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Abstract. Floating-point arithmetics may lead to numerical errors when
numbers involved in an algorithm vary strongly in their orders of mag-
nitude. In the paper we study numerical stability of Zernike invariants
computed via complex-valued integral images according to a constant-
time technique from [2], suitable for object detection procedures. We
indicate numerically fragile places in these computations and identify
their cause, namely — binomial expansions. To reduce numerical errors
we propose piecewise integral images and derive a numerically safer for-
mula for Zernike moments. Apart from algorithmic details, we provide
two object detection experiments. They confirm that the proposed ap-
proach improves accuracy of detectors based on Zernike invariants.

Keywords: Zernike moments Complex-Valued Integral Images Nu-
merical Errors Reduction Object Detection.

1 Introduction

The classical approach to object detection is based on sliding window scans. It
is computationally expensive, involves a large number of image fragments (win-
dows) to be analyzed, and in practice precludes the applicability of advanced
methods for feature extraction. In particular, many moment functions [9], com-
monly applied in image recognition tasks, are often preculded from detection,
as they involve inner products i.e. linear-time computations with respect to the
number of pixels. Also, the deep learning aproaches cannot be applied directly
in detection, and require preliminary stages of prescreening or region-proposal.
There exist a few feature spaces (or descriptors) that have managed to by-

pass the mentioned difficulties owing to constant-time techniques discovered for
them within the last two decades. Haar-like features (HFs), local binary patterns
(LBPs) and HOG descriptor are state-of-the-art examples from this category
[14,4,1] The crucial algorithmic trick that underlies these methods and allows
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for constant-time — O(1) — feature extraction are integral images. They are
auxiliary arrays storing cumulative pixel intensities or other pixel-related ex-
pressions. Having prepared them before the actual scan, one is able to compute
fast the wanted sums via so-called ‘growth’ operations. Each growth involves
two addtions and one subtraction using four entries of an integral image.

In our research we try to broaden the existing repertoire of constant-time
techniques for feature extraction. In particular, we have managed to construct
such new techniques for Fourier moments (FMs) [7] and Zernike moments (ZMs)
[2]. In both cases a set of integral images is needed. For FMs, the integral images
cumulate products of image function and suitable trigonometric terms and have
the following general forms:

∑∑
j,k f(j, k) cos(−2π(jt/const1+ku/const2)), and∑∑

j,k f(j, k) sin(−2π(jt/const1+ku/const2)), where f denotes the image func-
tion and t, u are order-related parameters. With such integral images prepared,
each FM requires only 21 elementary operations (including 2 growths) to be ex-
tracted during a detection procedure. In the case of ZMs, complex-valued integral
images need to be prepared, having the form:

∑∑
j,k f(j, k)(k − ij)t(k + ij)u,

where i stands for the imaginary unit (i2= − 1). The formula to extract a sin-
gle ZM of order (p, q) is more intricate and requires roughly 124p

3 − 18pq2 + 1
12q
3

growths, but still the calculation time is not proportional to the number of pixels.

It should be remarked that in [2] we have flagged up, but not tackled, the
problem of numerical errors that may occur when computations of ZMs are
backed with integral images. ZMs are complex numbers, hence the natural data
type for them is the complex type with real and imaginary parts stored in
the double precision of the IEEE-754 standard for floating-point numbers (a
precision of approximately 16 decimal digits). The main culprit behind possi-
ble numerical errors are binomial expansions. As we shall show the algorithm
must explicitly expand two binomial expressions to benefit from integral images,
which leads to numbers of different magnitudes being involved in the compu-
tations. When multiple additions on such numbers are carried out, digits of
smaller-magnitude numbers can be lost.

In this paper we address the topic of numerical stability. The key new con-
tribution are piecewise integral images. Based on them we derive a numer-
ically safer formula for the computation of a single Zernike moment. The
resulting technique introduces some computational overhead, but remains to be
a constant-time technique.

