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Abstract. Super learner algorithm can be applied to combine results
of multiple base learners to improve quality of predictions. The default
method for verification of super learner results is by nested cross valida-
tion; however, this technique is very expensive computationally.
It has been proposed by Tsamardinos et al., that nested cross validation
can be replaced by resampling for tuning hyper-parameters of the learn-
ing algorithms. The main contribution of this study is to apply this idea
to verification of super learner. We compare the new method with other
verification methods, including nested cross validation.
Tests were performed on artificial data sets of diverse size and on seven
real, biomedical data sets. The resampling method, called Bootstrap Bias
Correction, proved to be a reasonably precise and very cost-efficient al-
ternative for nested cross validation.

Keywords: Super learning · Cross validation · Bootstrap · Resampling

1 Introduction

Numerous machine learning algorithms with roots in various areas of computer
science and related fields have been developed for solving different classes of
problems. They include linear models, support vector machines, decision trees,
ensemble algorithms like boosting or random forests, neural networks etc [1].
There are also many feature selection techniques used to prepare the input data
for the predictive algorithm. Different methods can extract and utilise different
parts of the information contained in the data set under scrutiny. It has been
shown that in many cases an ensemble machine learning model, which combines
several different predictions, can outperform the component learners. This can
be realised in the form of wisdom of crowds [2] or in a more systematic way as
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2 K. Mnich et al.

Algorithm 1: k-fold cross validation CV(f,D)

input : learning method f ,
data set D = {yj , Xj}, j = 1, . . . , N

output: N predictions for the response variable ψj , j = 1, . . . , N

split randomly the data set into k almost equally-sized folds Fi

foreach Fi do
define a training set as Di = D \ Fi

learn a predictive model using the training set Mi ← f(Di)
apply the model to the remaining subset Ψi ←Mi(Fi)
collect the predictions Ψi

end

a Super Learner [3]. The wisdom of crowds is one of the principles underlying
the design of DREAM Challenges, where multiple team contribute diverse al-
gorithms and methodologies for solving complex biomedical problems [4]. Super
learning was proposed by van der Laan et al. and implemented as SuperLearner
R language package. It utilises cross validation to estimate the performance of
the component algorithms and dependencies between them. One may notice that
wisdom of crowds can be formally cast as a special example of super learning.
The goal of the current study is to examine several methods for estimate the
performance of the super learner algorithm. In particular it explores methods
for minimising bias with minimal computational effort.

1.1 Super learning – basic notions and algorithms

The input of any machine learning algorithm is a set of N observations, usually
assumed to be independent and identically distributed, of the response variable
yj and a set of p explanatory variables Xj = {xjm}, m = 1, . . . , p. A predictive
algorithm f (that includes also the feature selection algorithm and the set of
hyper-parameters) can be trained using a data set D = {yj , Xj} to produce a
model M . Then, the model can be applied to another set of variables X ′ to
obtain a vector of predictions Ψ = M(X ′).

K-fold cross validation is an almost unbiased technique to estimate perfor-
mance of a machine learning algorithm when applied to unseen data. Algorithm
1 allows to compute a vector of N predictions for all the observations in the data
set. The predictions can be compared with the original decision variable Y to
estimate the performance of the learning algorithm.

In super learning, we use multiple machine learning algorithms fl, l−1, . . . , L.
The cross validation procedure leads to L vectors of predictions Ψl. The idea is
to treat them as new explanatory variables and apply some machine learning
algorithm to build a second-order predictive model (see Algorithm 2). The new
features are expected to be strongly and linearly connected with the response
variable, so linear models with non-negative weights seem to be appropriate
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super learning algorithms. Indeed they are default methods in SuperLearner R
package. Note, however, that any method that selects a weighted subset of the
elementary learning algorithms can be formally considered as and example of
super learning. This includes also selection of the best-performing algorithm,
which is a common application of cross validation, and can be considered as a
special case of super learning [3]. Other examples can be unweighted mean of k
best performing algorithms, as in the wisdom of crowds, or even a simple mean
of all learning algorithms used.

