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Abstract. Optimal neural network architecture is a very important fac-
tor for computational complexity and memory footprints of neural net-
works. In this regard, a robust pruning method based on interval adjoints
significance analysis is presented in this paper to prune irrelevant and
redundant nodes from a neural network. The significance of a node is de-
fined as a product of a node’s interval width and an absolute maximum
of first-order derivative of that node’s interval. Based on the significance
of nodes, one can decide how much to prune from each layer. We show
that the proposed method works effectively on hidden and input layers
by experimenting on famous and complex datasets of machine learning.
In the proposed method, a node is removed based on its significance and
bias is updated for remaining nodes.

Keywords: Significance analysis · Sensitivity analysis · Neural network
pruning · Interval adjoints.

1 Introduction

Neural networks and deep belief networks are powerful tools of machine learning
for classification tasks. There are many things to consider for the construction
of effective neural network architecture i.e., learning rate, optimization method,
regularization, etc. But one of the most important hyper-parameter is network
size. It is hard to guess the optimal size of a network. Large networks are good
at memorization and get trained quickly but there is a lack of generalization in
the large networks. We can end up in over-fitting our networks. We can solve
this problem of generalization by constructing smaller networks and save the
computational cost of classification but this approach can end up in under-
fitting. Success is to come up with neural network architecture which can solve
both problems [1].

Researchers have proposed different techniques such as; brute-force [2], grow-
ing [3] and pruning methods [4]. Out of these techniques, pruning results in ef-
fective compressed neural network architecture while not significantly hurting
network accuracy. This technique starts with a well-trained network. Assuming
the network is oversized, it tries to remove irrelevant or insignificant parameters
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from the network. These parameters can be network’s weights, inputs, or hidden
units.

Over time multiple pruning methods have been proposed (see detailed sur-
veys [1,2,5]). Among many methods, the sensitivity-based analysis technique
is the most famous one [6,7,8,9,10]. It measures the impact of neural network
parameters on the output. Our proposed method also utilizes the concept of
sensitivity to define the significance of network parameters. Sensitivities of an
objective function concerning weights of networks are used to optimize network’s
weights while sensitivities of output unit concerning input and hidden units are
used to find the significance of the network’s input and hidden units.

This paper presents a method for finding out the sensitivities of the network’s
output concerning the network’s input and hidden units in a more robust and
efficient way by using interval adjoints. Input and hidden unit values and their
impact on output are used to define the significance of the input and hidden
units. The significance analysis method defined in this paper takes care of all the
information of the network units and the information stored during significance
analysis is used to update the remaining parameters biased in the network.

The rest of the paper is organized as follows. Section 2 briefly describes algo-
rithmic differentiation (AD) for interval data with examples. Section 3 presents
our significance analysis method for pruning. Experimental results are given in
section 4. The conclusion is given in section 5.

2 Interval Adjoint Algorithmic Differentiation

The brief introduction to AD [11,12] is given in this section along with the modes
of AD and differentiation with one of the mode of AD commonly known as adoint
mode of AD. Later, intervals for interval adjoint algorithmic differentiation are
used.

2.1 Basics of AD

Let F be a differentiable implementation of a mathematical function F : Rn+l −→
Rm : y = (x,p), computing an output vector y ∈ Rm from inputs x ∈ Rn and
constant input parameter p ∈ Rl. Differentiating F with respect to x yields the
Jacobian matrix ∇xF ∈ Rm∗n of F .

This mathematical function F can be transformed to coded form in some
higher level programming language to apply AD on that code. AD works on the
principle of the chain rule. It can be implemented using source transformation
[13] or operator overloading [14] to change the domain of variables involved in the
computation. It calculates the derivatives and different partials along with the
each output (primal values) in a time similar to one evaluation of the function.
There are multiple tools1 available which can implement AD e.g. dco/c++ [15,16].
dco/c++ implements AD with the help of operator overloading and it has been
successfully used for many applications [17,18].

