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Abstract. Experimental data from protein microarrays or other tar-
geted assays are often analyzed using network-based visualization and
modeling approaches. Reference networks, such as a graph of known
protein-protein interactions, can be used to place experimental data in
the context of biological pathways, making the results more interpretable.
The first step in network-based visualization and modeling involves map-
ping the measured experimental endpoints to network nodes, but in tar-
geted assays many network nodes have no corresponding measured end-
points. This leads to a novel problem – given full network structure and
a subset of vertices that correspond to measured protein endpoints, infer
connectivity between those vertices. We solve the problem by defining
a semi-lazy random walk in directed graphs, and quantifying the mean
first-passage time for graph nodes. Using simulated and real networks
and data, we show that the graph connectivity structure inferred by the
proposed method has higher agreement with underlying biology than two
alternative strategies.

Keywords: Biological networks · Random walks · Node influence.

1 Introduction

Profiling experiments involving gene or protein microarrays or assays based on
next-generation sequencing have become a standard approach for gaining new
knowledge about biological processes and pathologies. Mining the resulting data
for patterns of interest, for example differences between phenotypes, can be done
with purely data-driven statistical and machine learning methods [11] that per-
form the discovery de novo. But approaches that make use of existing knowledge
about biological networks in analyzing profiling data are, in principle, better
suited to deal with the complexity of biological systems.

Extensive knowledge has been gathered about physical or functional interac-
tions between biological entities of many types. For example, it may be known
that a certain kinase phosphorylates a specific protein, or that a particular mi-
croRNA interacts physically with mRNA transcript of a gene, and in effect the
protein encoded by the gene is not expressed. All known interactions of a specific
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type, taken together, form reference networks, such as a protein-protein inter-
action network or a gene regulatory network. A reference network describes the
interaction potential of a given species. In a specific phenotype, that is, a specific
tissue in a specific condition, only some of the interactions actually take place.

Based on the network topology and measurements from profiling experi-
ments, dynamic behavior of the system can be modeled using stochastic Petri
nets [12], Boolean networks [14], Bayesian networks [31], or systems of differen-
tial equations [5]. Pathways that can discriminating between phenotypes can be
discovered by mapping expression data on reference networks and performing a
bottom-up [13, 7] or top-down [6, 2] search. Depicting experimental results visu-
ally by mapping the up-regulated or down-regulated genes or proteins can also
make the data more interpretable to biologists.

2 Motivation and Problem Statement

Network-based analysis involves mapping the measured experimental endpoints
to nodes in the reference network. Often, many nodes will have no corresponding
endpoints. This is particularly true in studies that involve targeted assays. For
example, only a limited number of antibodies are available and validated for use
with the reverse phase protein array (RPPA) immunoassay [22]. Thus, for many
nodes in a reference protein-protein interaction network, experimental protein
levels will not be measured.

(a) (b)

Fig. 1. Illustration of the problem. (a) Input: a reference biological network and a
subset of nodes (filled black nodes) for which measurements from a targeted assay are
available; measurements for the other nodes are not available. Typically the measured
nodes are a small fraction of all nodes in the network. (b) Output: an informative and
interpretable network (black edges) connecting the measured nodes.

Some network analysis methods can deal with lack of measurements at a sub-
set of nodes. Prize-collecting Steiner tree and related approaches [2] can involve
unmeasured nodes in finding discriminative pathways, but these approaches limit
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the results to a tree or forest structure. They also limit the computational meth-
ods used for differential analysis at individual nodes to univariate statistical tests,
and are not applicable to directed graphs, such as kinase-substrate network that
describes protein signaling. Graphical models such as Bayesian networks [31]
can in principle deal with unmeasured nodes, but their applicability is limited
by their computational complexity.