Algorithm 2: Super learning SL(fl, fc, D,D
′)

input : L learning methods fl,
combining method fc,
data set D = {Y,X},
new data set D′ = {Y ′, X ′}

output: ensemble predictive model M ,
predictions for the new response variable Ψ ′

compute L vectors of cross validated predictions Ψl ← CV(fl, D)
build a second-order data set Dc ← {Y, Ψl}
apply the method fc to the second-order data set Mc ← fc(Dc)

build L predictive models using the entire data set Ml ← fl(D)
apply the models to the new data Ψ ′

l ←Ml(D
′)

compute the ensemble predictions Ψ ′ ←Mc(Ψ
′
l )

return M = {Ml,Mc}, Ψ ′

1.2 Performance estimation for super learning – nested cross
validation

Super learning, as every machine learning method, is sensitive to overfitting.
Therefore, an unbiased estimate of the performance of ensemble models is nec-
essary. The obvious and most reliable method to obtain it is an external cross
validation. The entire procedure is called nested cross validation, as it contains
two levels of CV loop (see Algorithm 3).

Nested cross validation is implemented in SuperLearner R package as a de-
fault method of performance estimation. The authors of Super learner algorithm
recommend to use 10-fold internal cross validation [3]. The external CV should
also be at least 10-fold, to avoid a meaningful reduction of the sample size. Even
if one restricts himself to a single loop of the external CV, the entire procedure
requires all the learners to be run 110 times. Although the routine is easy to
parallelise, the computational complexity is very large.
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Algorithm 3: Nested cross validation NCV(fl, fc, D)

input : L learning methods fl,
combining method fc,
data set D = {Y,X}

output: predictions for the response variable Ψ

split randomly the data set into k almost equally-sized folds Fi

foreach Fi do
define a training set as Di = D \ Fi

run a super learning procedure {Mi, Ψi} ← SL(fl, fc, Di, Fi)
collect the predictions Ψi

end
compare Ψ with corresponding values of Y

1.3 Bootstrap bias correction for super learning

An alternative approach to verification of complex machine learning algorithms
was proposed by Tsamardinos et al. [5]. It is called the Bootstrap Bias Correc-
tion and bases on Efron’s bootstrapping technique [6]. The method was orig-
inally proposed to estimate the bias caused by a choice of the optimal set of
hyper-parameters for a predictive model. However, as it has been mentioned,
this task can be considered as a special case of super learning. What is more,
the procedure is general and does not involve any actions specific to selection of
hyper-parameters. Thus, the Tsamardinos’ method can be easily generalised for
any kind of super learning.

Main contribution of the present study The purpose of the current study is
to develop and test the algorithm of Bootstrap Bias Correction for an arbitrary
super learning method. The idea is shown in Algorithm 4. The cross validated
predictions for all the algorithms are computed only once. Then, the combining
models are computed many times for samples that are drawn with replacement
from the predictions. The predictions of each combination model are then tested
on it’s out-of-bag observations.

In this method, all base predictions come from the same cross-validation
run, hence the entire sample is somewhat co-dependent. Therefore learning on
the outcome will be overfitted. On the other hand, the training set contains
duplicates what introduces additional noise. The effective data set size is smaller
than the sample. This effect should decrease the overfitting and cancel the bias
of the performance estimate.

The major advantage of BBC method is its small computational complexity.
The elementary predictions are computed only once, multiple runs are required
only for the relatively simple combining procedure.
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Algorithm 4: Bootstrap bias corrected super learning
BBCSL(fl, fc, D)

input : L learning methods fl,
combining method fc,
data set D = {Y,X}

output: set of pairs of the response variable and predictions {yj , Ψj}

foreach fl do
compute the cross validated predictions Ψl ← CV(fl, D)
build a second-order data set Dc ← {Y, Ψl}

end
for b← 1 to B do

draw a random sample Db of the prediction set Dc with replacement
define the out-of-bag set D\b ← Dc \Db

apply the method fc to the data set Db Mb ← fc(Db)
compute predictions for the out-of-bag set Ψb ←Mb(D\b)
compare the predictions Ψb and with the corresponding values of Y

end

In the current study, we apply bootstrap bias corrected super learning algo-
rithm to synthetic and real-world data sets and compare the results with other
verification methods, including the nested cross validation.

