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Abstract. Malicious domains are critical resources in network security, behind
which attackers hide malware to launch the malicious attacks. Therefore, blocking
malicious domains is the most effective and practical way to combat and reduce
hostile activities. There are three limitations in previous methods over domain
classification: (1) solely based on local domain features which tend to be not robust
enough; (2) lack of a large number of ground truth for model-training to get high
accuracy; (3) statically learning on graph which is not scalable. In this paper, we
present Ringer, a scalable method to detect malicious domains by dynamic Graph
Convolutional Network (GCN). Ringer first uses querying behaviors or domain-IP
resolutions to construct domain graphs, on which the dynamic GCN is leveraged to
learn the node representations that integrate both information about node features
and graph structure. And then, these high-quality representations are further fed
to the full-connected neural network for domain classification. Notably, instead of
global statically learning, we adopt time-based hash to cut graphs to small ones
and inductively learn the embedding of nodes according to selectively sampling
neighbors. We construct a series of experiments on a large ISP over two days and
compare it with state of the arts. The results demonstrate that Ringer achieves
excellent performance with a high accuracy of 96.8% on average. Additionally, we
find thousands of potential malicious domains by semi-supervised learning.

Keywords: Graph Convolutional Network · Malicious Domain Mining · Malware
Activities · Deep Learning · Time-based hash

1 Introduction

Malicious domains are important platforms of launching malicious attacks in network security,
such as spamming, phishing, botnet command and control (C2) infrastructure and so on.
The cost of dollars is rising as a result of the growing prevalence of financial fraud based on
domains. For instance, some ransomwares encrypt personal files through domain dissemination
to extort money from individuals, which even cause more emotional and professional damage.
Moreover, personal privacy and intellectual property rights caused by malicious domains are
also arguably serious issues. Therefore, effective detection of malicious domains bears the
utmost importance in fighting malwares.

Since blocking malicious domains can immediately lead to reduction in malwares, a wealth
of techniques have been proposed to discover malicious domains. Those efforts can be divided
into two categories, including feature-based and behavior-based methods. Traditional feature-
based methods [9–11, 26] basically use the network or domain name features to distinguish
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malicious domains from benign ones due to its efficiency and effectiveness. However, attackers
can circumvent the detections through some simple manipulation on these features such as
making the pronounceable feature conform to the normal domains’ form. Advancements in
machine learning make it possible to achieve superior performance on domain classification
over the passive DNS statistical features. However, it hinders adversarial crafting data gener-
ated by the Generative Adversarial Network (GAN) [8] and needs a lot of labeled data with
time-consuming manual inspections.

Behavior-based methods [17, 19, 21] make use of the querying relationship of the hosts or
the parsing relationship of the domains to build the association graphs in which domains or
hosts represent nodes. Some inference algorithms (eg., Belief Propagation [31]) are leveraged
to infer the reputation of unlabeled domains on the given labeled domains. However, they
achieve poor precision when the number of ground truth is small and do nothing to the isolated
nodes that have no relationship with the ground truth. Moreover, some methods [20,25] based
on analyzing host behaviors are prone to evasion techniques such as fake-querying and sub-
grouping.

In order to solve the limitations of the existing methods, we propose Ringer, a novel and
effective system to classify malicious domains. Our insights are built on three observations: (1)
Malicious domains often serve malicious users whose behaviors deviate from that of benign
domains usually registered for benign services. Hence, it is very likely that multiple malicious
domains are accessed by the overlapping client set; (2) Multiple malicious domains are com-
monly hosted on the joint server hosts due to the fact that malicious IPs are important and
scarce resources which are generally reused. For example, attackers would typically place a
number of rogue softwares on the same server hosts that they control to reduce the cost. Once
identified, the malwares will be migrated to another host in chunks. The reuse mechanism and
common querying behaviors of these malicious resources reflect the strong correlation among
malicious domains; (3) Graph convolutional network (GCN) [18] can aggregate information
of both graph structure and static features to generate the underlying representation of nodes
for classification tasks. In turn, we use these two strong associations, combined with advanced
graph deep learning technique, to discover malicious domains.