Other algorithms for network-oriented analysis typically assume that all
nodes in the reference network correspond to measured endpoints or, conversely,
that the reference network provides direct edges between the measured nodes and
does not leave nodes only connected to unmeasured nodes. Simply eliminating
all the unmeasured nodes from consideration is a poor option as it fragments the
reference network and leaves many nodes unconnected. The alternative simple
approach of adding a direct edge between all pairs of measured nodes that are
connected by a path in the reference network will result in a dense graph where
connections lose their specificity. Data-driven network inference algorithms com-
monly used to predict regulatory networks based on gene expression [19] can
provide a graph linking the measured nodes, but then the network is grounded
in data and not in existing biological knowledge, which prevents its use as an
additional source of information to complement the experimental results.

Finding a network of connections between measured nodes based only on a
given topology of a larger network consisting of nodes with and without experi-
mental measurements is thus a non-trivial new problem. It can be stated in the
following way. Given a reference directed network G = (V,E) and a subset of
measured nodes W ⊂ V that is often much smaller than V , find a new network
GW = (W,E′) that captures best the biological processes, such as regulation or
signaling, described by G. The new graph GW should not be based on experi-
mental data, but only on the set of known interactions represented by edges of
the original graph G. A graphical illustration of the problem is shown in Fig. 1.

Since the signal in molecular networks can spread through many paths, we
want to take them into account in a way that avoids making the graph too dense.
In a simple strategy for addressing the problem, we could place a direct edge
from measured node i ∈ W to measured node j ∈ W in the output network
GW if and only if the underlying network G has a path connecting i to j that
does not pass through any other measured node from W . Another strategy could
place an edge from i to j in GW when that unmeasured path is a shortest path.
Here, we propose a method that produces networks that are easier to visualize
and more interpretable than networks produced by these simple strategies, and
at the same time have higher agreement with the underlying biology.

3 Proposed Method

In the proposed method, we treat each measured node in the network as a source
and aim to find other measured vertices that would, in the new network being
constructed, serve as targets of direct edges from that source measured node.
Specifically, for a given source measured node, our goal is to identify a group of
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measured nodes that are hit first as the signal from the source spreads in the
reference network. Those nodes will be connected directly to the source. On the
other hand, measured nodes that are reachable from the source but most of the
signal passing to them traverses first through other measured nodes will not be
connected to the source directly. This intuition leads to a solution that is based
on mean first-passage times in a semi-lazy random walk on a directed graph.

3.1 Mean First-Passage Time in Directed Graphs

The mean first-passage time H(i, j), known also as the expected hitting time,
from node i to j in a strongly connected, directed graph is defined as the expected
number of steps it takes for a random walker starting from node i to reach
node j for the first time, where the walk is Markov chain defined by transition
probabilities resulting from the graphs connectivity. The average is taken over
the number of transitions, that is, lengths L of all paths s(i→j) from i to j that
do not contain a cycle involving j, with respect to probabilities P of the paths:

H(i, j) =
∑

s(i→j)

P (s(i→j))L(s(i→j)). (1)

Compared to the shortest path from i to j, the mean first-passage time includes
multiple paths and node degrees into consideration. For example, paths through
hub nodes increase H, since the walker has high probability of moving to nodes
connected to the hub that are not on the shortest path to the target.

The study of mean first-passage time on various domains has long history
in physics [24]. It has also been well-characterized for undirected graphs [10].
Recently, it has been shown that for directed graphs, mean first-passage time
H(i, j) can be obtained analytically in close form given the Laplacian matrix and
node stationary probabilities in a random walk in the graph [4]. More specifi-
cally, let A be the, possibly weighted, adjacency matrix of the input strongly
connected, directed graph, D a diagonal matrix of node out-degrees, and I an
identity matrix. Then, the expected hitting time can be calculated as [4]:

H(i, j) = M(j, j)−M(i, j) +
∑
k∈V

(M(i, k)−M(j, k))π(k). (2)

where Π = Diag(π) is the matrix of node stationary probabilities, P = D−1A
captures node transition probabilities, and M = L+ is defined as the Moore-
Penrose pseudo-inverse of the assymetric graph Laplacian L = Π(I − P ).

