
Interval methods for seeking fixed points of
recurrent neural networks

Bartłomiej Jacek Kubica, Paweł Hoser, and Artur Wiliński

Institute of Information Technology, Warsaw University of Life Sciences – SGGW,
ul. Nowoursynowska 159, 02-776 Warsaw, Poland

{bartlomiej_kubica,pawel_hoser,artur_wilinski}@sggw.pl

Abstract. The paper describes an application of interval methods to
train recurrent neural networks and investigate their behavior. The HIBA_USNE
multithreaded interval solver for nonlinear systems and algorithmic dif-
ferentiation using ADHC are used. Using interval methods, we can not
only train the network, but precisely localize all stationary points of
the network. Preliminary numerical results for continuous Hopfield-like
networks are presented.

Keywords: interval computations, nonlinear systems, HIBA_USNE, recurrent
neural network, Hopfield network

1 Introduction

Artificial neural networks (ANN) have been used in many branches of science
and technology, for the purposes of classification, modeling, approximation, etc.
Several training algorithms have been proposed for this tool. In particular, sev-
eral authors have applied interval algorithms for this purpose (cf., e.g., [6], [19],
[5]). Most of these efforts (all known to the authors) have been devoted to feed-
forward neural networks.

Nevertheless, in some applications (like prediction of a time series or other
issues related to dynamical systems, but also, e.g., in some implementations of
the associative memory), we need the neural network to remember its previous
states – and this can be achieved by using the feedback connections. In this
paper, we apply interval methods to train this sort of networks.

2 Hopfield-like network

Let us focus on a simple model, similar to popular Hopfield networks, described,
i.a., in [18]. There is only a single layer and each neuron is connected to all other
ones. Fig. 1 illustrates this architecture.

Let us present the mathematical formulae. Following [10], we denote vectors
by small letters and matrices – by capital ones.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_30

https://dx.doi.org/10.1007/978-3-030-50420-5_30


2 Bartłomiej Jacek Kubica, Paweł Hoser, and Artur Wiliński

Fig. 1. A Hopfield-type neural network

The output of the network is the vector of responses of each neuron, which,
for the i’th one, is:

yi = σ
( n∑

j=1

wijxj

)
, for i = 1, . . . , n , (1)

where σ(·) is the activation function, described below.
The weights can have both positive and negative values, i.e., neurons can

both attract or repel each other. Also, typically, it is assumed that wii = 0, i.e.,
neurons do not influence themselves directly, but only by means of influencing
other neurons. Unlike most papers on Hopfield networks, we assume that the
states of neurons are not discrete, but continuous: xi ∈ [−1, 1]. As the activation
function, the step function has been used originally:

σ(t) = H(t) =
{

1 for t ≥ 0,
−1 for t < 0.

, (2)

but sigmoid functions can be used, as well; for instance:

σ(t) =
2

1 + exp(−β · t)
− 1 , (3)

the hyperbolic tangent or the arctan. Please mind that in both above functions,
(2) and (3), the value of the activation function ranges from -1 to 1 and not from
0 to 1, like we would have for some other types of ANNs.

In our experiments, we stick to using activation functions of type (3) with
β = 1, but other values β > 0 would make sense, as well.

What is the purpose of such a network? It is an associative memory that can
store some patterns. These patterns are fixed points of this network: when we
feed the network with a vector, being one of the patters, the network results in
the same vector on the output.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_30

https://dx.doi.org/10.1007/978-3-030-50420-5_30


Interval methods for seeking fixed points of recurrent neural networks 3

What if we give another input, not being one of the remembered vectors?
Then, the network will find the closest one of the patterns and return it. This
may take a few iterations, before the output stabilizes.

Networks presented in Fig. 1, very popular in previous decades, has become
less commonly used in practice, nowadays. Nevertheless, it is still an interesting
object for investigations and results obtained for Hopfield-like networks should
be easily extended to other ANNs.

3 Training Hopfield-like networks

How to train a Hopfield network? There are various approaches and heuristics.
Usually, we assume that the network is supposed to remember a given number

of patterns (vectors) that should become its stationary points.
An example is the Hebb rule, used when patterns are vectors of values +1

and −1 only, and the discrete activation function (2) is used. Its essence is to
use the following weights:

wij =


N∑

k=1

xki · xkj for i 6= j,

0 for i = j.