1 http://www.autodiff.org/?module=Tools
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2.2 Modes of AD

There are many modes of AD [11,12] but two of them are most widely used;
one is forward mode AD (also; tangent linear mode of AD) and second is reverse
mode AD (also; adjoint mode of AD). Because, we are interested in adjoints for
our research so we are going to describe reverse mode AD briefly.

There are two phases in reverse mode of AD; forward and backward pass.
In forward pass, function code is run forward yielding primal values for all in-
termediate and output variables and storing all the relevant information which
are needed during backward pass. During backward pass, adjoints of outputs
(for outputs, adjoint is evidently 1) will be propagated backwards through the
computation of the original model to adjoints of inputs.

Example (AD Reverse Mode) Below is an example of adjoint mode AD
evaluation on function f(x) = sin(xo · x1).

Forward Pass: With intermediate variables vi ∈ R, i = 1, 2 , a possible code
list of f is

v1 = x1 · x2
v2 = sin(v1)
y = v2

Backward Pass: With intermediate variables vi ∈ R, i = 1, 2 and associated
adjoint variables vi(1), a possible adjoint code of f is

v2(1) = y(1)
v1(1) = cos(v1) · v2(1)
x2(1) = x1v1(1)
x1(1) = x2v1(1)

2.3 Interval Adjoints

Consider, lower case letters (e.g., a, b, c, ...) represents real numbers, uppercase
letters (e.g., A,B,C, ...) represents interval data and an interval is represented by
X = [xl, xu], where l and u represents the lower and upper limit of the interval,
respectively.

Interval Arithmetic (IA), evaluates a function f [X] for the given range over a
domain in a way that it gives guaranteed enclosure f [X] ⊇ {f [x]|x 3 [X]} that
contains all possible values of f(x) for x 3 [X]. Similarly, interval evaluation
yield enclosures [Vi] for all intermediate variables Vi.

The adoint mode of AD can also be applied to interval functions for differen-
tiation purpose [19]. The impact of individual input and intermediate variables
on the output of an interval-valued function can easily be evaluated by using
adjoint mode of AD over interval functions. AD not only computes the primal
value of intermediate and output variables, it also computes their derivative with
the help of chain rule. The first order derivatives ( δYδXi

, δY
δVi

) of output V with
respect to all inputs Xi and intermediate variables Vi can be computed with the
adjoint mode of AD in a single evaluation of function f . In the same way, IA
and AD can be used to find out the interval-valued partial derivatives (∇[Vi][Y ],
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∇[Xi][Y ]) that contains all the possible derivatives of output Y with respect to
intermediate variables Vi and input variables Xi over the given input interval
X.

Example (AD Reverse Mode with Interval Data) Below is an example of
adjoint mode AD evaluation on interval function f(X) = sin(Xo . X1) for calcu-
lation of interval adjoints. Let X = {X1, X2} ∈ R2, where X1 = [0.5, 1.5], X2 =
[−0.5, 0.5]

Interval output of f(X):
f(X) = [−0.6816, 0.6816]

Differentiation:

∇Xf(X) =

(
δf(X)
δX1
δf(X)
δX2

)
=

(
cos(X1 ∗X2) ∗X2

cos(X1 ∗X2) ∗X1

)
Interval evaluation of ∇Xf(X):

∇Xf(X) =

(
cos(X1 ∗X2) ∗X2

cos(X1 ∗X2) ∗X1

)
=

(
[−0.5, 0.5]
[0.3658, 1.5]

)

3 Significance Analysis

Sensitivity based method is most useful in defining the significance of the net-
work parameters. In [7,10], researchers used the network’s output to find the
sensitivity of network parameters. Sensitivity is defined as the degree to which
an output responds to the deviation in its inputs [7]. Deviation in output ∆y
due to deviation in inputs is the difference of deviated and non-deviated outputs
f((X + ∆X) ∗ w) − f(X ∗ w). Meanwhile, inputs Xi is treated as an interval
[0, 1] for finding sensitivity not just on fixed points rather finding it for overall
inputs range.