3.2 Semi-Lazy Random Walk and Mean First-Passage Time

Assume we have an unweighted strongly connected directed graph G = (V,E)
with two types of nodes, V = U+W . Nodes in U are regular nodes, which do not
affect the behavior of a random walker in the graph. On the other hand, upon
arriving at a node from W , the random walker is trapped. In each subsequent
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step the walker remains at the node with probability γ. That is, in each time
step, the walker has probability 1− γ of escaping the trap and continuing with
the walk through other nodes1. This bears resemblance to a lazy random walk, in
which the random walker stays at a node with probability 1

2 or, more generally,
with some fixed probability. Here, we call the walk semi-lazy, since the random
walker is lazy only at nodes from W .

In this setting, mean first-passage time no longer depends only on the topol-
ogy of the graph, but also on whether the paths contain nodes from W or not.
We can define the mean first-passage time for a semi-lazy random walk induced
by imperfect traps as:

HIT (i, j) =
∑

s(i→U→j)

P (s(i→U→j))L(s(i→U→j))

+
∑

s(i→M→j)

P (s(i→W→j))[L(s(i→W→j))

+ ∆(s(i→W→j))], (3)

where s(i→U→j) is any path from i to j that goes only through regular nodes
from U and s(i→W→j) is any path that includes at least one trap from set W ,
and ∆ is a stochastic penalty function depending on the number of nodes from
the set W on the path. By convention, if i ∈ W then HIT (i, j) is defined as a
walk that starts at the point when random walker escapes the trap i, that is,
the first step is always a step to some other node.

We calculate HIT for a directed graph with transition probabilities P sep-
arately for each starting node i. We create a new transition probability matrix
P ′i = γIW,i + (I − γIW,i)P , where IW,i is a diagonal matrix that has ones for
rows and columns corresponding to W \ {i} and zeros elsewhere. The Markov
chain specified by P ′i is irreducible and aperiodic for a strongly connected graph
G. Based on P ′i , we calculate node stationary probabilities and the Moore-
Penrose pseudo-inverse of the graph Laplacian, and then use Equation 2 to
obtain HIT (i, j) for each j.

3.3 Connectivity between Measured Endpoints in Biological
Networks

Given a reference biological network and experimental data, we equate the set
of traps W with the nodes for which we have experimental measurements and
the set U with all other nodes. In this way, if most of the paths from i to j lead
through other measured nodes, the mean first-passage time will be much higher
than if the paths lead only through non-measured nodes.

First, for every measured node i ∈W , we calculate HIT (i, j) to all measured
nodes j ∈ W . We ignore hitting times from or to non-measured nodes in U .
Prior to the calculation of the values HIT (i, ·) for starting node i, we eliminate
all nodes from U that do not lie on any path from i to any node in W , because

1 We set the default value of γ to 0.99
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either they cannot be reached from i, or they do not have a path to any node in
W . Also, if there are dangling nodes, that is, nodes with null out-degree, we add
a connection from those nodes to i, allowing the walker to continue the walk.

Once HIT (i, j) is calculated for every i, j ∈ W , we treat HIT as a weighted
adjacency matrix and calculate shortest paths σ(i, j) for i, j ∈ W . Finally, we
create the output graph GW by keeping edges i→ j for which there is no shorter
path in HIT than the direct edge:

∀i, j ∈W : GW (i, j) = 1 iff HIT (i, j) = σ(i, j). (4)

In effect, we place a direct edge from i to j if the random walker starting from i
tends to avoid other nodes from W on its way towards hitting j. If some other
node k is often encountered during the i→ j walk, then HIT (i, k) +HIT (k, j) <
HIT (i, j) since the trap at k is not considered when quantifying hitting times
HIT (i, k) and HIT (k, j), but it is considered when estimating HIT (i, j). In this
way, the new graph GW will contain only edges between measured nodes, and the
edge structure will be based on connectivity in the original reference network
in a way that keeps connections through measured nodes explicit and avoids
indirect connections.

The computational complexity of the proposed method is O(|W ||V |3). For
each node i ∈ W , calculating HIT (i, ·) involves finding the pseudoinverse of
the Laplacian and estimating the stationary node probabilities, which both are
O(|V |3). Calculations for different i can be done independently in parallel, and
need to be followed by all-pairs shortest path involving W nodes, which requires
O(|W |3). In effect, the method can be successfully applied to biological networks,
which have on the order of 104 nodes or less.