, (4)

which results in the weights matrix of the form:

W =

N∑
k=1

xk(xk)T − diag
(
(xki )

2
)
.

Neither the above rules, nor most other training heuristics take into account
problems that may arise while training the network:

– several “spurious patterns” will, in fact, be stationary points of the network,
as well as actual patterns,

– capacity of the network is limited and there may exist no weight matrix,
responding to all training vectors properly.

Let us try to develop a more general approach.

4 Problems under solution

In general, there are two problems we may want to solve with respect to a
recurrent ANN, described in Section 2:

1. We know the weights of the network and we want to find all stationary
points.

2. We know all stationary points the network should have and we want to
determine the weights, so that this condition was satisfied.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_30

https://dx.doi.org/10.1007/978-3-030-50420-5_30


4 Bartłomiej Jacek Kubica, Paweł Hoser, and Artur Wiliński

In both cases, the system under consideration is similar:

xi − σ
( n∑

j=1

wijxj

)
= 0, for i = 1, . . . , n , (5)

but different quantities are unknowns under the search or the given parameters.
In the first case, we know the matrix of weights: W = [wij ] and we seek xi’s and
in the second case – vice versa.

Also, the number of equations differs in both cases. The first problem is
always well-determined: the number of unknowns and of equations is equal to
the number of neurons n. The second problem is not necessarily well-determined:
we have n · (n − 1) unknowns and the number of equations is equal to n · N ,
where N is the number of vectors to remember.

To be more explicit: in the first case, we obtain the following problem:

Find xi, i = 1, . . . , n, such that:

xi − σ
( n∑

j=1

wijxj

)
= 0, for i = 1, . . . , n . (6)

In the second case, it is:

Find wij , i, j = 1, . . . , n, such that:

xki − σ
( n∑

j=1

wijx
k
j

)
= 0, for k = 1, . . . , N . (7)

But in both cases, it is a system of nonlinear equations. What tools shall we
apply to solve it?

5 Interval tools

Interval analysis is well-known to be a tractable approach to finding a solution
– or all solutions of a nonlinear equations system, like the above ones.

There are several interval solvers of nonlinear systems (GlobSol, Ibex, Re-
alpaver and SONIC are representative examples). In our research, we are using
HIBA_USNE [4], developed by the first author. The name HIBA_USNE stands
for Heuristical Interval Branch-and-prune Algorithm for Underdetermined and
well-determined Systems of Nonlinear Equations and it has been described in a
series of papers (including [11], [12], [14], [15] and [16]; cf. Chap. 5 of [17] and
the references therein).

As the name states, the solver is based on interval methods (see, e.g., [8],
[9], [20]), that operate on intervals instead of real numbers (so that result of
an operation on numbers always belongs to the result of operation on intervals
that contain the numerical inputs). Such methods are robust, guaranteed to
enclose all solutions, even if they are computationally intensive and memory

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_30

https://dx.doi.org/10.1007/978-3-030-50420-5_30


Interval methods for seeking fixed points of recurrent neural networks 5

demanding. Their important advantage is allowing not only to locate solutions
of well-determined and underdetermined systems, but also to verify them, i.e.,
prove that in a given box there is a solution point (or a segment of the solution
manifold).

Details can be found in several textbooks, i.a., in these quoted above.

5.1 HIBA_USNE

Let us present the main algorithm (the standard interval notation, described in
[10], will be used). The solver is based on the branch-and-prune (B&P) schema
that can be expressed by pseudocode presented in Algorithm 1.

Algorithm 1 Interval branch-and-prune algorithm
Require: L, f, ε
1: {L – the list of initial boxes, often containing a single box x(0)}
2: {Lver – verified solution boxes, Lpos – possible solution boxes}
3: Lver = Lpos = ∅
4: x = pop (L)
5: loop
6: process the box x, using the rejection/reduction tests
7: if (x does not contain solutions) then
8: discard x
9: else if (x is verified to contain a segment of the solution manifold) then
10: push (Lver, x)
11: else if (the tests resulted in two subboxes of x: x(1) and x(2)) then
12: x = x(1)

13: push (L, x(2))
14: cycle loop
15: else if (widx < ε) then
16: push (Lpos, x) {The box x is too small for bisection}
17: if (x was discarded or x was stored) then
18: if (L == ∅) then
19: return Lver, Lpos {All boxes have been considered}
20: x = pop (L)
21: else
22: bisect (x), obtaining x(1) and x(2)