With the above-defined sensitivity, the significance is measured as a product
of sensitivity of a node by the summation of the absolute values of its outgoing
weights. This approach of significance defined by [7] has few limitations such
as it can only be applied to hidden layer nodes, not to the network input layer.
Secondly, one has to prune one layer first before moving to the second layer as
it works by layer-wise.

To find out the significance for both input and hidden nodes of a network,
another method proposed in [10], computes sensitivities by computing partial
derivatives of network outputs to input and hidden nodes . Although this method
is good in computing sensitivities of network’s parameters, there is a high com-
putational cost for this as it computes partial derivative at a given parameter
and then finds out the average sensitivity for all training patterns. We proposed
a new sensitivity method in section 3.1 based on interval adjoints to tackle the
shortcomings of earlier defined sensitivity based pruning methods.

3.1 Interval Adjoint Significance Analysis

Let us first define significance, before applying the proposed method of signifi-
cance analysis on neural networks to obtain the ranking of nodes in the network.
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According to [20], significance can be defined by the product of width of an
interval and absolute maximum of first order derivative of that interval.

SY (Vi) = w[Vi] ∗max|∇[vi][y]| (1)

The influence of all input variables Xi, i = 1, ..., n is given in Vj . And this
influence can be quantified by width w[Vj ] = vu − vl. Larger the width of an
interval larger the influence and vice versa. This means that variable Vj is highly
sensitive to input variable Xi and vice versa. But this information alone is not
sufficient to define the significance of a variable. Further operations, during the
evaluation of Y and different intermediate variables V , may increase or decrease
the influence of variable Vj . Therefore, it is necessary to find the influence of that
variable Vj on output Y . The absolute maximum of first order partial derivative
max|∇[vi][y]| of variable Vj gives us this influence of variable Vj over output Y .

3.2 Selection of Significant Nodes

Suppose an already trained neural network illustrated in Fig. 1, with four nodes
on each hidden layer, four nodes on the input layer and one output node. Thus
the problem in this subsection is to find out the significance of each node in the
network to correctly find out the output. This concept of significance defined
in (1) can be applied to already trained neural nets and deep belief nets to
find out the influence of individual input and intermediate nodes in determining
the output of the network. There is no change in the standard back-propagation
neural network architecture [21,22] except all the variables in the network are of
interval type instead of scalar type. Interval arithmetic [23] is used to calculate
the input-output relations. We can calculate this significance layer-wise and rank
them based on their magnitude. A node with a high significance value is very
sensitive to the overall output of the network.

Fig. 1: Simple neural network.
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A single interval input vector is used for finding the significance. Let us as-
sume that m training patters xk = {xk1, ..., xkn}, k = 1, 2, 3, ...,m are used to
train the neural network. These m training patterns are used to generate the
interval input vector for significance analysis by finding out the maximum and
minimum value for each input (e.g.x1) from all training patterns (x11, ..., xk1).
These maximum and minimum values are used to construct the interval input
vector X = {[min(xk1),max(xk1)], ..., [min(xkn),max(xkn)]}. As scalar is de-
generated form of an interval whose upper and lower bounds are the same, one
can use the trained weight and bias vector of the network and change them to
interval vectors whose upper and lower bounds are the same.

A single forward and backward run of the network is required with new
input, weight and bias vector for yielding the significance of intermediate and
input nodes. Nodes on each layer can be ranked in decreasing order of significance
and it’s up to the user to select the number of nodes which will stay in the new
architecture. Let’s go back to our example of already trained network in Fig. 1.
After the significance analysis, we find out middle two nodes on the first hidden
layer, first and the last node on second hidden layer is not significant as shown
in Fig. 2.

Fig. 2: Insignificant nodes and their connection identified by significance analysis.

3.3 Removal of Insignificant Nodes

After the selection of significant nodes in the network, it is necessary to preserve
the information of insignificant nodes before throwing them out from the network
to prune it, otherwise, we will be changing the inputs for next layer activations.
Insignificant nodes have less impact on the network and the weight associated
with its incoming and ongoing connections are mostly redundant and have very
low values. Significance analysis together with interval evaluation not only gives
us the influence of nodes but it also gives us a guaranteed enclosure that contains
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Fig. 3: Removal of insignificant nodes, and their incoming and outgoing connec-
tions.

all the possible values for insignificant nodes and their outgoing connections.
We can store all the information of the previous layer insignificant nodes into

significant nodes of the next layer by calculating the midpoints (vj =
(vlj+v

u
j )

2 )
of all incoming connections from previous layer insignificant nodes to significant
nodes of next layer. We can sum up all these midpoints and add them as the
bias of significant nodes. This process is illustrated in Fig. 3.