4 Experimental Validation

We evaluated our method by comparing it with two alternative strategies. In the
connectivity-based strategy, we place an edge from measured node i to measured
node j in the output network if and only if the underlying network has a path
connecting i to j that does not pass through any other measured node. In the
shortest-paths-based strategy, we place an edge from i to j in the output network
when a shortest path from i to j in the underlying network does not pass through
any other measured node.

To compare the quality of the network of measured nodes resulting from the
proposed method and a network returned by an alternative strategy, we used
expression data measured over a set of samples. In both networks each node is
associated with vector of expression values of a corresponding gene or protein.
For each edge i→ j in both networks, we calculated the p-value of the correlation
between expression vector associated with i and the expression vector associated
with j. We treat the correlation as an imperfect but easy to obtain surrogate
measure of edge quality. We assume that when comparing two graphs inferred
from the same reference network G without looking at expression data, the one
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Table 1. Comparison of the proposed approach with two alternative strategies for 5
simulated and 1 real-world dataset. Columns are: R: mean -log(p-value) of correlation
between endpoints connected by edges from set R, that is, present in results of an
alternative strategy and retained by our method; F: mean -log(p-value) of correlation
between endpoints connected by edges from set F, that is, present in results of an
alternative strategy but filtered out by our method; p-value for a test if the means of
the negated log-transformed p-values in R are higher than in F, that is, if the expression
profiles for nodes linked by retained edges are more highly correlated than for nodes
linked by filtered out edges; #R: number of edges in R; #F: number of edges in F.

Comparison with connectivity-based strategy

Dataset R F p-value #R #F

DREAM 4 I 2.89 1.28 3.47e-4 1861 165
DREAM 4 II 2.93 0.98 3.78e-6 2071 184
DREAM 4 III 4.52 2.35 5.11e-18 3734 1442
DREAM 4 IV 3.36 1.52 7.10e-39 3602 2345
DREAM 4 V 4.87 2.84 1.69e-8 2482 386
TCGA BRCA 13.52 10.55 0.0110 156 533

Comparison with shortest-path-based strategy

Dataset R F p-value #R #F

DREAM 4 I 2.89 1.22 4.57e-4 1858 147
DREAM 4 II 2.93 0.98 1.47e-5 2068 161
DREAM 4 III 4.54 2.37 1.44e-14 3706 1058
DREAM 4 IV 3.37 1.46 1.86e-31 3580 1689
DREAM 4 V 4.87 2.88 1.69e-6 2473 283
TCGA BRCA 13.52 10.67 0.0364 156 240

that has higher correlation between expression of genes or proteins linked by the
graph edges represents the underlying signaling or regulation better.

Since edges detected by our method are a subset of edges detected by the
alternative strategies, we partitioned the edge p-values into two groups. In the
retained edges group, R, we put the p-values of edges that are found both by
the proposed method and by the alternative strategy used for comparison. In
the filtered-out edges group, F, we put the p-values of edges detected only by
the alternative method but not by the proposed method. Then, we tested if the
mean of p-values in the R group is lower than mean in the F group, that is, if
the proposed method is effective at filtering out low p-value edges.

4.1 Simulated Data

In our evaluation, we used simulated expression data, for which the expression
profiles come from known, pre-specified networks connecting genes, and are sim-
ulated using a system of differential equations. We used networks and data from
GeneNetWeaver [25] available as part of the DREAM 4 In Silico Network Chal-
lenge [18]. We used the five multifactorial directed networks from the challenge,
each with 100 nodes. Each network is accompanied by simulated expression data
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Fig. 2. Visualization of human kinase phospohrylation network of 1191 proteins for
a dataset of 69 proteins measured using reverse phase protein array. The approach of
using direct edges between measured proteins results in a network that only presents 46
out of 69 measured proteins and thus leaves 33% of measured proteins out of the picture
(left). The alternative approach of placing an edge between all directly or indirectly
connected measured proteins as long as there is a path between them that does not pass
through any other measured proteins results in an uninterpretable, dense network with
689 edges (center). The proposed algorithm results in a sparse, interpretable network
(right) that connects all 69 measured nodes through a set of 156 direct or indirect
connections chosen based on mean first-passage time criterion.

for the 100 endpoints in 100 samples. To test our method, we randomly picked
20 nodes, kept their expression data, and ignored the expression data for the
remaining 80 nodes. The task for our method is to connect those 20 nodes based
on the known network of all 100 nodes, without looking at the data. We repeated
the experiment 100 times with different random samples of measured nodes, and
grouped the p-values for the discovered edges together.

