx.doi.org/10.1007/978-3-030-50420-5_45


Title Suppressed Due to Excessive Length 9

0-255. Each sample in set C1 is identified by the abbreviations L1, L2, . . . , L12.
Results similar to those shown in Figure 4 were also produced for Dysplastic
Nevi (C2) and Healthy Skin (C3) samples. These representations were used in
the Annotation and Detection procedures.

For the case study, we separated the sample sets described in the section 5
into training and test samples. The configuration of this separation is presented
in Table 1.

Table 1. Configuration of training and test sets.

Sample Set Training Test

C1 - Melanoma 6 samples, 17 parts 6 samples, 17 parts
C2 - Dysplastic Nevus 8 samples, 32 parts 10 samples, 40 parts
C3 - Healthy Skin 3 samples, 9 parts 2 samples, 8 parts

After the classifier training under the training data, we performed the Detec-
tion procedure using the test samples. The result regarding the classification of
Melanoma samples is illustrated in Figure 5. The orange bounding boxes corre-
spond to the region suggested by the classifier as containing melanoma and the
light blue color to the region containing healthy skin.

Fig. 5. Melanoma sample classification.

In slide L1 that has three parts of the same sample, only two parts were
detected as melanoma. In L7, only one of the three parts was detected. In L8 two
regions were suggested, but two of three parts were within one of the suggested
regions. In slide L9 despite correctly classifying the sample, there was an overlap
of suggested regions, presenting three regions for two parts of samples. In L11
only one region has been suggested and misclassified as Healthy Skin. Finally in
L12, three of the four parts were correctly classified and in one part there was
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a double classification, where overlapping regions received different labels, one
correct and one wrong.

To determine the accuracy of the classifier, it was considered correct the
correctly suggested and labeled regions on the parts of each sample. Failure
to detect or classify with divergent labeling was considered error. Therefore, in
numerical terms, the results for the melanoma samples correspond to 11 (eleven)
hits, 2 (two) misses and 3 (three) unclassified parts. The accuracy of the classifier
for Melanoma samples was 68.8%.

Figure 6 shows ten slides L13, L14, . . . , L22 for the samples of Dysplastic
Nevi used in the classifier test. The result of the classification is presented with
the demarcation of a dark blue bounding box corresponding to the classifier
suggestion for the region with presence of Dysplastic Nevus and, as in Figure 5,
the light blue bounding box corresponds to the region classified as healthy skin.

Fig. 6. Classification of Dysplastic Nevi samples.

In all ten slides, at least one part was correctly classified as dysplastic nevus.
Of the 40 parts analyzed 29 were classified correctly. In slides L13, L16 and L20
five parts were erroneously classified as Healthy Skin in three suggested regions.
Already in slides L15, L16 and L17 five of the twelve parts present were not
classified. Therefore, the accuracy of the classifier for Dysplastic Nevi samples
was 72.5%. Importantly, for the Dysplastic Nevi samples, the regions suggested
by the classifier were well defined, not presenting the problem of overlap or cuts
in parts of the samples as occurred with the melanoma samples.

Results for healthy tissue samples were inconclusive because of insufficient
samples available in both Training and Detection procedures, so were not pre-
sented in this study.

8 Conclusion

We presented a proposal employing HSI obtained by SWIR spectroscopy to iden-
tify tumor epithelial tissue using deep learning for classification. The feasibility
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of using SWIR corroborated with previous studies and confirmed the hypothe-
sis of sensitivity of human epithelial tissue to SWIR. This confirmation is most
evident when using HSI as a data structure. It has been shown by the construc-
tion of the visual representations of each HSI that the morphology of the images
coincides with the visible eye shapes of the samples arranged on the slides.

With the implementation of the proposed solution, it was possible to dis-
tinguish samples of Melanoma and Dysplastic Nevi by means of the spectral
signals and their respective spatial arrangement present in the structure of HSI.
Although the pixels-vectors of the epithelial tissues analyzed have a similar spec-
tral profile, there are differences in subtle intensities between the samples that
allow them to be distinguished. This result is a strong indication that HSI-SWIR
can be used to construct new methods for the classification of epithelial tumors.