23: x = x(1)

24: push (L, x(2))

The “rejection/reduction tests”, mentioned in the algorithm are described in
previous papers (cf., e.g., [14], [15] and [16] and references therein):

– switching between the componentwise Newton operator (for larger boxes)
and Gauss-Seidel with inverse-midpoint preconditioner, for smaller ones,

– a heuristic to choose whether to use or not the BC3 algorithm,
– a heuristic to choose when to use bound-consistency,

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_30

https://dx.doi.org/10.1007/978-3-030-50420-5_30


6 Bartłomiej Jacek Kubica, Paweł Hoser, and Artur Wiliński

– a heuristic to choose when to use hull-consistency,
– sophisticated heuristics to choose the bisected component,
– an additional second-order approximation procedure,
– an initial exclusion phase of the algorithm (deleting some regions, not con-

taining solutions) – based on Sobol sequences.

It is also worth mentioning that as Algorithm 1, as some of the tests performed
on subsequent boxes are implemented in a multithreaded manner. Papers [11–
16] discuss several details of this implementation and a summary can be found
in Chap. 5 of [17].

5.2 ADHC

The HIBA_USNE solver collaborates with a library for algorithmic differentia-
tion, also written by the first author. The library is called ADHC (Algorithmic
Differentiation and Hull Consistency enforcing) [3]. Version 1.0 has been used
in our experiments. This version has all necessary operations, including the exp
function, used in (3), and division (that was not implemented in earlier versions
of the package).

6 Numerical experiments

Numerical experiments have been performed on a machine with two Intel Xeon
E5-2695 v2 processors (2.4 GHz). Each of them has 12 cores and on each core two
hyper-threads (HT) can run. So, 2×12×2 = 48 HT can be executed in parallel.
The machine runs under control of a 64-bit GNU/Linux operating system, with
the kernel 3.10.0-123.e17.x86_64 and glibc 2.17. They have non-uniform turbo
frequencies from range 2.9–3.2 GHz. As there have been other users performing
their computations also, we limited ourselves to using 24 threads only.

The Intel C++ compiler ICC 15.0.2 has been used. The solver has been
written in C++, using the C++11 standard. The C-XSC library (version 2.5.4)
[1] was used for interval computations. The parallelization was done with the
packaged version of TBB 4.3 [2].

The author’s HIBA_USNE solver has been used in version Beta2.5 and
ADHC library, version 1.0.

We consider the network with n neurons (n = 4 or n = 8) and storing 1 or
3 vectors. The first vector to remember is always (1, 1, . . . , 1). The second one
consists of n

2 values +1 and n
2 values −1. The third one consists of n− 2 values

+1 and 2 values −1.
The following notation is used in the tables:

– fun.evals, grad.evals, Hesse evals – numbers of functions evaluations, func-
tions’ gradients and Hesse matrices evaluations (in the interval automatic
differentiation arithmetic),

– bisecs – the number of boxes bisections,

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_30

https://dx.doi.org/10.1007/978-3-030-50420-5_30


Interval methods for seeking fixed points of recurrent neural networks 7

Table 1. Computational results for Problem (6)

problem n = 4, N = 1 n = 8, N = 1 n = 4, N = 3 n = 8, N = 3 n = 12, N = 3

fun. evals 1133 365,826 2,010 432,551 4,048,010,515
grad.evals 1629 483,302 2,484 689,774 6,298,617,714
Hesse evals 4 3,568 124 6,974 398,970,087
bisections 37 29,210 117 41,899 245,816,596
preconds 68 32,970 149 45,813 252,657,916
Sobol excl. 14 62 15 63 143
Sobol resul. 321 1,541 346 1,548 3,869
pos.boxes 1 2 4 0 3
verif.boxes 2 1 0 5 6
Leb.poss. 3e-36 4e-70 3e-27 0.0 4e-77
Leb.verif. 6e-30 2e-92 0.0 5e-71 1e-129
time (sec.) < 1 1 <1 2 12,107