We carried out the above procedure independently for each of the 5 networks
available in DREAM 4. The results are presented in Table 1. In each of the
simulated networks, the p-values of the edges retained by our methods are sig-
nificantly lower on average than those that are filtered out, compared to edges
picked by the two alternative strategies.

4.2 Real-world Data

We validated the proposed methods using protein expression data measured us-
ing RPPA assays for 410 samples from breast cancer patients gathered from the
Cancer Genome Atlas (TCGA) [15]. As the underlying reference network, we
used a recently published directed human phosphorylation network that cap-
tures protein signaling [20]. The network has 1191 nodes, of which 69 have cor-
responding protein measured with reverse phase protein array in the TCGA
samples. The task for our method is to connect those 69 nodes based on the
known network of all 1191 nodes.

We used the same approach as above to compare the connectivity between the
69 nodes resulting from our methods with the connectivity from the alternative
strategies. As shown in Table 1, our method performs significantly better. The
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number of edges returned by the proposed method is only 156, whereas the
connectivity-based strategy returns a dense structure of 689 edges for a 69 node
graph, and the shortest-path-based strategy returns 396 edges. As seen in Figure
2, the network returned by the method is much more interpretable than the
network resulting from the strategy of placing an edge between all connected
nodes. The pairs of proteomic endpoints connected by the edges retained by the
proposed method are on average more highly correlated than those connected
by the edges from alternative strategies we filtered out.

5 Discussion

We have proposed an approach for visualizing, in a compact way, biological net-
works in scenarios when only some subset of nodes has measurements available.
Our approach is based on theory of random walks [3]. Random walks have been
previously used for estimating influence between nodes in biological networks
[27, 32, 30, 29, 16, 1, 28, 9]. The influence has been defined in terms of a diffu-
sion kernel [17], diffusion with loss [23] or a heat kernel [8], but these kernels
are defined for undirected graphs, which reduces their use for directed networks
such as kinase-substrate protein signaling network or gene regulatory networks.
These measures of influence also ignore the time progression associated with the
spread of signal in the network, since they are based on the stationary state of
the random walk.

The progression of the random walk can be quantified using mean first-
passage times for individual nodes. In computational biology, it has been used
previously for analyzing state transition graphs in probabilistic Boolean net-
works to identify genes perturbations that lead quickly to a desired state of the
system [26]. Here, we proposed to use it to decide if signaling from one measured
node to another measured node typically passes through other measured nodes.
This task bears similarities to the problem in physical chemistry of finding reac-
tion paths from a reactant to a product. Mean first-passage time has been used
as one way of solving that problem for reactions with continuous or discrete
reaction coordinates [21], for example to uncover the path of excitation migra-
tion after photon absorption in photosynthetic complex. Our approach could be
viewed as an exploration of reaction paths on a cellular scale where the reaction
coordinates are nodes in a directed graph.

The analogy between the graph problem explored here and the chemical reac-
tion path detection problem indicates that the mean first-passage time could be
an effective way of representing paths in the underlying network by direct edges
between measured nodes. Experimental validation using simulated and real net-
works and data show that this is indeed the case. The uncovered connectivity
structures better approximate the underlying biology that other strategies we
used for comparison. With the proposed approach, for a specific experimental
study, one can obtain a dedicated network that includes only nodes for which
experimental data is measured in the study, linked by edges representing causal
interactions based on known connections from the reference network. The net-
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work can then be used as input for network-oriented analyses, or for compact,
interpretable visualization of the relationships between measured nodes.
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