2 Preliminaries

Recent literature confirms that ZMs are still being applied in many image recog-
nition tasks e.g: human age estimation [8], electrical symbols recognition [16],
traffic signs recognition [15], tumor diagnostics from magnetic resonance [13].
Yet, it is quite difficult to find examples of detection tasks applying ZMs di-
rectly. Below we describe the constant-time approach to extract ZMs within
detection, together with the proposition of numerically safe computations.
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2.1 Zernike moments, polynomials and notation

ZMs can be defined in both polar and Cartesian coordinates as:

Mp,q =
p+ 1

π

∫ 2π

0

∫ 1

0

f(r, θ)

(p−|q|)/2∑

s=0

βp,q,sr
p−2se−iqθ r dr dθ, (1)

=
p+ 1

π

∫∫

x2+y261

f(x, y)

(p−|q|)/2∑

s=0

βp,q,s(x+ iy)
1
2 (p−q)−s(x− iy)

1
2 (p+q)−s dx dy, (2)

where:

βp,q,s =
(−1)s(p− s)!

s!((p+ q)/2− s)!((p− q)/2− s)! , (3)

i is the imaginary unit (i2=− 1), and f is a mathematical or an image function
defined over unit disk [17,2]. p and q indexes, representing moment order, must
be simultaneously even or odd, and p > |q|.
ZMs are in fact the coefficients of an expansion of function f , given in terms

of Zernike polynomials Vp,q as the orthogonal base:
1

f(r, θ) =
∑

06p6∞

∑

−p6q6p
p−|q| even

Mp,qVp,q(r, θ), (4)

where Vp,q(r, θ) =
∑(p−|q|)/2
s=0 βp,q,sr

p−2seiqθ. As one can note Vp,q combines a
standard polynomial defined over radius r and a harmonic part defined over angle
θ. In applications, finite partial sums of expansion (4) are used. Suppose ρ and
̺ denote the imposed maximum orders, polynomial and harmonic, respectively,
and ρ > ̺. Then, the partial sum that approximates f can be written down as:

f(r, θ) ≈
∑

06p6ρ

∑

−min{p,̺}6q6min{p,̺}
p−|q| even

Mp,qVp,q(r, θ). (5)

2.2 Invariants under rotation

ZMs are invariant to scale transformations, but, as such, are not invariant to
rotation. Yet, they do allow to build suitable expressions with that property.
Suppose f ′ denotes a version of function f rotated by an angle α, i.e. f ′(r, θ) =
f(r, θ + α). It is straightforward to check, deriving from (1), that the following
identity holds

M ′p,q = e
iqαMp,q, (6)

whereM ′p,q represents a moment for the rotated function f
′. Hence in particular,

the moduli of ZMs are one type of rotational invariants, since

|M ′p,q| = |eiqαMp,q| = |eiqα||Mp,q| = |Mp,q|. (7)

1 ZMs expressed by (1) arise as inner products of the approximated function and
Zernike polynomials: Mp,q = 〈f, Vp,q〉

/
‖Vp,q‖

2.
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Apart from the moduli, one can also look at the following products of moments

Mp,q
nMv,s (8)

with the first factor raised to a natural power. After rotation one obtains

M ′p,q
n
M ′v,s=e

inqαMp,q
n eisαMv,s=e

i(nq+s)αMp,q
n Mv,s. (9)

Hence, by forcing nq+ s = 0 one can obtain many rotational invariants because
the angle-dependent term ei(nq+s)α disappears.

2.3 ZMs for an image fragment

In practical tasks it is more convenient to work with rectangular, rather than
circular, image fragments. Singh and Upneja [12] proposed a workaround to this
problem: a square of size w × w in pixels (w is even) becomes inscribed in the
unit disc, and zeros are “laid” over the square-disc complement. This reduces
integration over the disc to integration over the square. The inscription implies
that widths of pixels become

√
2/w and their areas 2/w2 (a detail important for

integration). By iterating over pixel indexes: 0 6 j, k 6 w− 1, one generates the
following Cartesian coordinates within the unit disk:

xk =
2k − (w − 1)
w
√
2

, yj =
w − 1− 2j
w
√
2
. (10)

In detection, it is usually sufficient to replace integration involved in Mp,q by a
suitable summation, thereby obtaining a zeroth order approximation. In subse-
quent sections we use the formula below, which represents such an approximation
(hat symbol) and is adjusted to have a convenient indexing for our purposes:

M̂2p+o,2q+o=
4p+2o+2

πw2

∑∑

06j,k6w−1
f(j, k)

∑

q6s6p

β2p+o,2q+o,p−s(xk+iyj)
s−q(xk−iyj)

s+q+o

(11)

— namely, we have introduced the substitutions p := 2p+ o, q := 2q + o. They
play two roles: they make it clear whether a moment is even or odd via the flag
o ∈ {0, 1}; they allow to construct integral images, since exponents 12 (p∓ s)− s
present in (2) are now suitably reduced.