While refinements are needed to improve region suggestion for Melanoma
samples, labeling suggested regions yielded more assertive than non-assertive
results. This shows that deep learning has been able to extract spectral and
spatial characteristics from tumor epithelial tissue lesion samples to the extent
that they can be distinguished.

It is important to highlight that the samples are not homogeneous, that is,
not the entire length of the sample has the pathology. Therefore, we cannot
state that in all the length of the Melanoma sample, all pixels-vectors have
the pathology. The precise location of tumor cells is most easily determined by
using the microscope and preparing the slide. Due to the difference in precision
between the microscope and the HSC used in the study, it was not possible to
determine in HSI which pixels-vectors correspond to the tumor cells.

We suggest to continue the studies with the following future works: 1) expand
the number of samples and perform new experiments to confirm the indicative
presented in the results; 2) increase in the Training procedure an activity to
remove pixels-vectors that do not correspond to the skin sample, performing a
semantic segmentation in the sample preceding the neural network training; 3)
incorporate semantic segmentation as the final activity of the Detection pro-
cedure and 4) locate within the sample the pixels-vectors that best match the
classified pathology, 5) apply the proposed solution to images acquired from
samples in vivo. We did not perform acquisition in vivo in this study due to the
limitations of available HSC.
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do melanoma cutâneo. Rev Bras de Cancerologia 49(3), 179–183 (2003)

21. Fizyr: Keras implementation of retinanet object detection.
https://github.com/fizyr/keras-retinanet (2019), [Online; last accessed in
18/04/2019]

22. Halicek, M., Lu, G., Little, J.V., Wang, X., Patel, M., Griffith, C.C., El-Deiry,
M.W., Chen, A.Y., Fei, B.: Deep convolutional neural networks for classify-
ing head and neck cancer using hyperspectral imaging. Journal of Biomedi-
cal Optics 22, 22 – 22 – 4 (2017). https://doi.org/10.1117/1.JBO.22.6.060503,
http://dx.doi.org/10.1117/1.JBO.22.6.060503

23. Hansen, M.P., Malchow, D.S.: Overview of swir detectors, cameras, and applica-
tions. In: Proc. SPIE. vol. 6939, p. 69390I (2008)

24. Hu, W., Huang, Y., Wei, L., Zhang, F., Li, H.: Deep convolutional neural networks
for hyperspectral image classification. Journal of Sensors 2015 (2015)

25. INCA: Estimativa 2018: Incidência de câncer no brasil.
https://www.inca.gov.br/sites/ufu.sti.inca.local/files//media/document//estimativa-
incidencia-de-cancer-no-brasil-2018.pdf (2017), [Online; last accessed in
14/08/2019]

26. Jacques, S.L., Ramella-Roman, J.C., Lee, K.: Imaging skin pathology with polar-
ized light. Journal of biomedical optics 7(3), 329–340 (2002)

27. Johnson, R. A. & Wichern, D.W.: Applied Multivariate Statistical Analysis. Pear-
son, 6 edn. (2014)

28. Kiyotoki, S., Nishikawa, J., Okamoto, T., Hamabe, K., Saito, M., Goto, A., Fujita,
Y., Hamamoto, Y., Takeuchi, Y., Satori, S., et al.: New method for detection of
gastric cancer by hyperspectral imaging: a pilot study. Journal of biomedical optics
18(2), 026010–026010 (2013)

29. Koh, K.R., Wood, T.C., Goldin, R.D., Yang, G.Z., Elson, D.S.: Visible and near
infrared autofluorescence and hyperspectral imaging spectroscopy for the inves-
tigation of colorectal lesions and detection of exogenous fluorophores. In: Proc.
SPIE. vol. 7169, p. 71691E (2009)

30. Li, Y., Zhang, H., Shen, Q.: Spectral-spatial classification of hyperspectral imagery
with 3d convolutional neural network. Remote Sensing 9(1), 67 (2017)

31. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: Proceedings of the IEEE international conference on computer vision.
pp. 2980–2988 (2017)

32. Lindsley, E.H., Wachman, E.S., Farkas, D.L.: The hyperspectral imaging endo-
scope: a new tool for in vivo cancer detection. In: Proceedings of SPIE. vol. 5322,
pp. 75–82 (2004)