2 Materials and Methods

The tests were focused on binary classification tasks. The area under ROC curve
(AUC) was used as a quality measure of predictions, since it does not depend
on the class balance in the data set. The methods, however, can be applied also
for multi-class classification or regression tasks, with different quality metrics.

2.1 Data

Artificial data The methodology was developed on the synthetic data set. The
data set was created as follows:

– First, the two vectors of expected values and two covariance matrices were
randomly generated. These parameter sets are common for all the observa-
tions.

– The requested number of instances of the binary decision variable was ran-
domly chosen, with the same probability for both classes.

– For each class of the decision variable, the explanatory variables are drawn
from a multivariate normal distribution with the corresponding set of pa-
rameters.
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This procedure allows to create an arbitrary big sample with the same sta-
tistical properties and verify directly the predictions on the unseen data. The
parameters were tuned to emulate the strength of linear, quadratic and pairwise
interactions as well as the dependencies between variables that may appear in
the real-world data sets.

The data sets we had generated contained 5000 explanatory variables and 50,
100, 150, 200 observations. Statistic tests indicate from 2 to 20 relevant variables,
depending on the sample size.

Biomedical data sets The tests were performed on seven data sets that contain
measurements of gene expression and copy number variation for four cancer
types. These data sets correspond to biological questions with different levels of
difficulty. These are:

– data sets obtained from the CAMDA 2017 Neuroblastoma Data Integration
Challenge (http://camda.info):
• CNV – 39 115 array comparative genomic hybridization (aCGH) copy

number variation profiles, data set limited to a cohort of 145 patients,
• MA – 43 349 GE profiles analysed with Agilent 44K microarrays, data

set limited to a cohort of 145 patients,
• RNA-seq – 60 778 RNA-seq GE profiles at gene level, data set limited

to a cohort of 145 patients.
The data collection procedures and design of experiments were previously
described in the original studies [7,8,9,10,11]. Data sets are also accessible in
Gene Expression Omnibus [12]. The relevant question for these data sets is
predicting the final clinical status of the patient using molecular data. This
is difficult problem.

– data sets with The Cancer Genome Atlas database generated by the TCGA
Research Network (https://www.cancer.gov/tcga) that contain RNA-sequen-
cing data for various types of cancer [13,14,15,16,17,18]:
• BRCA RNA – data set contains 1205 samples and 20223 probes (112

normal and 1093 tumor),
• BRCA CNV – data set contains 1314 samples and 21106 probes (669

normal and 645 tumor),
• HNSC – data set contains 564 samples and 20235 probes (44 normal and

520 tumor),
• LUAD – data set contains 574 samples and 20172 probes (59 normal and

515 tumor).
In this case the relevant question is discerning normal tissue from tumor us-
ing data set at hand. It is much easier question since both genetic profile and
gene expression patterns are highly modified in cancer cells in comparison
with normal tissue.

2.2 Methods

For each data set we applied the full protocol of super learning and nested cross
validation. We used the default 10-fold setup for both external and internal
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cross validation and 100 repeats of resampling procedure. For the artificial data
sets, we performed the entire routine for 100 different sets drawn from the same
distribution. In the case of real data sets, the protocol was repeated 100 times
on the same data for different cross validation splits.

Base machine learning algorithms Six popular machine learning algorithms
were used as base learners:

– Random Forest [19],
– LASSO [20],
– Support Vector Machine (SVM) [21],
– AdaBoost [22],
– Naive Bayesian classifier,
– kNN classifier for k = 10.

All the algorithms are implemented from the standard R packages, with the
default parameters. The parameters used are obviously not optimal, but the
performance optimisation is not the subject of the current study.

For each algorithm, the set of input variables was reduced to the most relevant
ones by the feature selection algorithm. To this end, we applied Welch t-test for
each explanatory variable and chose 100 variables with the biggest value of the
test statistic. This procedure is very sensitive to overfitting, so any bias in the
verification methods should be clearly visible.