Ringer is designed to model the association among domains into graphs, on which dynamic
GCN algorithm is applied to learn the high-quality node representations that are amenable
to efficient domain classification. Instead of analyzing single domain in isolation, we study the
relevance of multiple domains involved in malicious activities. The robustness of the system
is enhanced owing to the unchangeable behavior relationship and global correlation. Both
of them will not be eliminated or altered by the will of the human being. More specifically,
the detection of malicious domains by Ringer consists of three main steps. Firstly, Ringer
constructs the domain association graph according to the querying behavior and resolution
relation. And then, Ringer takes advantage of dynamic GCN to quickly aggregate attribute
information associated with each vertex through the neighborhood defined by the graph struc-
ture in sampling fashion, thus transferring the graph-represented domains to vectors. Finally,
the node representations that embed high-dimensional structural information, as well as at-
tributes, are fed to neural network for malicious domain mining. There are two challenges that
need to be addressed: (1) the existing GCN operates on the full static graphs, which cannot
be directly applied to large-scale graphs (especially our internet-scale domain data); (2) it
is time-consuming to learn the entire graph every time as the graph is constantly evolving.
Therefore, we introduce two innovations: (1) hashing the large graphs to form small ones
according to time; (2) sampling the neighborhoods of each node to construct the graph dy-
namically and making the training of the model dependent only on the node and its sampled
neighbors, but the entire input graphs. To improve performance, we simultaneously aggregate
all intermediate representations using layer-wise attention encoder.
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Our contributions are summarized as follows:

– We propose a robust malicious domain classification method named Ringer, which trans-
forms the research problem from malicious domain mining to graph learning. We use
time-based hash technology to split the graphs into small ones, which makes Ringer more
scalable.

– Dynamic GCN is developed to automatically capture the structure and characteristics
information of the sampled neighbors, thus generating the underlying representations for
further domain classification.

– Our method has strong generalizability, which is independent of the input graph. Once
the model is trained, it can be directly applied to the new domain association graphs or
the newly-added nodes.

– We implement the prototype of Ringer and perform experiments on large-scale DNS traces
from ISP to evaluate the effectiveness. The results show that our system has superior
scalability and accuracy than state-of-the-art system, and a large number of potential
malicious domains are found.

The remaining sections of this paper are organized as following. In Section 2, we review
the related work. In section 3, we describe the association among malicious domains and the
original GCN. We provide a systematic overview of Ringer and detail each module in Section
4. The collection of the datasets and ground truth used in this paper is elaborated in Section
5. We highlight the experimental results and discuss the limitations of our systems in Section
6, while we conclude the whole study in Section 7.

2 Related work

Malicious domain detection has been a hot issue and a great deal of strides have been made
to discover malicious domains over the past years. The detection on DNS can dig out the
malicious activities earlier due to the nature of DNS flow prior to attack traffic. DNS-based
detection is also lighter than that based on all traffic and has no need to take into account
the traffic encryption. Here, we present some representative works which can be divided into
two categories: feature-based and behavior-based methods.

Feature-based methods adopt advanced machine learning combined with domain statistical
features to detect malicious domains. Antonakakis et al. [9] put forward Notos, a system uses
different characteristics of a domain to compute a reputation that indicates the domain mali-
cious or legitimate. Bilge et al. [11] propose EXPOSURE, which uses fewer training datasets
and less time to detect malicious domains. Moreover, the system is able to detect the mali-
cious domains of the new categories without updating the data feeds. Babak et al. [25] present
the Segugio, a system which tracks the co-occurrence of malicious domains by constructing
a machine-domain bipartite graph to detect new malware-related domains. Antonakakis et
al. [10] use the similarity of Non-Existent Domain responses generated by Domain Genera-
tion Algorithm (DGA) and querying behavior to identify DGA-related domains. Jehyun et
al. [19] build domain travel graphs that represent DNS query sequences to detect infected
clients and malicious domains which is robust with respect to space and time. Thomas et
al. [28] analyze the NXDomains querying pattern on several TLD authoritative name servers
to identify the strong connected groups of malware related domains.

Behavior-based approaches are to detect malicious domains by analyzing host behavior or
network behavior. Pratyusa et al. [21] firstly use proxy logs to construct host-domain bipartite
graphs on which belief propagation algorithm is used to evaluate the malicious probability of
domains. Issa et al. [17] construct domain-resolution graph to find new malicious domains by
using strong correlation between domain resolution values. Acar et al. [27] introduce a system
AESOP, which uses a locality-sensitive hashing to measure the strength of the relationship
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between these files to construct a graph that is used to propagate information from a tagged
file to an untagged file. Liu et al. [20] propose CCGA which first clusters NXdomains according
to the hosts infected family DGA generate the same domain name set, and then extracts the
cooperative behavior relationship of domains (including time, space and character similarity)
to realize the classification of NXdomain cluster. Peng et al. [23] design a system MalShoot,
which construct domain-resolution graph to learn the relationship among domains by using
graph embedding technology. They use the node embeddings as features to identify malicious
domains and defend illegal activities.