Table 2. Computational results for Problem (7)

problem n = 4, N = 1 n = 8, N = 1 n = 4, N = 3 n = 8, N = 3 n = 12, N = 3

fun. evals 7376 369100 8870 420,484 3,303,590
grad.evals 16 64 48 192 432
Hesse evals 4 8 12 24 36
bisections 0 0 0 0 0
preconds 0 0 0 0 0
Sobol excl. 144 3136 144 3,136 17,424
Sobol resul. 0 0 0 0 0
pos.boxes 0 0 0 0 0
verif.boxes 0 0 0 0 0
Leb.poss. 0.0 0.0 0.0 0.0 0.0
Leb.verif. 0.0 0.0 0.0 0.0 0.0
time (sec.) <1 < 1 <1 < 1 2

– preconds – the number of preconditioning matrix computations (i.e., per-
formed Gauss-Seidel steps),

– Sobol excl. – the number of boxes to be excluded generated by the initial
exclusion phase,

– Sobol resul. – the number of boxes resulting from the exclusion phase (cf.
[13], [14]),

– pos.boxes, verif.boxes – number of elements in the computed lists of boxes
containing possible and verified solutions,

– Leb.pos., Leb.verif. – total Lebesgue measures of both sets,
– time – computation time in seconds.

7 Analysis of the results

The HIBA_USNE solver can find solutions of Problem (6) pretty efficiently.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_30

https://dx.doi.org/10.1007/978-3-030-50420-5_30


8 Bartłomiej Jacek Kubica, Paweł Hoser, and Artur Wiliński

The solutions get found correctly. For instance, in the case of four neurons
and a single stored pattern, three solutions are quickly found; two of the solutions
are guaranteed:

x = [-1.030683E-008,1.031144E-008]
[-2.702852E-010,2.703469E-010]
[-3.596875E-009,3.598297E-009]
[-1.189070E-009,1.188578E-009]

x = [ 0.858559, 0.858560]
[ 0.858559, 0.858560]
[ 0.858559, 0.858560]
[ 0.858559, 0.858560]

and one is a possible solution:

x = [ -0.858560, -0.858559]
[ -0.858560, -0.858559]
[ -0.858560, -0.858559]
[ -0.858560, -0.858559]

Because of the properties of the sigmoid function (3), that nowhere reaches
the values ±1, the actual pattern (1, 1, 1, 1) cannot be the solution of the equa-
tions. Yet, the solution is a (relatively crude), approximation of the pattern.
Another solutions are the point (0, 0, 0, 0), and minus the first solution. The
number of solutions that get verified or found as possible solutions only, varies
(cf. Table 6), but all of them get bounded correctly.

For problems of small dimensionality, all solutions get found immediately.
Unfortunately, the time increases quickly with the number of neurons (but not
with the number of stored patterns!) in the network. This is partially because
Hopfield networks are ‘dense’: each neuron is connected to all other ones. Multi-
layer networks have a more ‘sparse’ structure, that may improve the scalability
of the branch-and-prune method.

For Problem (7) of computing the weights matrix, the HIBA_USNE solver
was less successful. This is not surprising: Problem (7) is underdetermined, and
can have uncountably many solutions.

Actually, the solver has been successful on (7) when there had been no so-
lutions: this can be verified easily, in many cases. As the sigmoid function (3)
does not reach values ±1 for finite arguments, there are no weights for which
sequences of ±1’s are stationary points of the network, and the solver verifies it
easily.

Unfortunately, seeking weights for a feasible solution is not that efficient.
For instance, seeking weights for a network with a single stationary point at
(0.858, 0.858, 0.858, 0.858), had to be interrupted after three hours, without ob-
taining the results!

Possibly, it would make sense to seek solutions of Problem (7) with some
additional constraints, but this has not been determined yet. In such case, it

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_30

https://dx.doi.org/10.1007/978-3-030-50420-5_30


Interval methods for seeking fixed points of recurrent neural networks 9

might be beneficial to transform the equations to the form:

n∑
j=1

wijx
k
j = − 1

β
· ln
( 2

1 + xki
− 1
)
, i = 1, . . . , n, k = 1, . . . , N .

Now, the equations are linear with respect to wij .
Also, interval methods can naturally be applied to seek approximate fixed

points, instead of precise ones, but such experiments have not been performed
yet.

8 Conclusions

The paper presents a promising application of interval methods and the HIBA_USNE
solver. It can be used both to train and investigate the behavior of a recurrent
neural network. The interval solver of nonlinear systems can potentially be ap-
plied to determining the weights matrix of the network, but more importantly:
to localizing all stationary points of the network.