2.4 Proposition from [2]

Suppose a digital image of size nx×ny is traversed by a w×w sliding window. For
clarity we discuss only a single-scale scan. The situation is sketched in Fig. 1. Let
(j, k) denote global coordinates of a pixel in the image. For each window under
analysis, its offset (top-left corner) will be denoted by (j0, k0). Thus, indexes of
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Fig. 1. Illustration of detection procedure using sliding window.

pixels that belong to the window are: j0 6 j 6 j0+w−1, k0 6 k 6 k0+w−1.
Alse let (jc, kc) represent the central index of the window:

jc =
1

2
(2j0 + w − 1), kc =

1

2
(2k0 + w − 1). (12)

Given a global index (j, k) of a pixel, the local Cartesian coordinates correspond-
ing to it (mapped to the unit disk) can be expressed as:

xk =
2(k−k0)− (w−1)

w
√
2

=

√
2

w
(k−kc), yj =

(w−1)− 2(j−j0)
w
√
2

=

√
2

w
(jc−j).
(13)

Let {iit,u} denote a set of complex-valued integral images2:

iit,u(l,m)=
∑∑

06j6l
06k6m

f(j, k)(k−ij)t(k+ij)u, 06l6ny−106m6nx−1; (14)

where pairs of indexes (t, u), generating the set, belong to: {(t, u) : 06t6⌊ρ/2⌋,
06u6min (ρ−t, ⌊(ρ+̺)/2⌋)}.
For any integral image we also define the growth operator over a rectangle

spanning from (j1, k1) to (j2, k2):

∆
j1,j2
k1,k2

(iit,u) = iit,u(j2, k2)−iit,u(j1−1, k2)−iit,u(j2, k1−1)+iit,u(j1−1, k1−1)

(15)

with two complex-valued substractions and one addition. The main result from
[2] (see there for proof) is as follows.

2 In [2] we have proved that integral images iit,u and iiu,t are complex conjugates at
all points, which allows for computational savings.
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Proposition 1 Suppose a set of integral images
{
iit,u

}
, defined as in (14), has

been prepared prior to the detection procedure. Then, for any square window in

the image, each of its Zernike moments (11) can be calculated in constant time
— O(1), regardless of the number of pixels in the window, as follows:

M̂2p+o,2q+o =
4p+2o+2

πw2

∑

2q+o62s+o62p+o

β2p+o,2q+o,p−s

(√
2

w

)2s+o

·
s−q∑

t=0

(
s−q
t

)
(−kc+ijc)

s−q−t
s+q+o∑

u=0

(
s+q+o

u

)
(−kc−ijc)

s+q+o−u ∆
j0,j0+w−1
k0,k0+w−1

(ii t,u) . (16)

3 Numerical errors and their reduction

Floating-point additions or subtractions are dangerous operations [6,10] because
when numbers of different magnitudes are involved, the right-most digits in the
mantissa of the smaller-magnitude number can be lost when widely spaced ex-
ponents are aligned to perfom an operation. When ZMs are computed according
to Proposition 1, such situations can arise in two places.
The connection between the definition-style ZM formula (11) and the integral

images-based formula (16) are expressions (13):
√
2
w (k−kc),

√
2
w (jc−j). They map

global coordinates to local unit discs. When the mapping formulas are plugged
into xk and yj in (11), the following subexpression arises under summations:

· · ·
(√
2/w

)2s+o
(k−ij − kc+ijc)

s−q(k+ij − kc−ijc)
s+q+o. (17)