3 Background

In this section, we first describe malicious domain correlations used in malicious domain
mining. Then we discuss the technique of interest GCN.

3.1 Malicious domain correlation
Our method is to use the relationship among domains combined with statistical characteristics
for domain classification. It is suitable for detecting multi-domain malicious activities, which
complements the detection of single-domain malicious activities. The associations among ma-
licious domains mainly fall into two categories: client similarity and resolution similarity.

Client similarity. Multiple malicious domains are accessed by a collection of overlapping
clients, which is the client similarity. This similarity is determined by infected malware for
the fact that the hosts infected with the same malware may have the same list of querying
domains or seeds. In addition, they have the same attack strategy: get instructions from one
domain, then download or update malware from another domain. Normal and malicious do-
mains generally have no intersection on the client side. However, there are some exceptions.
For example, some malwares now use fake-querying technique to query some benign domains
deliberately which interfere with the detections. Fortunately, these benign domains have ob-
vious recognizable features, such as being accessed by a large number of hosts. In that case,
they can be easily removed.

Resolution similarity. A plurality of malicious domains are hosted on the same mali-
cious IPs which constitutes the resolution similarity. Resolution sharing reveals the essential
association among domains which is not changed by the will of people. This is due to the lim-
itation of malicious IP resources and the flexibility of multi-domain malware. Malicious IPs,
as pivotal resources available for attackers, are very small in quantity. While, many malwares
need to use multiple domains to evade detection, improve the usability, attacking ability or
survivability. Given these points, multiple malicious domains are hosted on the same set of IPs
controlled or maintained by attackers. For example, once a domain is blacklisted, malwares
based on DGA will generate other domains which are also resolved to the same IP.

3.2 Graph convolutional network
The convolution in Convolutional Neural Network (CNN) essentially uses a shared parameter
filter (kernel) to extract spatial features by calculating the weighted sum of central points and
adjacent points. GCN is a kind of deep learning technology which applies CNN technology to
graph. Given an attributed un-directed graph G = (V,E), where V is a set of nodes with the
size of M and E is a set of edges. It is also assumed that X ∈ RM×N is the feature matrix
with each node v ∈ V endued N -dimensional attributes, and A ∈ RM×M is the adjacency
matrix in which Ai,j = ai,j if there is an edge e =< i, j > with the corresponding weight ai,j,
otherwise Ai,j = 0. Kipf et al. [18] give the layer-wise propagation rule of multi-layer GCN:

H(l+1) = σ
(
D−

1
2 ÃD−

1
2H(l)W (l)

)
(1)

Where L̃ = D−
1
2 ÃD−

1
2 is the symmetric normalized laplacian with Ã = A + I, I is M -

demensional identity matrix, D is the diagonal degree matrix. W (l) is the weight matrix of
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Fig. 1: The process flow diagram of malicious domain mining by using Ringer.

Table 1: The symbols used in the paper
Symbols Meanings

TP True positive; a malicious domain correctly identified as illicit domain
FP False positive; a benign domain incorrectly identified as illicit domain
TN True negative; a benign domain correctly identified as legitimate domain
FN False negative; a malicious domain incorrectly identified as legitimate domain

layer l and H(l) is input activation of layer l with H(0) = X. σ denotes activation function
(eg., ReLU(.) = max(0, .) ).

When we only take into account 2-layer GCN, the forward model becomes the following
form:

Z = softmax
(
L̃ReLU(L̃XW (0))W (1)

)
(2)

Here, W (0) ∈ RM×H is an input-to-hidden weight matrix with H feature maps in hiddn
layer. W (1) ∈ RH×F is a hidden-to-output weight matrix assuming that the output has the F
categories. Softmax activation function ranges each element of a vector x to [0, 1] and the sum

of all elements to 1 with definition softmax(xi) = exp(zi)∑
i exp(xi)

. We evaluate the cross-entropy

loss function over the labeled samples as:

loss = −
∑
l∈yL

F∑
f=1

Ylf lnZlf (3)

Where yL is the indices of nodes that have labels in semi-supervised multi-class classification.
The weight matrix W (0) and W (1) are trained by using gradient descent method to minimize
the loss function (3).

GCN simultaneously learns the structure and attribute information, which have achieved
great success in clustering and classification tasks [30, 32]. However, from formula (1), it can
be seen that the output of each node in the current layer needs the attribute support of its
neighbors from the previous layer, and with the increase of the number of layers, the number
of support required by each node increases in exponential explosion. Obviously, it is only
suitable for working on relatively small graphs, not for large-scale domain data such as ours.
Some works [12,15] provide a perspective on the effectiveness of sampling neighbors.