4 Experimental Results

There are so many parameters to optimize in all the layers of fully connected
neural networks and on the fully connected layers of most of the large-scale
convolutional neural networks [24,25]. Currently, we analyzed the performance
of our method on fully connected networks to reduce the number of parameters
and obtain a compressed network yet achieving the same accuracy. For this
purpose, we choose four datasets; MNIST [26], MNIST ROT [27], Fashion-
MNIST [29] and CIFAR-10 [28].

In all the networks, there were two hidden layers with a size of five hundred
nodes on each layer, refer to Table 1 for more details. For the activation func-
tions, the sigmoid activation function was used on the hidden layer and softmax
on the output layer. Adam with weight decay commonly known as AdamW [30]
and Adamax [31] optimization methods were used for parameter optimization.
In the initial epochs, the network was trained with AdamW but in the end,
Adamax was used for better accuracy.

4.1 Experiments on MNIST

Significance analysis not only can be applied to hidden layers but our method
is also effective for the input layer. It works as a feature selection method for
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Table 1: Datasets and networks used for experiments
Dataset Architecture

MNIST 784-500-500-10

MNIST ROT 784-500-500-10

Fashion-MNIST 784-500-500-10

CIFAR-10 3072-500-500-10

inputs. Fig. 4 shows test and train error plots for removed input features after
significance analysis. As we can see from flatter curves, the error did not increase
after removing the significant number of input features from the original network.
But after a certain point error is almost increasing exponentially.
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0

0.2

0.4

0.6

0.8

1

Remaining Nodes

T
ra

in
a
n

d
T

es
t

E
rr

o
r

MNIST (Test)

MNIST (Train)

MNIST ROT (Test)

MNIST ROT (Train)

Fashion-MNIST (Test)

Fashion-MNIST (Train)

Fig. 4: Removal of insignificant nodes from input layer of MNIST, Fashion-
MNIST, and MNIST ROT data sets

Fig. 5 and 6 are test and train error plots for the first and second hidden
layer respectively. Significance analysis was performed on each layer separately.
It is clearly shown in Fig. 5 that we can remove more than eighty percent of
the nodes from the first layer without compromising accuracy. Fig. 7 shows the
result of the significance analysis applied on all hidden layers. If we observe the
plots of significance applied to individual hidden layers in Fig. 5 and 6, we
can clearly see the pattern when significance is applied on all hidden layers. The
error increasing pattern is the same in Fig. 6 as it is in Fig. 7.

Significance analysis works pretty well on CIFAR-10 dataset too and we can
remove a few hundreds of input features from the network as shown in Fig. 8.
Fig. 5, 6 and 7 show plots of nodes removal from each hidden layer and nodes
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Fig. 5: Removal of insignificant nodes from first hidden layer of MNIST, Fashion-
MNIST, MNIST ROT, and CIFAR-10 data sets
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Fig. 6: Removal of insignificant nodes from second hidden layer of MNIST,
Fashion-MNIST, MNIST ROT, and CIFAR-10 data sets
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Fig. 7: Removal of insignificant nodes from first and second hidden layer of
MNIST, Fashion-MNIST, MNIST ROT, and CIFAR-10 data sets

removal from all hidden layers in the network after the significance analysis
respectively.

4.2 Experiments on CIFAR-10

From the last 11 years, CIFAR-10 has been the focus of intense research which
makes it an excellent test case for our method. It has been most widely used
as a test case for many computer vision methods. After MNIST, it has been
ranked the second most referenced dataset [32]. CIFAR-10 is still the subject of
current research [33,34,35] because of its difficult problems. All of its 50k train
samples were used to train the network and 10k test samples were used to test
the network.

