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Abstract. Many aspects of the study of protein folding and dynamics have been 

affected by the accumulation of data about native protein structures and recent 

advances in machine learning. Computational methods for predicting protein 

structures from their sequences are now heavily based on machine learning tools 

and on approaches that extract knowledge and rules from data using probabilistic 

models. Many of these methods use scoring functions to determine which struc-

ture best fits a native protein sequence. Using computational approaches, we ob-

tained two scoring functions: knowledge-based energy and likelihood of base 

frequency, and we compared their accuracy in measuring the sequence structure 

fit. We compared the machine learning models’ accuracy of predictions for 

knowledge-based energy and likelihood values to validate our results, showing 

that likelihood is a more accurate scoring function than knowledge-based energy.  

Keywords: knowledge-based energy, statistical potential, likelihood, cross-val-

idation, machine learning, protein structure prediction 

1 Introduction  

Proteins are built of one or more linear chains of amino acid residues, which are protein 

sequences that fold into three-dimensional structures. Correct folding leads to a native 

structure, and knowledge of the native protein structure is essential for understanding 

the protein function. A growing amount of structural data in databases such as the Pro-

tein Data Bank (PDB) [1] has led to the development of computational approaches for 

protein structure prediction. However, these approaches are often time-consuming and 

costly or have low accuracy, so there is a need for effective and accurate computational 

approaches to protein structure prediction.  

Most of the methods for structure prediction use scoring functions to determine 

which structure best fits a native protein sequence. The native structure generally has a 

lower free energy than the other possible structures under the native conditions [2], 

which means that an accurate free energy function can be applied in the prediction and 
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assessment of protein structures [3], for example, as a scoring function in measuring 

sequence structure fit. However, calculating the free energy of protein folding (or un-

folding) using all-atom coordinates is impractical because it is computationally de-

manding, so only a small fraction of the available conformational space can be explored 

in this way. Knowledge-based (KB) approaches that extract knowledge and rules from 

data are therefore used in the assessment of an ensemble of structural models produced 

by computational methods to find the correct structure that fits a given sequence.  

KB free energy (also known as statistical potential or pseudo-energy potential) is 

widely used for those purposes. Statistical potential is derived using a mathematical 

approach, according to which the statistical preferences of interactions between differ-

ent molecules can be described. However, protein folding is a cooperative process with 

many driving forces, which means that a residue in a given position has an impact on 

other residues and, ultimately, on the structure in which the sequence will fold. A way 

to describe cooperation is by using a likelihood function.  

In this study, we used a one-dimensional (1D) representation of the protein structure 

based on the buried or exposed state of the residues to compare the accuracy of the KB 

energy (E) and the likelihood of base frequency (L), which are essentially scoring func-

tions and can be used in protein structure prediction.  

Machine learning (ML)–based approaches used in the accuracy assessment of se-

quence-structure fit in proteins provide a large set of models that can contribute to the 

process by enriching the quantification of different parameters. The ML models can 

also be efficiently used to validate results related to the accuracy of the functions by 

assessing the sequence structure fit. The large diversity of models bears some problems 

related to how and which model is better to choose for a particular case, which can be 

overcome by different cross-validation approaches. 

To validate our results showing that likelihood is a more accurate measure of the 

sequence-structure fit than KB energy, we used ML models. The application of such 

ML models to predict likelihood and energy values accordingly provides criteria for 

assessing the accuracy and predictability of these two approaches.  

2 Problem description 

Proteins interact strongly with surrounding solvents, and the exposure of amino acids 

to solvents is a sensitive parameter that can be used to model energetic features on the 

protein–solvent boundary [4]. The folding process of soluble proteins also decreases 

the surface area in contact with the solvent; this is related to the secondary structures of 

proteins. Accurate knowledge of residue accessibility would thus aid in the prediction 

of protein structures [5]. 

The protein residues in a structure are exposed to the solvent to different extents. We 

applied KB approaches to describe different types of residue preferences for being in a 

buried or exposed state in the protein structure.  

In this work, the model of the protein structure is one-dimensional (1D) and uses 

only the solvent accessibility of every residue. For simplicity, the solvent accessibility 

is categorized into two states: buried (0) and exposed (1). There are 20 types of amino 
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acid residues and each of them can be categorized as buried or exposed in a given po-

sition in the protein sequence, so the number of residue classes is 40. 

The solvent accessible surface area (SASA) of all the proteins in the two sets is cal-

culated, and the threshold of the SASA per residue is selected to classify a residue as 

buried or exposed. Then, a buried/exposed pattern is assigned to every sequence to 

construct an object that describes the protein using the amino acid (AA) sequence and 

one structural property – a pattern of the buried or exposed status of the residues.  