4 System design

The goal of Ringer is to discover domains involved in malicious activities by analyzing passive
DNS traffic (traces). As shown in the figure 1, the system architecture of Ringer consists
of three modules: preprocessing, graph construction and dynamic GCN. In order to better
describe our research, we introduce some notations listed in table 1.
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4.1 Preprocessing

The preprocessing module consists of two parts: time-based hash and noise filtering.
Time-based hash. The goal of time-based hash is to divide the big graphs into small

ones according to the granularity of the time. Typically, domain-based malicious behaviors
are generally relatively continuous and have short duration, such as domains generated by
DGA. Intuitively, if the shared similarity between two domains happens within a short period
of time, then their relevance will be strong. Relatively, if a period of time is very long, it
has high probablity to arise shared similarity for various reasons (such as server migration),
which would introduce weak correlations. For example, the relevance intensity of two domains
that have shared hosts within an hour and distinct weeks is different. Therefore, the length
of the graph composition time is going to affect TPs and FPs. If the time is too short, the
association between domains will not show up. If the time is too long, a large number of weak
correlations will be introduced. Due to the page constraint, we will discuss the impact of time
on performance in future studies. In this paper, we refer to [10] and empirically select the
timespans as one hour . The time-based hash step is shown in the figure 1. Firstly, all records
are hash to different time buckets according to the timestamp. Then, the noise filtering is
used to remove some noises for each bucket. Finally, we construct the graphs in each hash
bucket for the succedent operation.

Noise filtering. Noise filtering is designed to remove the noises introduced by some
normal users as well as reduce the FPs. We adopt two strategies to filter DNS traffic. Firstly,
we remove domains based on the client degree. We define the client degree of a domain as the
number of clients that query the domain at a given epoch. The more clients the domain is
queried by, the more popular the domain is and the less likely it is to be malicious. We remove
the domains queried by more than N clients. We will discuss the selection of the threshold N
later. Similarly, we can discuss the resolution degree, remove the domains with more than M
resolution values. In this way, we can remove some public domains, such as content delivery
networks (CDN), cloud and other domains for public services. And then, we further get rid of
domains generated by some normal applications such as BitTorrent due to the fact that they
have obvious characteristics, for example, ending with ’tracker’ or ’DHCP’.

4.2 Graph construction

Ringer uses graph representation to express domains as the nodes and the relationship between
two domains as an edge. If two domains have shared clients (resolutions) within a given period
of time (in one hash bucket), then an edge exists between the corresponding nodes in the graph.
The weight of the edge is the number of shared clients (resolutions) of the two domains. The
graph construction algorithm is summarized as algorithm 1. In order to save space, we store
the attributes of nodes and edges as files. We can get them from the file system whenever we
need. As a result, the graph construction process outputs of the correlation graph of domains
and the graph-related property files. The construction of the graph aggregates the DNS query
information on the graph in a cumulative manner, which makes the whole system more robust
and scalable.

4.3 Dynamic GCN

Dynamic GCN is the key part of our method, which takes graph structure and attributes
associated nodes as input to generate high-quality embedding for each node. These embed-
dings are then fed to full-connected neural network for domain classification. In this section,
we discuss the technical details of Dynamic GCN.

Dynamic GCN uses localized graph convolution to generate embeddings from selectively
sampled neighbors. The specific forward propagation procedure is shown as Algorithm 2.
More specifically, in order to generate the embedding of node v, we only need to consider
the input features and the graph neighbors Nv = {u|(u, v) ∈ E}. We first selectionly sample
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Algorithm 1 Algorithm to construct domain graph through passive DNS.

Input: DNS data D with each record r in the form of {sip, domain, type, response}.
Output: Domain graph G.
1: Initializing domain graph G← (V,E), V ← ∅ and E ← ∅, domain-clients← dict(), client-domains ← dict().
2: for each record r ∈ D do
3: domain-clients[domain].update(sip)
4: client-domains[sip].update(domain)
5: end for
6: for each client in client-domains do
7: if there is only one domain d in client-domains[client] then
8: V = V ∪ {d}
9: continue

10: end if
11: for each pair (d1, d2) ∈ client-domains[client] do
12: V = V ∪ {d1, d2}
13: if edge e(d1, d2) ∈ E then
14: weight(e) = getEdgeWeight(e) + 1
15: else
16: E = E ∪ {e(d1, d2)}
17: weight(e) = 1
18: end if
19: end for
20: end for
21: return G

Algorithm 2 Algorithm to construct domain node representation.

