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Abstract. Nowadays, convolutional neural networks (CNN) play a ma-
jor role in image processing tasks like image classification, object detec-
tion, semantic segmentation. Very often CNN networks have from several
to hundred stacked layers with several megabytes of weights. One of the
possible techniques to reduce complexity and memory footprint is prun-
ing. Pruning is a process of removing weights which connect neurons
from two adjacent layers in the network. The process of finding near
optimal solution with specified and acceptable drop in accuracy can be
more sophisticated when DL model has higher number of convolutional
layers. In the paper few approaches based on retraining and no retraining
are described and compared together.
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1 Introduction

The convolutional neural networks are the most popular and efficient model
used in many AI tasks. They achieve best results in image classification, seman-
tic segmentation, object detection etc. The reduction of memory capacity and
complexity can make use of them in real-time applications like self driving cars,
humanoid robots, drones etc. Therefore compression CNN models is a impor-
tant step in adapting them in embedding systems and hardware accelerators.
One of the methods to decrease memory footprint is a pruning process. In case
of small convolutional network, the complexity of this process is much lower than
in larger ones. In very deep CNN models which have several to few hundreds of
convolutional layers the process of finding near global optimum solutions which
guarantee acceptable drop in accuracy is quite a complex task. Genetic/memetic
algorithms, reinforcement learning, random hill climbing or simulated annealing
are good candidates to solve this problem. In paper, algorithm based on RMHC
and simulated annealing methods is presented.

The pruning process can be done by two major methodologies. First one is a
pruning a pre-trained networks, the second one is pruning using retraining. The
first one is much faster. It needs only an inference step run on a test dataset
in each stage/iteration of the algorithm, [2]. In case of mode with retraining
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pruning can be done after every weights updated in training process. This paper
describes and compares the approaches using both the methodologies.

The squeezenet [9] model was one of the first approach in which compression
by reducing the filters size was used. In this approach, architecture of alexnet
was modified to create less complex model with same accuracy. Later approaches
were concentrated more on quantization and pruning [2], [6] as a steps that
enables compression. In [6] authors present approaches for CNN compression
including pruning with retraining. The results for older architectures VGG and
AlexNet are presented. In paper [8] authors describe reinforcement learning as
a method for choosing channels for structural pruning. In article [7] the SNIP
algorithm is described. The algorithm computes gradients during retraining and
assigns priorities to weights based on gradients values. The pruning is done using
knowledge about importance of weights in a training process. In papers [4], [5]
compression for other machine learning models are described in NLP tasks. It
is shown that by especially using sparse representations, it is possible to achieve
better results than in baseline models. The paper is organized as follows. The
section 2 presents the methods for pruning pre-trained networks. There is a basic
method and its further enhancements using more complex models analysis. The
next section 3 is about pruning with retraining on imagenet, CIFAR10 and
CIFAR100 datasets and structural pruning. Finally, in 4 and 5 further work and
conclusions are described.

2 Pruning with no retraining

After the process of training neural model we acquire a set of weights for each
trainable layer. These weights are not evenly distributed over the range of possi-
ble values for a selected data format. Majority of weights are concentrated around
0 or very close to it. Therefore, their impact on the resulting activation values
is not significant. Depending on network implementation specifications, storing
weights may require a significant amount of memory. Applying pruning process
to remove some weights has a direct impact on lowering storage requirements.
In this section the approaches based on pre-trained networks are presented. The
first one is memetic approach which is based on random hill climbing with few
extensions. The parameters to the heuristic were added to optimize and speed
up the process of finding local optima solutions. In this algorithm pruning is
a function that set weights values to zero whose magnitudes are below specific
threshold (eq.1 and eq.2).