The sequence-structure pair objects based on the solvent accessibility were used for 

optimization of their KB energy or likelihood, accordingly. 

The concept of pseudo-energy was introduced to biology by the seminal paper of 

Tanaka and Scheraga [6]. They assumed that residues behave like molecules interacting 

in gas, and they used the observed frequencies of the contacts between different types 

of residues in known X-ray structures. Using these data, they calculated the “free ener-

gies” (ΔG°) of the contact between different types of amino acids using a formula ex-

ported from statistical chemistry: 

 ∆𝐺° =  −𝑅𝑇𝑋𝑖𝑗𝑋𝑖𝑋𝑗 (1) 

where 𝑋𝑖𝑗 is the frequency of the observed contacts between the residues of type i 

and the residues of type j, 𝑋𝑖𝑋𝑗 represents a multiplication of these frequencies (statis-

tical expectation of the contact between residue i and residue j), R is the gas constant, 

and T is temperature.  

In this study, using parameters obtained from a set of 200 native protein structures, 

we calculated the KB energy of proteins, as seen in Equation 2: 

 𝑘𝑏𝐸(𝑝𝑟𝑜𝑡𝑒𝑖𝑛) =  ∑ 𝐸𝑖[0 𝑜𝑟 1]
𝑗
1  (2) 

where 𝑖 is the type of residue according to the position of the protein sequence, 𝑗 is 

the length of the protein, and 𝐸𝑖[0 𝑜𝑟 1] is the KB energy of the 𝑖-th residue, which can 

be buried [0] or exposed [1]. 

Likelihood is also widely used in biology, for example, in the case of phylogenetics. 

In this paper, we applied the following formula: 

 L =  log (
𝑃1

𝑛1[0]
×𝑃2[0]

𝑛2[0]
…𝑃

20[0]

𝑛20[0]
×𝑃

1[1]

𝑛1[1]
×𝑃

2[1]

𝑛2[1]
…𝑃

20[1]

𝑛20[1]
((𝑛1[0]+…𝑛20[1] )!)

(𝑛1[0]!)(𝑛2[0]!)(𝑛3[0]!)…(𝑛20[𝑖]!)
) (3) 

where 𝑃𝑖[0 𝑜𝑟 1] is the observed frequency of the residues in the buried/exposed state 

in the entire database, 𝑛𝑖[0 𝑜𝑟 1]is the number of residues of a given type in a given pro-

tein, and (𝑛1[0] + … 𝑛20[1] ) is equal to the length of the protein. 

The object design is highly simplified, and the reduction of 3D structural information 

to 1D lowers the possible accuracy of the scoring. Therefore, it is possible to optimize 

a native sequence-structure pair, for example, by changing the pattern to better fit the 

native sequence according to the selected criteria. The resulting pattern will be different 

from the native one (because the criteria is imperfect), and the accuracy of the criteria 

can be assessed by calculating the identity of the resulting pattern to the native pattern.  
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Using the two criteria – KB energy and likelihood, separately, in two optimization 

experiments, we were able to conclude that the likelihood is less erroneous than the KB 

energy as a criterion of the sequence-structure fit. 

The concept for this study is to test the accuracy of the two criteria for measuring 

the sequence-structure fit by using a ML approach. 

Machine learning can be applied for multiple purposes in protein folding and struc-

ture prediction: measuring the sequence-structure fit, designing energy functions, or 

analyzing protein simulation data. 

In this work, we apply ML models to evaluate the accuracy of the two properties, 

KB energy and likelihood, that can be used as scoring functions. We have already as-

sessed that likelihood is a more accurate measure of the sequence-structure fit. The goal 

of this study is to validate that using ML models. We want to check whether the model 

predictions of the likelihood values will be more accurate than those of KB energy. 

That will show that the likelihood provides the possibility of better use of structural 

information in prediction than the KB energy. 

A common method to estimate the quality of model predictions is to use cross-vali-

dation and calculate the average prediction performance across test samples. Here, we 

use cross-validation in the context of predictive modeling. This is one of the most 

widely used data resampling methods to assess the generalizability of a predictive 

model and to prevent overfitting. To build the final model for the prediction of real 

future cases, the learning function (or learning algorithm) f is usually applied to the 

entire learning set. The purpose of cross-validation in the model-building phase is to 

estimate the performance of the final model on new data. 