33. Lu, G., Fei, B.: Medical hyperspectral imaging: a review. Journal of Biomed-
ical Optics 19(1), 010901 (2014). https://doi.org/10.1117/1.JBO.19.1.010901,
http://dx.doi.org/10.1117/1.JBO.19.1.010901

34. Lu, G., Halig, L., Wang, D., Chen, Z.G., Fei, B.: Spectral-spatial classification using
tensor modeling for cancer detection with hyperspectral imaging. In: Proceedings
of SPIE. vol. 9034, p. 903413. NIH Public Access (2014)

35. Lu, G., Halig, L., Wang, D., Qin, X., Chen, Z.G., Fei, B.: Spectral-spatial classi-
fication for noninvasive cancer detection using hyperspectral imaging. Journal of
biomedical optics 19(10), 106004–106004 (2014)

36. Ma, X., Geng, J., Wang, H.: Hyperspectral image classification via contextual deep
learning. EURASIP Journal on Image and Video Processing 2015(1), 20 (2015)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_45

https://dx.doi.org/10.1007/978-3-030-50420-5_45


14 D.V. Lucena et al.

37. Malkoff, D.B., Oliver, W.R.: Hyperspectral imaging applied to forensic medicine.
In: Proc. SPIE. pp. 0277–786X (2000)

38. Martin, M.E., Wabuyele, M.B., Chen, K., Kasili, P., Panjehpour, M., Phan, M.,
Overholt, B., Cunningham, G., Wilson, D., DeNovo, R.C., et al.: Development
of an advanced hyperspectral imaging (hsi) system with applications for cancer
detection. Annals of biomedical engineering 34(6), 1061–1068 (2006)

39. de Moraes Matheus, L.G., Verri, B.H.d.M.A.: Aspectos epidemiológicos do
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O.M.: On the spectral signature of melanoma: a non-parametric classification
framework for cancer detection in hyperspectral imaging of melanocytic lesions.
Biomedical optics express 9(12), 6283–6301 (2018)

44. Schultz, R.A., Nielsen, T., Zavaleta, J.R., Ruch, R., Wyatt, R., Garner, H.R.:
Hyperspectral imaging: a novel approach for microscopic analysis. Cytometry Part
A 43(4), 239–247 (2001)

45. Shah, S., Bachrach, N., Spear, S., Letbetter, D., Stone, R., Dhir, R., Prichard,
J., Brown, H., LaFramboise, W.: Cutaneous wound analysis using hyperspectral
imaging. Biotechniques 34(2), 408–413 (2003)

46. Siddiqi, A.M., Li, H., Faruque, F., Williams, W., Lai, K., Hughson, M., Bigler,
S., Beach, J., Johnson, W.: Use of hyperspectral imaging to distinguish normal,
precancerous, and cancerous cells. Cancer Cytopathology 114(1), 13–21 (2008)

47. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2015. CA: a cancer journal
for clinicians 65(1), 5–29 (2015)

48. Society, A.C.: Tests for melanoma skin cancer.
https://www.cancer.org/cancer/melanoma-skin-cancer/detection-diagnosis-
staging/how-diagnosed.html (2016), [Online; last accessed in 31/07/2017]

49. Society, A.C.: Cancer facts and figures 2017.
http://www.cancer.org/acs/groups/content/@editorial/documents/document/acspc-
048738.pdf (2017), [Online; last accessed in 25/07/2017]

50. SPECIM: SisuCHEMA - Chemical Imaging Analyzer.
http://www.specim.fi/downloads/SisuCHEMA 2 2015.pdf (2015), [Online;
last accessed in 25/07/2017]

51. Zevon, M., Ganapathy, V., Kantamneni, H., Mingozzi, M., Kim, P., Adler, D.,
Sheng, Y., Tan, M.C., Pierce, M., Riman, R.E., et al.: Cxcr-4 targeted, short
wave infrared (swir) emitting nanoprobes for enhanced deep tissue imaging and
micrometastatic cancer lesion detection. Small 11(47), 6347–6357 (2015)

52. Zonios, G., Perelman, L.T., Backman, V., Manoharan, R., Fitzmaurice, M.,
Van Dam, J., Feld, M.S.: Diffuse reflectance spectroscopy of human adenomatous
colon polyps in vivo. Applied Optics 38(31), 6628–6637 (1999)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_45

https://dx.doi.org/10.1007/978-3-030-50420-5_45