Wp = pruning(threshold,W ) (1)

Wp = {∀wi ∈Wp : wi = 0, |wi| < threshold ∨ wi = wi ∈W} (2)

Next, additionally more sophisticated analysis was incorporated to previ-
ous approach to improve obtained results. Presented method analyses ener-
gies/contributions of 2D filters in layers and heat maps to increase sparsity
further.
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2.1 Incremental pruning based on random hill climbing

The presented approach for fast pruning is based on random hill climbing and
simulated annealing local search. In each iteration, it chooses specified number of
layers to be pruned. The layers are chosen using probability distribution based
on layers’ complexities and sensitivities (eq.3, eq.4, line 4). If a layer is more
complex and less sensitive than others, it has more probability to be chosen. In
each iteration, layers are pruned by the step which can be different and computed
independently for each layer (line 7). If drop in accuracy is higher than given
threshold reverse pruning is applied (the step can be cancelled or sparsities of
different layers are decreased). Fitness function is a weighted sparsity which
is overall memory capacity of current pruned model (line 11). Solution is a
simple genotype where each layer is represented as a percentage of weights that
were pruned in this layer. Algorithm can use as an option simulated annealing
strategy which accepts worse solutions (exploration phase) to have the possibility
to escape from local optima (line 18-22). In this case, in line 21 a next created
solution can be worse than previous solution and will be accepted with specified
probability which decreases in each iteration. Algorithm has a ranked list of all
k-best solution already found (line 14). It helps to overcome algorithm stagnation
by giving opportunity to return to good solutions (line 19). Each layer as it was
mentioned earlier has sensitivity parameter which measures the latest impacts
(number of impacts is defined by window size parameter) of this layer to the
drop in accuracy of the model (eq.5, line 13). The layer sensitivity is updated
after each iteration in which given layer is pruned (line 13). The step size which
indicates percentage of weights to be pruned for a given layer is computed using
current sensitivity value of a layer . If sensitivity is less than acceptable drop in
accuracy (threshold) algorithm increases step size and vice versa using eq.6, line
24.

probabilityi = sizei × (threshold− sensitivityi) (3)

policy = categorical(probability) (4)

sensitivityti =

∑t
t−|window|(baseline acc− pruned acct)

window
(5)

stepti = stept−1i + k × stept−1i × (threshold− sensitivityt−1i ) (6)

The presented algorithm can be run in multi-layer mode in which, in one
iteration more than one layer can be pruned. In tab.1 there are results achieved
using algorithm 1 with constant policy by running 150 iterations. Table contains
weighted sparsities of pruned models and their drops from baseline accuracies.
The threshold drop was set to 1.0. The tab. 2 presents results using prioritization
mode in which largest layers in given models were chosen for pruning in the first
stage of the algorithm till the drop in accuracy is higher than given threshold.
After that rest of the layers are pruned. We can observe significant improvements
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Algorithm 1 Pruning algorithm

1: Input: number of iterations

2: Input: drop in accuracy threshold

3: for number of iterations do
4: update policy()
5: layer = choose layer for pruning(policy)
6: if (top 1-baseline) < drop in accuracy threshold then
7: prune layer by step(stepl)
8: else
9: reverse prune by step(stepl)

10: end if
11: fitness = compute new fitness()
12: top1 = compute accuracy()
13: update layer sensitivity(layer)
14: update ranked list()
15: if fitness < best fitness then
16: next solution = current solution
17: else
18: if SA Probability < threshold then
19: next solution = solution from ranked list()
20: else
21: next solution = current solution
22: end if
23: end if
24: stepl = update steps(layer)
25: end for

Table 1. Pruning results with constant policy

Name weighted sparsity T1

vgg16 35.3% -0.8%

resnet50 32.1% -1%

vgg19 32.6% -1%

inception v3 18.1 % -0.8%
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in achieved results. Tab. 3 shows results of using dynamic policy updates during
algorithm.

2.2 2D filter and its activation analysis for further pruning
improvements

Improvement presented in this subsection does additional analysis that can ex-
plain the internal representation of the model and removes more weights with
high probability to not decrease its accuracy. First approach is to compute 2D
average filter contributions in a final answer of the network (eq.7, eq.8, eq.9). The
next one is to analyze filter contribution in a process of recognition specific class.
Each class is analyzed separately and average neurons activations are measured.
Then in each layer we can extract region of weights that are less important in
the whole process of recognition using some threshold of importance. In tab. 4
and tab. 5 there are results presented for these two steps performed on the last
layer before softmax in VGG16 after running alg.1. It shows that is possible to
do further pruning to increase sparsity without drop in the accuracy.