Methods of super learning Six methods of combining various prediction
results via super learner approach were tested:

– two default methods implemented in SuperLearner R package:
• NNLS: non-negative least squares
• NNlog: non-negative logistic regression

– two “toy example” methods, that are, however, commonly used:
• Mean: average of all the base results (the method does not introduce

any overfitting)
• Best 1: choice of the best-fitted model (this special case is mentioned in

the original van der Laan paper and corresponds directly to the original
purpose of the bootstrap method by Tsamardinos)

– Best k: average of k best-performing models, where k is optimised on the
training set – usually k is set as 3-4

– RF: Random Forest algorithm

Methods of verification The estimate of quality was performed using the
following methods (from the most biased up to unbiased one):

– Training set: measure the performance of the combined classifier on the
same data that were used to build the combined model (the results are
obviously overestimated);
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Table 1. The AUC of base classification algorithms for the artificial data. Comparison
between prediction estimate in 10-fold cross-validation (10CV), prediction of new data
for model trained on entire sample (100%) and prediction of new data for model trained
on 90% of the sample (90%) (the same training set size as in cross-validation). The
uncertainty values of AUC were computed as mean square error (MSE) of average of
100 independent measurements.

10CV 100% 90% 10CV 100% 90%

50 obs., MSE=0.01 100 obs., MSE=0.01

RandomForest 0.62 0.64 0.62 0.69 0.71 0.69
LASSO 0.62 0.63 0.62 0.68 0.70 0.69
SVM 0.63 0.64 0.62 0.68 0.71 0.69
AdaBoost 0.38 0.33 0.38 0.68 0.71 0.69
Naive Bayes 0.63 0.65 0.63 0.69 0.72 0.70
kNN 0.56 0.57 0.55 0.61 0.63 0.61

150 obs., MSE=0.005 200 obs., MSE=0.005

RandomForest 0.735 0.760 0.745 0.782 0.804 0.788
LASSO 0.744 0.772 0.747 0.817 0.853 0.821
SVM 0.738 0.754 0.744 0.777 0.803 0.787
AdaBoost 0.699 0.731 0.711 0.761 0.789 0.763
Naive Bayes 0.735 0.756 0.744 0.770 0.792 0.779
kNN 0.659 0.678 0.672 0.690 0.711 0.698

– Independent CV: compute the results of base learners only once, then
verify the combining algorithm in a second, independent cross validation
(due to the common information in the training and validation sets the
results are also overestimated);

– BBC SL: apply the bootstrap bias correction method (the method proposed
in the current study),

– Nested CV: apply the nested cross validation (as a gold-standard);
– New data: directly measure the performance for new data, drawn from the

same distribution (the oracle for artificial data sets).

3 Results

3.1 Artificial data sets

Base learners – cross validation vs. direct verification The way of build-
ing the artificial data sets allows for comparison between the cross validation re-
sults and the actual results obtained for unseen data. This comparison is shown
in Table 1.

As it could be expected, the performance of all the machine learning algo-
rithms improves with the sample size. In particular AdaBoost could not cope
with 50 observations only.

Interestingly, a considerable negative bias of the cross validated estimations
of AUC was observed in comparison with the model trained on the entire sample.
To correct this difference, additional models were built using the training sets
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reduced to 90% of the original sample. Quality of these models, agree much
better with the cross-validated estimates. That means that most of the bias of
the cross validation procedure comes from the smaller size of training sets. The
small remaining bias is most likely due to negative correlations of fluctuations
in training and validation sets in cross-validation.

Super learning The performance of diverse methods of super learning is shown
in Table 2. For this particular data set, the super learning technique needs at
least 100 observations to outperform the best single result and at least 200
observations to perform better then a simple average of all the base results.
Random forest proves to be a poor super learning method. The non-negative
linear models perform the best (surprisingly, the ordinary least squares method
was better at classification than the logistic regression, that is specialised for
this task). However, the simple best-k method performs almost as well.

One should note the difference between the performance of the “Best 1”
method in the Table 2 and the best overall performance from the Table 1. The
reason is, that the algorithm, that performed best on a subset of the data will
be not necessarily the best one for the entire data set. Everyone, who chooses
the most appropriate machine learning algorithm using a single cross validation,
should thus expect some decreasing of its performance for new data.