Like MNIST, we can also see the pattern of error increasing when we apply
significance analysis on all hidden layers. Error plot of first hidden layer nodes
removal in Fig. 5 and error plot of all hidden layer nodes removal in Fig. 7
looks quite the same. This is because the second hidden layer is not contributing
much to the overall performance of the network.

4.3 Experiments on MNIST ROT and Fashion-MNIST

We performed the same experiments on rotated version of MNIST. Error plots
for this dataset are given in the appendix. Furthermore, we also quantify the
performance of our algorithm on the newly generated Fashion-MNIST dataset.
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Fig. 8: Removal of insignificant nodes from input layer of CIFAR-10 data set

4.4 Network Performance before and after retraining

After the significance analysis and removing 50% of nodes from the network
still, we can achieve the same accuracy on all the datasets used in experiments
without additional retraining or fine-tuning. Table 2 lists the train and test error
of different datasets on the different percentages of removed insignificant nodes
in the network before and after retraining. In the case of MNIST and CIFAR-10,
there is no increase in error if we remove 25% or 50% of all the hidden nodes from
the network using significance analysis. If we further train them after removing
the nodes there is no increase in the accuracy. But on the other two datasets
(Fashion-MNIST and MNIST ROT), we can increase the accuracy if we retrain
them after removing the insignificant hidden nodes from the network.

Train and test error slightly increase if we remove 90% percent of the hidden
nodes from the network and this is expected as we are taking away too much
information from the original network. But we can improve the performance of
network with retraining and using the remaining old weight vector and updated
bias vector for significant nodes. It is better to use the remaining network con-
nection for retraining than initializing the values again. After retraining, the
error rate was decreased significantly for 90% nodes removal from the original
network and in some cases decreasing the original error rate that was there before
significance analysis.

5 Future Work and Conclsion

A new method of finding and removing redundant and irrelevant nodes from the
neural network using interval adjoints is proposed in this paper. Our method
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Table 2: Training and test error before and after retraining for different percent-
age of removed insignificant nodes. Initially, all the neural nets have 1000 hidden
nodes.

Removal of neurons from
hidden layers

90% 80% 75% 50% 25% 0%

MNIST

training error 0.26 0.03 0.01 0.01 0.01
0.01

after retraining 0.002 0.001 0.0009 0.01 0.01
test error 0.26 0.03 0.02 0.02 0.02

0.02
after retraining 0.02 0.02 0.02 0.01 0.01

MNIST ROT
training error 0.53 0.12 0.11 0.10 0.09

0.09
after retraining 0.02 0.0001 0.0005 0.0004 0.003
test error 0.53 0.15 0.14 0.13 0.12

0.12
after retraining 0.13 0.10 0.10 0.10 0.10

Fashion-MNIST
training error 0.65 0.13 0.10 0.09 0.09

0.09
after retraining 0.05 0.04 0.03 0.03 0.03
test error 0.65 0.16 0.13 0.12 0.12

0.12
after retraining 0.11 0.12 0.11 0.12 0.11

CIFAR-10
training error 0.60 0.49 0.47 0.42 0.42

0.42
after retraining 0.46 0.42 0.43 0.42 0.42
test error 0.64 0.54 0.52 0.48 0.48

0.48
after retraining 0.50 0.49 0.49 0.48 0.48

finds out the significance of hidden as well as input nodes. The significance de-
pends upon two factors, the impact of a node on output and width of a node
interval. The use of interval data and finding sensitivities with interval adjoints
make our method more robust than multiple existing methods. The results pre-
sented in this paper indicate indicate that the significance analysis correctly
finds out irrelevant input and hidden nodes in a network and it also gives us
much information to update the bias of relevant nodes so that performance of
the network does not comprise by removing irrelevant nodes.

Our future work will be aimed at applying interval adjoint significance analy-
sis on convolutional and fully connected layers of convolutional neural networks.
Furthermore, investigation will be carried out on applying significance analysis
during the training of a network and speed up the training process by eliminating
the less significant nodes from the network.
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