Input: Current embedding zkv of node v at layer k, set of neighbor embeddings {zu|u ∈ N(v)}, preceding embeddings

(z
(0)
v , z

(1)
v , ..., z

(k)
v ) of node v, AGGnode and AGGlayer.

Output: New vector representations z
(k+1)
v at layer k + 1.

1: h
(k+1)
v = AGGnode(z

(k)
v ,

{
z
(k)
u

}
u∈Nv

)

2: z
(k+1)
v = σ

(
W ∗ CONCAT (z

(k)
v , h

(k+1)
v )) + b

)
3: z

(k+1)
v = z

(k+1)
v /

∥∥∥z(k+1)
v

∥∥∥
2

4: z
(k+1)
v = AGGlayer(z

(0)
v , z

(1)
v , ..., z

(k)
v , z

(k+1)
v )

neighbors depending on the weight of the edges. Then, we introduce node-wise attention
aggregator to aggregate neighbors in attention fashion. Next, we concate the aggregation from
the neighbors with the current representation of node to form the intermediate representation
that will be encoded into a new node embedding; The output of the algorithm is the node
representation that incorporates both information itself and the neighbors, on which we use
the L2 normalization to prevent the model from over-fitting and make the training more
stable. Finally, layer-wise attention module is implemented to encode embeddings generated
by different layers for enhancement of representation learning.

Selectively sample neighbors. Instead of random sampling, we sample neighbors according
to the weight of the edges. We deem to that the larger the weight of the edge is, the stronger
the correlation between the two points is. As a consequence, we sample the top m nodes for
each node with the largest weights as neighbors. It is important to set neighbor parameters for
later computational models when we take into account the fixed number of nodes. Moreover,
we can control the use of memory footprint during training with the certain nodes selected
to aggregate.

Node-wise attention aggregator. With neighbor context, we can use GCN to aggregate
neighbor features. However, neighbors have different influence on the target node due to the
different relationship strength between nodes or some noises. Therefore, we propose node-
wise attention aggregator which uses a weighted approach to aggregate neighbor nodes. As
shown in figure 2 (left), we use the normalized weights as the attention weights which is in
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Fig. 2: Node-wise attention aggregator (left) and layer-wise attention encoder (right).

accordance with their relationship intensities. That is, for neighbors Nv = {u1, u2, ..., um} with
the corresponding weights {w1, w2, ..., wm}, we can compute attention weights

{
w1

L
, w2

L
, ..., wm

L

}
and L = |w1| + |w2| + ... + |wm| is L1 normalization of weights. Compared with the original
GCN, our specific node-wise attention aggregator formula is shown as follows:

h(k)v = AGGnode(z
k−1
v ,

{
zk−1u

}
u∈Nv

) = δ

(
W ∗ (hk−1v +

m∑
i=1

wi
L
zk−1i ) + b

)
(4)

Here, k denotes the layer index k; w and b are trainable parameters of weights and bias
respectively; z0v is initialized by xv.

Layer-wise attention encoder. Encouraged by residual network, many works [32] adopt
skip-connection to stack convolutions for high performance. Except for this, we also propose
the layer-wise attention encoder to aggregate all intermediate representations, which is similar
to DenseNet [16]. Figure 2 (right) schematically illustrates the layout of the layer-wise atten-
tion encoder which introduces direct connections from any layer to all subsequent layers. The
node embedding zkv at kth layer receives all node feature maps z0v , z

1
v , ..., z

k−1
v from previous

layers as input. Formally, We use the following formula with [z
(0)
v : z

(1)
v : ... : z

(k−1)
v ] referring

to the concatenation operation.

z(k)v = AGGlayer(z
(0)
v , z(1)v , ..., z(k−1)v ) = δ

(
W ∗ [z(0)v : z(1)v : ... : z(k−1)v ] + b

)
(5)

Training details. We train Ringer in a semi-supervised way. We define loss functions such
as formula (3). Our goal is to optimize the parameters so that the output labels produced by
model is close to the ground truthes in labeled dataset. we use mini-batch gradient descent
to train for each iteration, which make it fit in memory.