Cross-validation divides the training data into several disjointed cohorts of approxi-

mately equal size. Each cohort is used in turn as testing data, while the remaining co-

horts are used as training data. The prediction model built on the training data is then 

applied to predict the class labels of the testing data. This process is repeated until all 

cohorts have been used as the testing data once, and then the prediction accuracies of 

all the blinded tests are combined to produce an overall performance estimate. 

3 Related work 

Different bioinformatics and statistical approaches can be used to predict the 3D struc-

ture of a protein from its amino acid sequence. Many of these approaches can be viewed 

as sequence-structure fitness problems. In evaluating a hypothetical structure, such as 

the fitness of a sequence for a structure, one must be able to distinguish between correct 

and incorrect structures (to identify the structural states that have a high probability of 

being observed in given environmental conditions). Success or failure depends cru-

cially on the underlying description of structural states and on the evaluation scheme of 

sequence-structure fitness [7].  

Based on the thermodynamic hypothesis [2], computational studies of proteins, in-

cluding structure prediction, folding simulation, and protein design, depend on the use 
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of a potential function to calculate the effective energy of the molecule. In protein struc-

ture prediction, the potential function is used either to guide the conformational search 

process or to select a structure from a set of possible sampled candidate structures [8]. 

Two fundamentally different approaches exist to obtain a potential energy function 

[9]. The first is an inductive approach [4], a mathematical model that describes the 

system is assumed without previous knowledge about the physical principles. The re-

sulting potential is directly extrapolated to more complex molecules by assuming that 

a common behavior will exist in both cases [9]. The second approach is deductive (or 

KB). In order to obtain an accurate description of the potential energy function, exper-

imental data from large macro-molecular-solvent systems should be used [9]. The pa-

rameters of the potential functions are extracted from a database of known protein struc-

tures [4]. Because of the deductive nature of this approach, which incorporates many 

physical interactions (electrostatic, van der Walls, cation interactions) and the extracted 

potentials do not necessarily reflect true energies, it is often referred to as the 

“knowledge-based”, “empirical”, or “statistical” effective potential function or scoring 

function [8]. 

Current studies are focused on improving knowledge-based potentials used for: pro-

tein structure predictions, [10, 11, 12] RNA structure predictions [13, 14], and rational 

drug design [15]. 

More complex KB approaches use the advances of ML for protein structure predic-

tion and sequence-structure fit assessment. Theoretically, the implementation of ML 

can be defined as both supervised learning, where the data includes additional attributes 

that are expected to be predicted, and unsupervised learning, where the training data 

consists of a set of input vectors without any corresponding target values. The super-

vised learning set of models consists of two groups: classification and regression. The 

large background of standard supervised ML methods provides reasonable results, but 

the advent of methods based on deep residual networks has shown more promising 

results in some cases.  

Different ML methods have been applied as a tool for protein structure prediction 

based on KB potentials [16, 17]. It is expected that ML forcefields may soon replace 

forcefields in protein simulations [18]. 

Some alternative ML methods for structure prediction, such as probabilistic neural 

networks and deep learning end-to-end differentiable networks, have shown wider ap-

plicability [19].  

There have also been attempts to apply likelihood functions as a tool for protein 

structure predictions using the multiple sequence alignment of related proteins as input 

data [20, 21]. Multiple sequence alignment shows which residues are evolutionarily 

related. A likelihood function indicates the probability of contact between different res-

idues. 

A significant problem in using ML models for sequence-structure fit is how to vali-

date the results. Very often, this process is based on cross-validation of the outcomes 

of the applied models. Cross-validation is primarily used in applied ML to assess the 

potential and the accuracy of certain ML models for certain data. This means that it is 

possible to use a limited sample to estimate how the model will perform in general 

when used to make predictions on data not used during training. The cross-validation 
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model can be used to estimate any quantitative measure that is appropriate for the data 

and the model. The use of cross-validation in sequence to structure fit evaluation mod-

els is discussed in [22].  

4 Data description 

For the purposes of the study, we used two datasets: 1) a set of 200 protein structures 

for the calculation of the parameters used in KB energy and likelihood determination, 

and 2) a set of 45 protein structures for the optimization experiments. The first dataset 

was extracted from a selection of nonhomologous proteins [23]. The second dataset for 

testing purposes was obtained from the non-redundant PDB chain set of proteins with 

a sequence-similarity cut-off BLAST p-value of 10e-7, which is the most non-redun-

dant of the given. The testing set contains 45.pdb files that meet the following criteria: 

having 0% unknown, incomplete, or missing residues or residues with incomplete side-

chain; having only one chain (subunit) in the PDB entry; and not containing any heter-

ogens (except for water). The models were determined by X-ray crystallography. 