The differences between various performance estimates are small, but some
regular patterns are noticeable. As previously, the performance of the models
learned on the entire data set and applied to new data is better than measured in
the nested cross validation. Moreover, the performance measured for models built
using the reduced training set is slightly better as well. The biased performance
estimate on the training set is significantly bigger than other estimates. For 100
and more observations, BBC SL method leads to the results very close to the
nested cross validation. The results of the independent CV are more unstable,
often overestimated.

These results are, however, ambiguous: the bias of cross validation methods
due to the smaller size of training sets seems to be stronger than any bias due
to overfitting. Nevertheless, the proposed BBC SL algorithm proved better than
any other simple verification algorithm and close to the “gold standard” nested
cross validation.

3.2 Biomedical data

The results of super learner procedure obtained for real data are displayed in Ta-
bles 3, 4. The direct measurement of performance for unseen data is impossible
in this case, hence a nested cross-validation is a reference. The estimated stan-
dard deviation of the distribution of results is shown for each data set. The error
of the mean value is smaller, but it is hard to estimate, since the measurements
are not mutually independent.

As for artificial data, the performance of Random Forest for combining the
base results was very poor, and the non-negative logistic regression performed
very close to NNLS method. Thus, both were not shown in the tables.
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Table 2. Artificial data – AUC of super learning for 6 diverse methods for three sizes
of artificial data sets.

SL Training Independent BBC Nested New data New data
method set CV SL CV 100% 90%

50 observations, MSE=0.01

NNLS 0.66 0.62 0.62 0.59 0.64 0.62
NNlog 0.65 0.62 0.62 0.59 0.59 0.58
RF 0.55 0.57 0.56 0.52 0.56 0.57
Best k 0.67 0.64 0.63 0.61 0.63 0.62
Mean 0.63 0.63 0.63 0.63 0.64 0.62
Best 1 0.67 0.64 0.63 0.61 0.64 0.63

100 observations, MSE=0.01

NNLS 0.71 0.69 0.69 0.68 0.71 0.70
NNlog 0.71 0.68 0.69 0.68 0.70 0.69
RF 0.65 0.66 0.64 0.63 0.66 0.64
Best k 0.73 0.70 0.69 0.68 0.71 0.70
Mean 0.70 0.70 0.70 0.70 0.72 0.70
Best 1 0.72 0.70 0.68 0.67 0.71 0.69

200 observations, MSE=0.005 for Best 1 and Best k, 0.004 for others

NNLS 0.829 0.815 0.810 0.814 0.851 0.827
NNlog 0.831 0.816 0.805 0.804 0.854 0.828
RF 0.800 0.802 0.790 0.792 0.832 0.808
Best k 0.830 0.812 0.803 0.799 0.852 0.824
Mean 0.808 0.808 0.807 0.808 0.834 0.816
Best 1 0.822 0.807 0.797 0.794 0.851 0.816

For all the tested data sets ensemble methods outperform the best single
classifier. However, in all the cases the best-performing method was a simple
average over all the base results. The linear model and k-best proved nearly as
good in some cases. This result is obviously not a rule, our artificial data sets
give an example for better performance of linear combinations of classifiers.

Another interesting point is the stability of the results. The most repeatable
values of AUC are produced by mean of all the classifiers, while choice of the
best single one and mean of k best ones are the most unstable. The effect is
not visible on the training set, but clearly appears when nested CV or BBC SL
verification methods are used (see especially Table 4).

The performance measured using the proposed BBC SL method is almost
exactly the same as obtained by nested cross validation. Two simpler methods
of the performance estimation report inflated results.

Figure 1) shows the performance of three combining methods for the BRCA
RNA data set in more detailed way. The “Best single” method is simply a com-
mon practice of choosing the best-performing classifier to this particular purpose.
In a simple cross validation, the result seems to be better than any ensemble
model. However, when the external validation is applied, the performance drops
significantly and becomes unstable. It turns out, that as simple operation as
choice between six classification algorithms is a considerable source of overfit-
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Table 3. The performance of super learning for 4 methods for three Neuroblastoma
data sets. Random Forest and NNlog methods were omitted. Note the mean square
error for Best 1 and Best k methods, bigger than the typical values.