F = {fmnhw ∈ R : m ∈M,n ∈ N,h ∈ H,w ∈W} (7)

where: M, N, H, W are number of channels, kernels, height and width respectively
of layer filter

F 2D = {fmn ∈ R :∈ R : m ∈M,n ∈ N} (8)

f 2D energyij = mean(sum((f 2Dij)� receptive fieldij)) (9)

Table 2. Pruning results with specified prioritization

Name weighted sparsity T1 prioritization list

vgg16 67% -0.9 layers 14,15,16

resnet50 37% -1.1 5 largest layers

vgg19 65 -1.0% layers 17,18,19

inception v3 25 35% -0.9 8 largest layers

Table 3. Results of pruning with dynamic policy

Name weighted sparsity T1

vgg16 65% -1.0

resnet50 35% -1.0

vgg19 60% -0.9

inception v3 24% -0.9
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Table 4. VGG16 with 2D filter analysis

Name T1 pruning with 2D drop

CIFAR10 90.76% 50% 52% -1.0%

CIFAR100 77.6% 45% 47% -1.0%

Table 5. VGG16 with 2D filter analysis and filter contributions in a classes recognition

Name T1 pruning all drop

CIFAR10 90.55 % 50% 54% -1.0

CIFAR100 77.5 % 45% 50% -1.0

3 Pruning with retraining

The methods described in the previous section have one main drawback, their
weight can be fine tuned during the pruning process to boost model accuracy.
The training step can improve accuracy of pruned network by learning weights
that were not removed before. In this section, results of these methods are pre-
sented.

3.1 Methods

Retraining is recognized as an effective method for regaining performance of the
pruned model. However, it is important to pick a right protocol and retraining
parameters. We have examined three different schemes of pruning and retraining.

– simple retraining which without masking,
– simple retraining with masking,
– adaptive retraining with boosting.

The first two methods apply a simple retraining procedure after each step
of pruning. The procedure can be interleaved with masking operation. It is im-
plemented by zeroing gradient which otherwise would be applied to the pruned
weights. It is worth noting that even without masking the pruned weights are
mode prone to be pruned again in the next epoch because they are small. Con-
sequently, the masking operation makes the pruning process more stable since a
pool of pruned weights is progressively enlarged without change of coefficients.
The simple method is limited in its effectiveness mostly because it lacks ability
to adopt pruning both in terms of layers of the model and the retraining time.
Some layers during selected training epochs are more prone to pruning, which is
not taken into account in the simple method. Therefore, we have proposed the
retraining with boosting procedure which is given by alg. 2.

The proposed approach alg. 2 relies on a choice of priority list of the layers
which is supposed to be set at the very beginning of the process. The rest of the
parameters steps decide how many steps are taken before scale is changes. This
gradually reduces pruning factor. The scale (refer to alg. 2 ) decides how many
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Algorithm 2 Retraining with boosting

1: Input: scales
2: Input: steps
3: Input: step size

4: for number of epochs do
5: layer = choose high priority layer for pruning()
6: for layers do
7: pick the next layer from the priority list()
8: for scales do
9: for steps do

10: prune()
11: validate()
12: if performance drop < threshold0 then
13: if skipped no < threshold1 then
14: mark layer done for this iteration()
15: else
16: mark layer done for all iteration()
17: end if
18: mark layer done for this iteration()
19: exit()
20: end if
21: end for
22: step value← step value/reduction factor
23: end for
24: end for
25: end for
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time the step is reduced. Once the model is pruned it is validated with a small
dataset to check if the performance drop is not to large. If this is the case the
process of pruning is stopped for the given layer in this iteration (epoch) and the
algorithm goes to the next layer on the priority list. The pruning process may
terminate in a regular fashion when all the steps and scale rates are exhausted. In
order to speedup the process a layer which was skipped several times due to the
performance drop after pruning is marked as permanently skipped. It is worth
noting that a number of epochs should be picked properly in order to satisfy the
number of the protocol interactions (number of steps and scale changes).