5 Data collection

ISP dataset. To verify the effectiveness of our scheme, we collect DNS traces in an ISP
recursive server within two days from November 4th to November 5th, 2017. Many steps have
been taken by our data provider to eliminate privacy risks for the network users. Due to
the limitation of storage space and computing resources, we uniformly sample the data with
the scale of 1/10. Previous work [22] has proved that uniform sampling makes it effective to
evaluate and extrapolate the key attributes of the original dataset from the samples. This
billion-level data contains 1.1 billion pieces of data per hour, which contains various types of
DNS records. Our experiment is based only on the A records, thus ensuring the existence of
domain-to-IP resolution except Non-Existent Domains (NXdomains). After time-based hash
operation, our data is cuted into 48 portions according to the time series. To better illustrate
our data, we set forth the overview of dataset (shown as figure 3) in one bucket from 1:00
clock to 2:00 on November 4th, 2017, which only retains domains on A record. We can see
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Fig. 3: Distribution of the number of domains with host count degree (left) and resolution
count degree (right) in bucket 2 (within one hour from 1 o’clock to 2).

Table 2: Features extracted in this paper for learning
Type Feature Description

Structural

Domain name length, Number of subdomains, Subdomain length mean,
Has www prefix, Has valid TLD, Contains single-character subdomain, Is
exclusive prefix repetition, Contains TLD as subdomain, Ratio of digit-
exclusive subdomains, Ratio of hexadecimal-exclusive subdomains, Un-
derscore ratio, Contains IP address

Linguistic
Contains digits, Vowel ratio, Digit ratio, Alphabet cardinality, Ratio of
repeated characters, Ratio of consecutive consonants, Ratio of consecu-
tive digits, Ratio of meaningful words

Statistical
N-gram (N=1,2,3) frequency distribution (mean, standard deviation, me-
dian, max, min, the lower quartile, the upper quartile), Entropy

that the distribution of querying host and resolution are heavy-tailed, with a few domains
being accessed by a large number of hosts or resolved to a large number resolution IPs.

Ground truth. We have collected 21558 distinct second-level domains from a number
of authoritative blacklists, including malwaredomains.com [2], Zeustracker [7], malwaredo-
mainlist.com [5], malc0de.com [4], bambenek consulting [1]. We also use all DGA data from
DGArchive [24] until December 31, 2018, totaling 87 DGA families or variants, 88614672
distinct domain samples. To obtain benign domains, we use the domains that appear for one
year (2017) in Alexa Top 1 Million Global Sites (https://www.alexa.com/topsites) as benign
domains. The owners of these sites have always maintained these sites well, so they have good
reputation. Motivated by this theory, we have collected benign domains with a number of
404,536. We further drop the malicious domains out of benign domain list. Although there
are some FPs and FNs in the ground truth, it is relatively effective to evaluate our method.

Features for learning. In the experiment, we extracted 42 statistical features to represent
domain names with reference to FANCI [26], which are listed in table 2. These features can be
divided into three categories, including structural features, linguistic features and statistical
features.

6 Experiments

In this section, we discuss the selection of parameters on real-world data and evaluate the
effectiveness of our approach, as well as tracking ability.
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Fig. 4: The CDF distribution of the domain number over client degree (left) and resolution
degree (right) in ground truth.

6.1 Selection of threshold N and M

In order to select appropriate threshold N (client degree) and M (resolution degree), we
count the client and resolution degree of each domain in ground truth. Figure 4 shows the
Cumulative Distribution Function (CDF) of the domain number on client degree and reso-
lution degree in one bucket. We find that more than 99% of malicious domains have client
degree less than 600. We manually check these domains with relatively large client degree and
find that they are some FPs, such as the CDN or Dynamic DNS. For example, the domain
”ec2-52-207-234-89.compute-1.amazonaws.com” is used for Cerber ransomware reported by
malwaredomainlist.com, however, it is unreasonable for us to take the second-level domain
”amazonaws.com” that is in alexa top list as a malicious domain. In order to cover more
malicious domains as well as reduce the FPs, we empirically choose a threshold N = 600.
Through this threshold, we retain 99% of the malicious domains. Similarly, we have deter-
mined that the resolution degree is M = 100. We manually checked the domains we removed,
such as ”herokuapp.com”, ”igexin.com” and ”cloudapp.net”. All of them are domains used to
provide public services, which are less likely to malicious domains. Therefore, it makes sense
to remove those domains.