SL Training Independent BBC Nested
method set CV SL CV

CNV, typical MSE=0.02

NNLS 0.78 0.77 0.76 0.76
Best k 0.78 0.77 0.75 0.76±0.03
Mean 0.76 0.76 0.76 0.76
Best 1 0.78 0.77±0.03 0.74±0.03 0.75±0.03

MA, typical MSE=0.01

NNLS 0.89 0.87 0.87 0.88
Best k 0.89 0.88±0.02 0.87±0.02 0.88±0.02
Mean 0.89 0.89 0.89 0.89
Best 1 0.89 0.88±0.02 0.85±0.02 0.87±0.02

RNA, typical MSE=0.01

NNLS 0.91 0.90 0.89 0.89
Best k 0.91 0.90 0.89±0.02 0.89±0.02
Mean 0.89 0.89 0.89 0.89
Best 1 0.90 0.90±0.02 0.88±0.02 0.88±0.02

ting. Both nested cross validation and the proposed BBC SL method show this
clearly. For this particular data set, the optimal strategy is the average of all the
base predictions.

4 Conclusion

Main contribution Super learner as proposed in the [3] is computationally
demanding approach that relies on multiple cross-validation and application of
multiple learning algorithms. In the original formulation of the algorithm, ver-
ification of the quality of the final model involves repeating entire procedure
within nested cross-validation, what significantly increases the computational
cost of the modelling procedure. The current study shows that the nested cross-
validation can be replaced by using resampling protocol, which gives equivalent
results.

Additional remarks In almost all examined cases, the ensemble of learners
gives better results than selection of a single best method for prediction. Inter-
estingly, the simplest method of combining results of all algorithms, namely the
the simple average of predictions of all base learners seems to be a very good
choice for obtaining a stable non-overfitted estimate. Two simplest methods for
assigning weights to base learners, namely a simple linear combination or selec-
tion of unweighted average of k-best models have better performance that other
methods and should be explored along simple mean of all base methods.
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Table 4. Real data (2) – the performance of super learning for 4 different methods for
TCGA data sets. Note the dependence of the square error on the combining method
(the biggest for Best 1 and Best k) and on the verification method (smaller on the
training set)

SL Training Independent BBC Nested
method set CV SL CV

BRCA RNA

NNLS 0.9994±0.0001 0.9992±0.0002 0.9991±0.0002 0.9991±0.0002
Best k 0.9994±0.0001 0.998±0.002 0.998±0.001 0.998±0.003
Mean 0.9993±0.0001 0.9993±0.0001 0.9993±0.0001 0.9993±0.0001
Best 1 0.9994±0.0001 0.998±0.003 0.997±0.002 0.996±0.004

BRCA CNV

NNLS 0.988±0.001 0.987±0.001 0.987±0.001 0.987±0.001
Best k 0.988±0.001 0.987±0.001 0.987±0.001 0.987±0.001
Mean 0.988±0.001 0.988±0.001 0.988±0.001 0.988±0.001
Best 1 0.983±0.001 0.981±0.003 0.981±0.002 0.981±0.002

HNSC

NNLS 0.996±0.002 0.992±0.005 0.990±0.002 0.993±0.006
Best k 0.997±0.001 0.988±0.01 0.986±0.005 0.98±0.01
Mean 0.995±0.003 0.995±0.003 0.995±0.002 0.995±0.003
Best 1 0.997±0.001 0.985±0.01 0.983±0.006 0.98±0.01

LUAD

NNLS 0.9993±0.0002 0.998±0.002 0.9978±0.0007 0.998±0.002
Best k 0.9994±0.0001 0.998±0.003 0.997±0.002 0.997±0.003
Mean 0.9992±0.0001 0.9992±0.0001 0.9991±0.0002 0.9992±0.0001
Best 1 0.9993±0.0001 0.998±0.004 0.997±0.002 0.997±0.003

One should note, that Super learner was applied here to merge results of
algorithms that are very good predictors themselves. The differences between
predictions of these classifiers are concentrated on a handful of difficult cases.
The simple average works best, because there are too few independent data point
to build reliable model for more advanced methods.
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