3.2 Results of the pruning and retraining experiments on Imagenet

Table 6. Results of Resnet-50 simple pruning and retraining

layers
pruned

sparsity masking Best T1 t1 err. Best T5 epoch lr (reduction)

None 0 None 76.13 0 92.862 103 0.1 (30)

all-0.2 all layers 0.2 FALSE 76.83 0.7 93.15 14 1.00E-03

all-0.3 all layers 0.3 FALSE 76.95 0.82 93.21 68 1.00E-03

all-0.7 all layers 0.7 TRUE 59.55 -16.58 83.62 26 0.1

Table 7. Results of Resnet-50 progressive pruning and retraining

layers
pruned

sparsity masking Best T1 t1 err. Best T5 epoch lr (reduction)

None 0 None 76.13 0 92.862 103 0.1 (30)

all-0.2 +
0.1*epoch

all layers 0.3 FALSE 76.48 0.35 93.07 1 1.00E-03

all-0.1 +
0.1*epoch

all layers 0.2 TRUE 76.56 0.43 93.1 1 1.00E-03

all-0.1 +
0.01*epoch

all layers 0.53 TRUE 76.09 -0.04 93 43 0.01(30)

There was series of experiments conducted as presented in Tab. 8, 6 and 7.
Different parameters were chosen as well as different strategies were tested. In
the first a naive approach was explored as a baseline. The results are presented
in Tab. 6. We can see that equal pruning of all the layers for 0.2 and 0.3 sparsity
led to the boost of the model performance. However, more aggressive pruning of
0.7 equal sparsity resulted in a significant decline of the sparsity. The proposed
simple method may be useful when treated as a form of regularization and slight
increase of the model sparsity.
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Table 8. Results of Resnet-50 boosted pruning and retraining

layers
pruned

sparsity masking Best T1 t1 err. Best T5 epoch lr (reduction)

None 0 None 76.13 0 92.862 103 0.1 (30)

steps:12,
scales:2,
step:0.05

weighted:
0.37

TRUE 75.12 -1.01 92.57 47 1.00E-03

steps:12,
scales:2,
step:0.05

weighted:
0.42

TRUE 75 -1.13 93.09 30 1.00E-03

steps:12,
scales:2,
step:0.05

weighted:
0.427

TRUE 79.88 3.75 94.96 100 1.00E-03

steps:12,
scales:2,
step:0.05

weighted:
0.57

TRUE 75.35 -0.78 92.59 299 1.00E-03

steps:4,
scales:2,
step:0.05

weighted:
0.5137

TRUE 75.61 -0.52 92.67 431 1.00E-03

steps:6,
scales:2,
step:0.05

global: 0.57 TRUE 75.52 -0.61 92.68 279 1.00E-03

steps:10,
scales:2,
step:0.05

global: 0.44 TRUE 76.23 0.1 93 141 1.00E-03

steps 2,
scale:4,
step:0.2

global: 0.648 TRUE 74.51 -1.62 92.19 88 1.00E-03
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It is worth noting that progressive pruning which results are presented in tab.
7 is much more effective. For instance, the experiment with starting point of 0.1
and progress of 0.01 every epoch (see the last row in Tab. 7) allowed to reach
equal sparsity of 53 % after 43 epochs with negligible loss of performance. This
method despite its benefits is limited in its capacity to reduce sparsity. Method
saturates at about 60 % of sparsity. The most advanced approach of pruning
and retraining in the boosting method given by alg. 2. Its results are presented
in Tab. 8. We can in Tab. 8 that different values of steps and scales lead to
huge discrepancies in the results in terms of sparsity. The highest sparsity of
64.8 % was achieved for steps:2, scale:4 and step value: 0.2. This was achieved
at the expanse of noticeable loss of the performance. On the other hand small
step value, large number of steps and training epochs lead to much lower per-
formance degradation as proved by the experiment with steps:6, scales:2, step
value:0.05 and 279 epochs of training. However, such large number of epochs
required approx. 10 days of training time on 8 Nvidia GTX 1080 GPUs.

Choice of a proper number of steps, scales and step values should be done in-
dividually for each model and ideally facilitated with an optimization algorithm.

Fig. 1. Retraining of the pretrained Resnet50 with global sparsity of 20 %. Retraining
starts at 104 epoch. Top5 is marked in blue and Top1 in red.

During a pruning and retraining operation of a pretrained model with high
learning rate, there is a huge degradation of the performance (t1 and t5) in the
very first epoch as presented in Fig. 1. In the next epochs the model regains it
original performance quite fast. The presented in Fig. 1 resembles in terms of a
training pattern most of the experiments showed in Tab. 8.