The sequence of every one of the 245 selected proteins is extracted from the .pdb 

file using Biopython [24, 25]. 

The solvent accessible surface area (SASA) of the residues is a geometric measure 

of exposure to the solvent. SASA is typically calculated by methods involving the in- 

silico rolling of a spherical probe, which approximates a water molecule, around a full-

atom protein model [26]. The SASA of the protein molecule is the surface area traced 

by the center of the probe. A classical approximation commonly used to calculate 

SASA is the Lee and Richards (L&R) approximation [27], where the surface is approx-

imated by the outline of a set of slices [28]. 

In this work, the Python module of FreeSASA, an open source C library [28], is used 

to calculate the solvent-accessible areas. SASA values for every residue in the protein 

are obtained by a high precision L&R calculation (probe radius: 1.400; slices: 100) 

using the default on FreeSASA ProtOr radii [29].  

The relative solvent accessibility (RSA) of a residue indicates its degree of burial in 

a structure. The RSA calculation is important because different amino acids are of dif-

ferent sizes, so they also differ in area. To disregard these differences, the relative ex-

posure (RSA) is calculated by normalizing the surface area of the residue in the struc-

ture by the surface area of the same type of residue in some reference state (e.g. the 

residue X in an extended tripeptide, such as Gly-X-Gly). RSA values are calculated by 

dividing the absolute SASA by the maximum solvent accessibility (maxSASA). Values 

for maxSASA based on ProtOr radii were extracted from the default reference values 

used in the FreeSASA classifier. 

The calculated RSA was further divided into two states, using an exposure threshold 

of 0.1 (10%). Namely, a residue is considered buried (marked as 0) when RSA ≤ 0.1 

and exposed (marked as 1) when RSA > 0.1. Each residue in a chain is then assigned 

to class 0 if it has an RSA lower than or equal to 0.1 and to class 1 if the RSA is higher.  
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5 Suggested methodology 

For the purposes of this study, we have developed an ML-driven approach for accuracy 

assessment of knowledge-based energy (E) and frequency base likelihood (L) for pro-

tein structure prediction. Both approaches are based on statistics of the buried/exposed 

properties of residues. 

5.1 Data preparation for ML 

The sequence and pattern of every one of the 245 protein objects are transformed into 

numerical values that can be used as parameters in ML models. 

To every type of amino-acid residue a) in the sequence, a corresponding number 

from b) is assigned: 

a)     'A','R','N','D','C','E','Q','G','H','I','L','K','M','F','P','S','T','W','Y','V' 

b)     10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 

The sequence of these numbers is specific for every protein and is used as parameter 

X1 in the ML models. The numbers representing all the residues in one protein se-

quence are then added to a value that is later used as parameter (p1) in the ML models. 

In the patterns, every buried state (before represented as 0) is assigned the coefficient 

0.2, and every exposed state (previously represented as 1) is assigned the coefficient 

0.5. The sequence of these coefficients is then summed to obtain the second parameter 

(p2). The purpose of the coefficients is to represent the structural component as a dis-

tance. 

The values of the KB energy (E) and the likelihood of base frequency (L) are used 

in the ML and are calculated for every one of the 245 proteins. 

Outliers with values greater than five times the mean distance are removed from the 

study. After this filtering, a dataset generated from 244 native protein structures is used. 

The 244 samples of the parameter values X1 and X2 are then individually normal-

ized using the standard normalizer of the scikit-learn Python library [30]. 

To predict the KB energy and likelihood values, we used three supervised regression 

ML models. The chosen models are from python scikit-learn package: 1) Lasso – lin-

ear_model (alpha = 0.1), which is a regression analysis method that performs both var-

iable selection and regularization to enhance the prediction accuracy and interpretabil-

ity of the statistical model it produces; 2) Nearest Neighbors Regression (NNR) – 

kNeighborsRegressor (n_neighbors = 5, algorithm = 'kd_tree'), which is a non-para-

metric method used for classification and regression. In both cases, the input consists 

of the k closest training examples in the feature space. The output depends on whether 

k-NN is used for classification or regression. We use a regression approach where the 

output is the property value for the object. This value is the average of the values of k 

nearest neighbors. 3) Decision tree regression (DTR) – DecisionTreeRegressor 

(max_depth = k). Decision Trees are a non-parametric supervised learning method used 

for classification and regression. The goal is to create a model that predicts the value of 

a target variable by learning simple decision rules inferred from the data features. 