Now, to benefit from integral images one has to explictly expand the two binomial
expressions, distinguishing two groups of terms: k∓ij — dependent on the global
pixel index, and −kc± ijc — independent of it . By doing so, coordinates of the
particular window can be isolated out and formula (16) is reached. Unfortunately,
this also creates two numerically fragile places. The first one are integral images
themselves, defined by (14). Global pixel indexes j, k present in power terms
(k − ij)t(k + ij)u vary within: 0 6 j 6 ny − 1 and 0 6 k 6 nx − 1. Hence,
for an image of size e.g. 640 × 480, the summands vary in magnitude roughly
from 100(t+u) to 103(t+u). To fix an example, suppose t + u = 10 (achievable
e.g. when ρ = ̺ = 10) and assume a roughly constant values image function.
Then, the integral image iit,u has to cumulate values ranging from 10

0 up to 1030.
Obviously, the rounding-off errors amplify as the iit,u sum progresses towards
the bottom-right image corner. The second fragile place are expressions: (−kc+
ijc)

s−q−t and (−kc − ijc)
s+q+o−u, involving the central index, see (16). Their

products can too become very large in magnitude as computations move towards
the bottom-right image corner.
In error reports we shall observe relative errors, namely:

err(φ, φ∗) = |φ− φ∗|
/
|φ∗|, (18)
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where φ denotes a feature (we skip indexes for readability) computed via integral
images while φ∗ its value computed by the definition. To give the reader an initial
outlook, we remark that in our C++ implementation noticeable errors start to
be observed already for ρ=̺=8 settings, but they do not yet affect significantly
the detection accuracy. For ρ=̺=10, the frequency of relevant errors is already
clear they do deteriorate accuracy. For example, for the sliding window of size
48× 48, about 29.7% of all features have relative errors equal at least 25%. The
numerically safe approach we are about to present reduces this fraction to 0.7%.

3.1 Piecewise integral images

The technique we propose for reduction of numerical errors is based on integral
images that are defined piecewise. We partition every integral image into a num-
ber of adjacent pieces, say of size W ×W (border pieces may be smaller due to
remainders), where W is chosen to exceed the maximum allowed width for the
sliding window. Each piece obtains its own “private” coordinate system. Infor-
mally speaking, the (j, k) indexes that are present in formula (14) become reset
to (0, 0) at top-left corners of successive pieces. Similarly, the values cumulated
so far in each integral image iit,u become zeroed at those points. Algorithm 1
demonstrates this construction. During detection procedure, global coordinates
(j, k) can still be used in main loops to traverse the image, but once the window
position gets fixed, say at (j0, k0), then we shall recalcuate that position to new
coordinates (j′0, k

′
0) valid for the current piece in the following manner:

N = ⌊j0/W ⌋, M = ⌊k0/W ⌋. (19)

j′0 = j0 −N ·W, k′0 = k0 −M ·W. (20)

Note that due to the introduced partitioning, the sliding window may cross
partitioning boundaries, and reside in either: one, two or four pieces of integral
images. That last situation is illustrated in Fig. 2. Therefore, in the general
case, the outcomes of growth operations ∆ for the whole window will have to
be combined from four parts denoted in the figure by P1, P2, P3, P4. An im-
portant role in that context will be played by the central index (jc, kc). In the
original approach its position was calculated only once, using global coordinates
and formula (12). The new technique requires that we “see” the central index
differently from the point of view of each part Pi. We give the suitable formulas
below, treating the first part P1 as reference.

jc,P1 = (2j
′
0 + w − 1)/2, kc,P1 = (2k

′
0 + w − 1)/2. (21)

jc,P2 = jc,P1 , kc,P2 = kc,P1 −W. (22)

jc,P3 = jc,P1 −W, kc,P3 = kc,P1 . (23)

jc,P4 = jc,P1 −W, kc,P4 = kc,P1 −W. (24)

Note that the above formulation can, in particular, yield negative coordinates.
More precisely, depending on the window position and the Pi part, the coordi-
nates of the central index can range within: −W+w/2 < jc,Pi , kc,Pi < 2W−w/2.
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Algorithm 1 Piecewise integral image

procedure PiecewiseIntegralImage(f , t, u, W )
create array iit,u of size nx×ny and auxiliary array ii of size ny
k := 0, j := 0
for x := 0, . . . , nx − 1 do
if x modW = 0 then
k := 0

for y := 0, . . . , ny − 1 do
if y modW = 0 then
j := 0

s := f(x, y)(k − ij)t(k + ij)u

if j > 0 then
ii[y] := ii[y − 1] + s

else

ii[y] := s

if k > 0 then
iit,u[x, y] := iit,u[x− 1, y] + ii[y]

else

iit,u[x, y] := ii[y]

j := j + 1

k := k + 1
return iit,u

global j

W

W

global k

image ny×nx window w×w
k0 6 k 6 k + w − 1
j0 6 j 6 j + w − 1globally:

(j0, k0)

(0, 0)piecewise k

P1 P2

P3 P4

(0, 0)

piecewise j

piecewise k

piecewise j

(jc, kc)

(0, 0)

piecewise j

piecewise k

(0, 0)

piecewise j

piecewise k(0, 0)

piecewise j

piecewise k(0, 0)

piecewise j

piecewise k

Fig. 2. Illustration of piecewise integral images. Growth operations must be in general
combined from four summands corresponding to parts P1, P2, P3, P4 using redefined
coordinates of the central index (jc, kc).
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3.2 Numerically safe formula for ZMs

As the starting point for the derivation we use a variant of formula (11), taking
into account the general window position with global pixel indexes ranging as
follows: j0 6 j 6 j0+w−1, k0 6 k 6 k0+w−1. We substitute 4p+2o+2πw2 into γ.

M̂2p+o,2q+o = γ
∑∑

j06j6j0+w−1
k06k6k0+w−1

f(j, k)
∑

q6s6p

β2p+o,2q+o,p−s

(√
2

w
(k−kc)

︸ ︷︷ ︸
xk

+i

√
2

w
(jc−j)

︸ ︷︷ ︸
yj

)s−q

·
(√
2

w
(k−kc)

︸ ︷︷ ︸
xk

−i

√
2

w
(jc−j)

︸ ︷︷ ︸
yj

)s+q+o
= γ

∑∑

j06j6j0+w−1
k06k6k0+w−1

f(j, k)
∑

q6s6p

β2p+o,2q+o,p−s

(√
2

w

)2s+o

·
(
k−kc + i(jc−j)

)s−q(
k−kc − i(jc−j)

)s+q+o
= γ

∑

P∈{P1,...,P4}

∑∑

(jP ,kP )∈P
fP (jP , kP )

·
∑

q6s6p

β2p+o,2q+o,p−s

(√
2

w

)2s+o
(kP−kc,P+i(jc,P−jP ))s−q(kP−kc,P−i(jc,P−jP ))s+q+o

=γ
∑

q6s6p

β2p+o,2q+o,p−s

(√
2

w

)2s+os−q∑

t=0

(
s−q
t

)s+q+o∑

u=0

(
s+q+o

u

) ∑

P∈{P1,...,P4}
(9kc,P+ijc,P )

s−q−t

· (9kc,P−ijc,P )
s+q+o−u ∑∑

(jP ,kP )∈P
fP (jP , kP ) (kP−ijP )

t
(kP+ijP )

u

︸ ︷︷ ︸
∆
P

(iit,u)

. (25)

The second pass in the derivation of (25) splits the original summation into
four smaller summations over window parts lying within different pieces of in-
tegral images, see Fig. 2. We write this down for the most general case when
the window crosses partitioning boundaries along both axes. We remind that
three simpler cases are also possible: {P1} (no crossings), {P1, P2} (only vertical
boundary crossed), {P1, P3} (only horizontal boundary crossed). The parts are
directly implied by: the offset (j0, k0) of detection window, its width w and pieces
size W . For strictness, we could have written a functional dependence of form
P (j0, k0, w,W ), which we skip for readability. Also in this pass we switch from
global coordinates (j, k) to piecewise coordinates (jP , kP ) valid for the given part
P . The connection between those coordinates can be expressed as follows

j=

{
N ·W+jP , P ∈ {P1, P2};
(N+1)·W+jP , P ∈ {P3, P4};

k=

{
M ·W+kP , P ∈ {P1, P3};
(M+1)·W+kP , P ∈ {P2, P4}.