3.3 Pruning with retraining on CIFAR datasets

The similar approach as described in the previous section was performed on a
CIFAR10 and CIFAR100 datasets. The main difference is that in each step, the
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weights for pruning were chosen using its gradient values. This information gives
feedback how important the weight was in the former training step (alg. 3). If its
significance is less then it is safer to remove it. Tab.9 and tab.10 present results
obtained using algorithm 3. They show significant improvement in the sparsity
obtained when compared to fast pruning approach.

Algorithm 3 Pruning algorithm with retraing

1: Input: number of epochs

2: Input: drop in accuracy threshold

3: Input: init sparsity

4: Input: init step

5: for number of epochs do
6: layer = choose layer for pruning(policy)
7: analyze gradients and update statistics()
8: if (top 1-baseline) < drop in accuracy threshold then
9: prune layer by step(stepl)

10: else
11: reverse prune by step(stepl)
12: end if
13: top1 = compute accuracy()
14: update layer sensitivity(layer)
15: stepl = update layer step(layer)
16: masking()
17: retrain()
18: end for

Table 9. Results of fine-grain pruning with retraining (CIFAR10)

Name baseline T1 pruned T1 pruned size

vgg19 92.37 91.81 2%

resnet50 95.26 94.99 8%

Table 10. Results of fine-grain pruning with retraining (CIFAR100)

Name baseline T1 pruned T1 pruned size

vgg19 70.62 70.12 5%

resnet50 78.21 77.56 22%
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3.4 Structural pruning

Structural pruning is a process where blocks of weights are removed. One of the
most popular is reducing number of channels in a filter. Using this approach,
straightforward implementation on many hardware accelerators can speed up
original network without any software modification. Reducing the number of
channels (chunk of weights) in a pretrained network usually affects, significantly,
model accuracy. This approach should be mixed with training steps to minimize
the accuracy drop. In the presented approach, the channels with lowest L1 norm
and lowest variance among 2D filters inside given channel were chosen to be
removed. The subset of such channels were extracted in each iteration. Then
retraining process was run to increase accuracy. The process was performed till
drop in accuracy was higher than given threshold (1%). The results are presented
in tab.11, tab.12. It is worth noting that results achieved using this approach
are significantly worse than in fine grain pruning and the process is significantly
slower than presented fast pruning algorithm.

Table 11. Results of structural pruning with retraining (CIFAR10)

Name baseline T1 pruned T1 pruned size

vgg19 92.37 92.42 52%

resnet50 95.26 94.98 72%

Table 12. Results of structural pruning with retraining (CIFAR100)

Name baseline T1 pruned T1 pruned size

vgg19 70.62 70.71 54%

resnet50 78.21 77.50 78%

4 Conclusions

The results presented in this paper show quite high disparities in sparsities be-
tween pruning with retraining or without retraining. Retraining can significantly
improve the drop in accuracy after pruning. During retraining process, other as-
pects like masking, step size of the pruning at a current stage of pruning process
are very important to achieve better results. The same effect can be observed in
fast pruning on pretrained networks. It is worth noting about the time difference
between these two pruning approaches. In case of pruning without retraining, it
is possible to prune the very deep networks from several minutes to 2-3 hours.
The time depends on the size of testing the dataset. In case of using retraining,
many epochs should be run to achieve satisfactory level of sparsity with a very
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small drop in accuracy. In case of Imagenet, one epoch lasts for approximately
one hour. The overall process takes a few days. Choosing the method depends
on hardware accelerator which will be used after pruning. If given hardware
can make use of lower sparsity then pruning without retraining can be fast and
efficient. In case of accelerator, it needs very high sparsity, slow pruning with
retraining should be performed. The last conclusion is that structure pruning
without retraining doesn’t guarantee low drop in accuracy. It should be run
with retraining.

5 Further work

Further work will concentrate on tuning hyper-parameters in pruning algorithms
which were described in a paper. It is still an open question if it is possible or
how to find common rules for pruning all CNN networks to achieve satisfactory
result. The next issue to focus on will be speeding up the pruning with retraining
process by using more knowledge and statistics about the network. The proposed
pruning methods of Deep Learning architectures can also be optimized and tested
on a system level by taking data into consideration. This can be pronounced
especially in latency critical systems [10].
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Improving Text Classification with Vectors of Reduced Precision. ICAART 2018
: 10th International Conference on Agents and Artificial Intelligence, proceedings
vol.2, pp.531-538.
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