For every one of the models, a k-fold cross-validation is used to split the set into k 

smaller sets for better estimation.  
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As input, we used 244 samples of: 

• Two normalized parameters, X1 and X2, that were obtained from data about the 

protein sequence and the protein structure, respectively. 

• The actual values for KB energy or likelihood, obtained from formulas (2) and (3). 

For k = 3, 5 and 7: 

• The original sample is randomly partitioned into k equal sized subsamples. 

• Of the k subsamples, a single subsample is retained as the validation data for testing 

the model, and the remaining k − 1 subsamples are used as training data. 

• The cross-validation process is then repeated k times, with each of the k subsamples 

used exactly once as the validation data. 

• The k train score results are then averaged to produce a single estimation (with a 

standard deviation). 

• The predicted values are plotted against the original data. 

The purpose of the suggested methodology is to show the difference in accuracy of 

prediction performance of the applied ML models based on the values of the two scor-

ing functions: KB energy and likelihood. 

6 Results and discussion 

The methodology of this study provides results based on the three above-described ML 

models and produces scores for comparing the accuracy of these models. 

After the data set is normalized, we apply three supervised regression ML models: 

lasso regression, nearest neighbor regression, and decision tree regression. We test the 

cross-validation splitting strategy of k = 3, k = 5, and k = 7 folds to compare the models 

in terms of their accuracy of predicting the scores of KB energy and likelihood. 

The graphs in Figs. 1–3 show the relatedness of the actual to the predicted values of 

every particular model used for KB energy and for likelihood respectively with cross-

validation (cv) k = 5. 

For the KB energy, lasso has worse predictive results than for likelihood, for which 

the results are distributed around the fit regression line with very few outliers from the 

greater actual value of likelihood. 
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Fig. 1. Lasso cross-validation, k = 5 

The results of NNR are similar, with the KB energy estimates more dispersed than 

the values for likelihood. 

Fig. 2. Nearest neighbor regression cross-validation, k = 5 

The DTR produces somewhat similar results for the prediction of KB energy and 

likelihood values. 

Fig. 3. Decision tree regression cross-validation, k = 5 

These results are evidence that the likelihood prediction using is better than the KB 

energy prediction. These results confirm the analytical computational approach of op-

timization’s finding that likelihood is superior to KB energy as a scoring function. 
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As a consequence of modelling the relatedness of the predicted to the actual values 

using the three ML approaches, we can refer to the coefficient of determination result-

ing from the training scores both for the KB energy and likelihood. The coefficient of 

determination shows the accuracy of the applied models. 

All values given in Figs. 4–6 are based on the average values for a particular splitting 

strategy with different k-fold numbers: 3, 5, and 7. 

In Figs. 4–6, the greater accuracy of the likelihood prediction ML models over the 

KB energy prediction ML models is obvious.  

In Fig. 4, the NNR (Nearest Neighbor Regression) model with k = 3 produces higher 

mean values and smaller errors than the other two regression models. Lasso is less ac-

curate model, while DTR (Decision Tree Regression) has an intermediate position. 

The accuracy of the applied ML models changed when the splitting training set strat-

egy amounts to five (Fig. 5.) In this case, the NNR and DTR models have very close 

average mean values and distributions of error values. The lasso regression model is 

obviously inferior to both NNR and DTR. 

The increased accuracy of the DTR model for both KB energy and likelihood pre-

dictions is seen in Fig. 6. We can thus infer that, with a higher number of training data 

sets, we can improve the accuracy of the DTR model. The most important finding is 

the overall superior accuracy of the likelihood prediction approach.  

 
Fig. 4. Mean training scores for the three models with k-fold number cv = 3 
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Fig. 5. Mean training scores for the three models with k-fold number cv = 5 

 

Fig. 6. Mean training scores for the three models with k-fold number cv = 7 

7 Conclusions 

In bioinformatics, statistical properties can be estimated using likelihood or likelihood 

function. Recently, ML has been applied as a tool to enhance this classical approach. 

We showed that ML is more efficient in predicting likelihood parameters than KB en-

ergy. 
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In our study, we developed a ML-driven approach for accuracy assessment of KB 

energy and frequency base likelihood for protein structure prediction. Both approaches 

are based on statistics of the buried or exposed properties of residues.  

We proposed an approach for model comparison based on cross-validation of the 

estimated performance.  

The ML models were applied to confirm the superiority of the frequency base like-

lihood approach over the KB based energy approach for assessing sequence-structure 

fit in proteins. 

This study demonstrates the potential of protein structure prediction methods based 

on ML and indicates that combining ML with frequency base likelihood is more effi-

cient than using KB energy functions. 
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