6.2 Detection accuracy

We use three metrics to measure the performance of our approach, namely True Positive Rate
(TPR), False Positive Rate (FPR) and accuracy (ACC) respectively. TPR = |TPs|

|TPs|+|FNs| ,

FPR = |FPs|
|TNs|+|FPs| and ACC = |TPs|+|TNs|

|TPs|+|TNs|+|FPs|+|FNs| . For each of our buckets, there are
around 3000 malicious domains and around 200,000 benign domains in ground truth. Total
136,827 malicious domains are labeled in two days (there are duplicate domains because they
come from different buckets, but they have different neighbors). we randomly select the same
number of benign domains (136,827) with malicious domains which are fed to Ringer to
adopt K-fold cross validation (in this paper, K = 5). The results are shown in table 3. Our
system implements high TPR (0.957 on average) and low FPR (0.020 on average) in domain
classification.

Baselines for comparison. We make the comparison with the following state-of-art
baselines including FANCI [26], node2vec [14] combined with features. FANCI is an open-
source system that extracts 21 domain features and uses machine learning (such as Support
Vector Machine (SVM)) to classify domains into benign or malicious instances. Node2vec
maps the nodes into the feature vectors of the low-dimensional space by unsupervised learning,
which preserves the network neighborhood relation of nodes. Node2vec is also open source and
publicly available. Node2vec learns the node embeddings that only encodes the information of
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Table 3: Comparison of detection performance over Ringer, FANCI and Node2vec for
domain classification using K-fold (for K=5)

Systems Metrics 1 2 3 4 5 Average

Ringer
TPR 0.956 0.955 0.958 0.958 0.956 0.957
FPR 0.018 0.020 0.024 0.020 0.020 0.020
ACC 0.972 0.965 0.970 0.968 0.966 0.968

FANCI
TPR 0.897 0.900 0.912 0.899 0.912 0.904
FPR 0.027 0.027 0.019 0.023 0.019 0.023
ACC 0.939 0.936 0.937 0.938 0.947 0.939

Node2vec
TPR 0.913 0.907 0.921 0.917 0.917 0.915
FPR 0.027 0.029 0.025 0.038 0.026 0.030
ACC 0.941 0.938 0.947 0.939 0.944 0.942

network structure. For this reason, we first concate the node embeddings with the extracted
features, and then use SVM to classify the domains.

We applied these two methods on our dataset and the results are shown in the table 3. Both
of systems achieve promising results. However, FANCI ignores the structure information, and
these relations embodied in time and space are of great significance to the classification of ma-
licious domains. Node2vec only considers the structure relationship among the domains, and
we concate the learned node embeddings with the static features, which has some improve-
ment in classification performance. Yet, node2vec can only learn associated node embeddings
by using unsupervised learning, and there is nothing to do with isolated nodes. To learn the
node embedding of newly added nodes, all nodes need to learn in global fashion, which is
time-consuming and labor-intensive. It is obvious that the performance of our system was
significantly outperform the other two systems. In order to achieve optimal results, Ringer is
capable of simultaneously learning statistical and structural features, and combining interme-
diate representations to make full use of all multi-order information of domains.

Domains detected by Ringer can be viewed as subgraphs. For example, Ringer detects 152
malicious domain subgraphs in bucket 2. In order to express the results of our method more
intuitively, we select the top 8 subgraphs according to the size of connected components. The
results drawed by software gephi [3] are showed as figure 5. The images vividly elaborate how

(a) Number=424 (b) Number=276 (c) Number=149 (d) Number=145

(e) Number=86 (f) Number=67 (g) Number=63 (h) Number=51

Fig. 5: The 8 samples of malicious domain subgraphs detected from bucket 2.

attackers to organize and deploy malicious domains, which is more conducive to the future
study of malicious resources.
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Table 4: The results of LSTM and FANCI in prolongation
Systems Prolongation TPs FNs Percent
LSTM 6109 5192 917 0.85
FANCI 6109 5387 722 0.88

6.3 Prolongation

One significant function of Ringer is to detect potential malicious domains. As we all know,
the redundancy of multi-domain names provides better flexibility for malware. Therefore,
detection of newly generated (zero-day) and rarely used malicious domains is an important
metric of the system. We apply the model directly on domains that are not in ground truth,
and we find 6109 potentially suspicious malicious domains.

For the thousands of potential malicious domains detected by our method, we use two
heuristic methods to verify their wickedness conservatively. Firstly, we use two excellent sys-
tems, FANCI [26] and LSTM [29], both of which are open source and public available. FANCI
adopts machine learning on the domain features and LSTM uses deep learning technology
to distinguish between good and malicious domains. The results of the classification of new
suspicious domains by the two systems are as shown as table 4. Through two systems, there
are still 530 unique domains that cannot be confirmed. Secondly, we try to find some historical
snapshots of these domains or the IPs parsed from them by VirusTotal (www.virustotal.com).
Although there are many public blacklists, they are not very comprehensive, some of which
contain only malicious domains for the given day, while VirusTotal collects 66 authoritative
blacklists. We deem to the domains that appear at least one blacklist as malicious domains by
using the public API [6]. At a result, 108 new malicious domains we have found are exposed
in the form of domains or IPs. We observed that there are still 422 domain names without
qualitative judgment. Through analysis, a total of 5687 malicious domain names are found,
and we have 93% confidence to believe that our system have ability to respond against new
threats.