Fig. 2. A Hamming-type neural network

We have considered single-layer continuous Hopfield-like networks, but gener-
alization to Hamming networks (Fig. 2) or convolutional multilayer ANNs (e.g.,
[7]) seems straightforward. This will be the subject of our further research, as well
as further studies about Hopfield network: seeking for periodic states, seeking
for approximate stationary points, and more sophisticated interval algorithms
to train the network.

References

1. C++ eXtended Scientific Computing library. http://www.xsc.de, 2017.
2. Intel TBB. http://www.threadingbuildingblocks.org, 2017.
3. ADHC, C++ library. https://www.researchgate.net/publication/316610415_

ADHC_Algorithmic_Differentiation_and_Hull_Consistency_Alfa-05, 2018.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_30

https://dx.doi.org/10.1007/978-3-030-50420-5_30


10 Bartłomiej Jacek Kubica, Paweł Hoser, and Artur Wiliński

4. HIBA_USNE, C++ library. https://www.researchgate.net/publication/
316687827_HIBA_USNE_Heuristical_Interval_Branch-and-prune_Algorithm_
for_Underdetermined_and_well-determined_Systems_of_Nonlinear_
Equations_-_Beta_25, 2018.

5. S. P. Adam, D. A. Karras, G. D. Magoulas, and M. N. Vrahatis. Solving the linear
interval tolerance problem for weight initialization of neural networks. Neural
Networks, 54:17–37, 2014.

6. M. Beheshti, A. Berrached, A. de Korvin, C. Hu, and O. Sirisaengtaksin. On
interval weighted three-layer neural networks. In Simulation Symposium, 1998.
Proceedings. 31st Annual, pages 188–194. IEEE, 1998.

7. I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.
8. L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analysis. Springer,

London, 2001.
9. R. B. Kearfott. Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht,

1996.
10. R. B. Kearfott, M. T. Nakao, A. Neumaier, S. M. Rump, S. P. Shary, and P. van

Hentenryck. Standardized notation in interval analysis. Vychislennyie Tiehnologii
(Computational Technologies), 15(1):7–13, 2010.

11. B. J. Kubica. Interval methods for solving underdetermined nonlinear equations
systems. Reliable Computing, 15:207–217, 2011. Proceedings of SCAN 2008.

12. B. J. Kubica. Tuning the multithreaded interval method for solving underde-
termined systems of nonlinear equations. Lecture Notes in Computer Science,
7204:467–476, 2012. Proceedings of PPAM 2011 (9th International Conference on
Parallel Processing and Applied Mathematics).

13. B. J. Kubica. Excluding regions using Sobol sequences in an interval branch-and-
prune method for nonlinear systems. Reliable Computing, 19(4):385–397, 2014.
Proceedings of SCAN 2012 (15th GAMM-IMACS International Symposium on
Scientific Computing, Computer Arithmetic and Validated Numerics).

14. B. J. Kubica. Presentation of a highly tuned multithreaded interval solver for
underdetermined and well-determined nonlinear systems. Numerical Algorithms,
70(4):929–963, 2015.

15. B. J. Kubica. Parallelization of a bound-consistency enforcing procedure and its
application in solving nonlinear systems. Journal of Parallel and Distributed Com-
puting, 107:57–66, 2017.

16. B. J. Kubica. Role of hull-consistency in the HIBA_USNE multithreaded solver
for nonlinear systems. Lecture Notes in Computer Science, 10778:381–390, 2018.
Proceedings of PPAM 2017.

17. B. J. Kubica. Interval methods for solving nonlinear constraint satisfaction, opti-
mization and similar problems: From inequalities systems to game solutions, vol-
ume 805 of Studies in Computational Intelligence. Springer, 2019.

18. J. Mańdziuk. Hopfield-type neural networks. Theory and applications. Akademicka
Oficyna Wydawnicza EXIT, 2000. (in Polish).

19. P. V. Saraev. Numerical methods of interval analysis in learning neural network.
Automation and Remote Control, 73(11):1865–1876, 2012.

20. S. P. Shary. Finite-dimensional Interval Analysis. Institute of Computational
Technologies, Sibirian Branch of Russian Academy of Science, Novosibirsk, 2013.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_30

https://dx.doi.org/10.1007/978-3-030-50420-5_30