6.4 Scalability

Ringer is scalable to large-scale DNS data, such as DNS traces from ISP. To further illustrate
the scalability of our system, we analyze the complexity of Ringer. Suppose that we have N
records and the number of unique domain with return value on A record is V , the complexity of
Ringer is shown as follows. During the graph construction, all DNS records need to be scanned
which takes O(N). The graph convolution is our main computational workhorse. Previously
spectral convolutions defined on the graph is multiplication using a filter gθ(L) = diag(θ) in
Fourier domain with the given signal x that is a scalar for every node:

gθ(L)x = gθ(UΛUT )x = Ugθ(Λ)UTx (6)

Where θ ∈ RV , U is the matrix of eigenvectors of the normalized graph Laplacian matrix.
L = IV − D−

1
2AD−

1
2 = UΛUT with a diagonal matrix of its eigenvalues Λ. The computa-

tional complexity of formula (6) is O(V 2). And for large graphs, the eigendecomposition of L
is pohibitively expensive. In order to alleviate the computaional cost, we adopt K-order trun-

cated Chebyshev polynomials as [13] approximate gθ(Λ): gθ(Λ) ≈
∑K−1

k=0 θkTk

(
Λ̃
)

. Where

Λ̃ = 2
λmax

Λ− IV , and λmax is the largest eigenvalue of L. The Chebyshev ploynomials is recur-
sively defined as Tk(x) = 2xTk−1(x) − Tk−2(x), with T0 = 1 and T1 = x. Therefore, we have
the approximations:

gθ(L)x ≈
K−1∑
k=0

θkTk

(
L̃
)
x (7)
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Fig. 6: The distribution of the number of distinct domains over the number of DNS queries
(left) and the straight line fitted with the Least Squares approximation on points

(log2(N), log2(V )) (right).

Where θk is a vector of Chebyshev coefficients and L̃ = 2
λmax

L − IV is the scaled Laplacian
matrix. The complexity of formula (7) is O(E), linear in the number of edges. Through the
above analysis, the complexity is mainly related to the number of unique edges and the
E ≤ m ∗ V where the m is the number of sampled neighbors (constant).

Figure 6 (left) shows the distribution of the number of distinct domains to be analyzed
changing with the number of DNS queries in real-world data. As an illustration, the size of
unique domains does not increase linearly with the size of queries, but follows Heaps’ law
V (N) = αNβ. In order to find the appropriate parameters α and β, we take the log2 on both
sides of the equation. Then, we get log2(V ) = log2(α) + βlog2(N). Figure 6 (right) shows the
scattered distribution of points (log2(N), log2(V )) (blue), and the straight line (red) fitted
with the Least Squares approximation. Finally, in our dataset, the parameters α = 2.577, β
= 0.6536. To sum up, the compution overhead of whole system is O(N) linear in the number
of input records, which proves scalable.

6.5 Limitation

We discuss about two drawbacks that need to be considered. One potential limitation is that
Ringer cannot distinguish specific service categories that the malicious domains is used for,
such as fishing, spamming, C2 and so on. We lack more detailed knowledge base or ground
truth to cover and label them, thus obtaining the distribution of different malicious categories.
Another limitation is that for unassociated or weakly associated domains, our approach is
equivalent to using only its static statistical features without neighbors relevance.

7 Conclusion

The intelligence of attackers using malicious domains makes it more resilient for existing de-
tection methods. In this paper, we propose a malicious domain detection mechanism Ringer,
which uses graphs to represent the strong correlation among domains including client simi-
larity and resolution similarity. Dynamic GCN is used to learn the node representations that
combines structural information and statistical feature information inductively. The dynamic
learning depending on neighbors and itself enables great gains in both effectiveness and effi-
ciency. Exposing the relevance of malicious domains by graph enhances the robustness of the
system irrespective of some evading techniques. We use DNS data from ISP to evaluate our
system, the results show that our system perform higher precision and scalability. Our ap-
proach, as a promising effort, helps to prevent illegal domain-based activities more effectively
in practice.
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