(26)

In the third pass we apply two binomial expansions. In both of them we distin-
guish two groups of terms: −kc,P ± ijc,P (independent of the current pixel index)
and kP ∓ ijP (dependent on it). Lastly, we change the order of summations and
apply the constant-time ∆ operation.
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The key idea behind formula (25), regarding its numerical stability, lies in the
fact that it uses decreased values of indexes jP , kP , jc,P , kc,P , comparing to the
original approach, while maintaning the same differences kP −kc,P and jc,P −jP .
Recall the initial expressions (k− kc)

√
2/w and (jc− j)

√
2/w and note that one

can introduce arbitrary shifts, e.g. k := k ± α and kc := kc ± α (analogically
for the pair: j, jc) as long as differences remain intact. Later, when indexes in
such a pair become separated from each other due to binomial expansions, their
numerical behaviour is safer because the magnitude orders are decreased.
Features with high errors can be regarded as damaged, or even useless for

machine learning. In Table 1 and Fig. 3 we report percentages of such features for
a given image, comparying the original and the numerically safer approach. The
figure shows how the percentage of features with relative errors greater than 0.25,
increases as the sliding window moves towards the bottom-right image corner.

Table 1. Percentages of damaged features (with relative errors at least 0.1, 0.25, 0.5)
for a 640× 480 image and different feature spaces and window sizes. Percentage values
averaged over all possible window positions. Smaller percentages marked by gray color.

type of

integral images

and window size

ρ = ̺ = 6

relative errors:

ρ = ̺ = 8

relative errors:

ρ = ̺ = 10

relative errors:

ρ = ̺ = 12

relative errors:

0.1 0.25 0.5 0.1 0.25 0.5 0.1 0.25 0.5 0.1 0.25 0.5

original, 48× 48 0.020 0.004 0.001 10.95 8.280 6.521 32.75 29.71 27.49 49.14 46.62 44.74
piecewise, 48× 48 0 0 0 0.0009 0 0 1.358 0.673 0.344 12.34 9.821 8.090

original, 56× 56 0.002 0 0 6.915 4.882 3.590 27.68 24.67 22.45 44.79 42.18 40.22

piecewise, 56× 56 0 0 0 0 0 0 0.370 0.128 0.049 8.039 5.929 4.539

original, 68× 68 0 0 0 3.187 1.887 1.120 21.08 18.07 15.86 38.79 35.95 33.80

piecewise, 68× 68 0 0 0 0 0 0 0.027 0.007 0.002 3.704 2.307 1.513

original, 82× 82 0 0 0 0.958 0.389 0.162 14.52 11.71 9.792 32.21 29.19 26.97

piecewise, 82× 82 0 0 0 0 0 0 0.001 0 0 1.179 0.560 0.258

Fig. 3. Percentage of features with relative error at least 0.25 for each possible position
of 68×68 sliding window: (left) input image of size 640×480, (middle) original approach,
(right) piecewise approach with W = 172. Feature space settings: ρ = ̺ = 12.

4 Experiments

In subsequent experiments we apply RealBoost (RB) learning algorithm pro-
ducing ensembles of weak classifiers: shallow decision trees (RB+DT) or bins
(RB+B), for details see [5,11,2]. Ensemble sizes are denoted by T . Two types of
feature spaces are used: based solely on moduli of Zernike moments (ZMs-M),
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and based on extended Zernike product invariants (ZMs-E); see formulas (7), (8),
respectively. The ‘-NER’ suffix stands for: numerical errors reduction. Feature
counts are specified in parenthesis. Hence, e.g. ZMs-E-NER (14250) represents
extended Zernike invariants involving over 14 thousand features, computed ac-
coring to formula (25) based on piecewise integral images.
Experiment: “Synthetic A letters” For this experiment we have pre-

pared a synthetic data set based on font material gathered by T.E. de Campos
et al. [3,2]. A subset representing ‘A’ letters was treated as positives (targets).
In train images, only objects with limited rotations were allowed (±45◦ with
respect to their upright positions). In contrast, in test images, rotations within
the full range of 360◦ were allowed. Tab. 2 lists details of the experimental setup.

Table 2. “Synthetic A letters”: experimental setup.

train data test data detection procedure
quantity / parameter value quantity / parameter value quantity / parameter value

no. of positives 20 384 no. of positives 417 image resolution 600× 480
no. of negatives 323 564 no. of negatives 3 745 966 no. of detection scales 5
total set size 343 948 total set size 3 746 383 window growing coef. 1.2

no. of images 200 smallest window 100× 100
largest window size 208× 208
window jumping coef. 0.05

We report results in the following forms: examples of detection outcomes
(Fig. 4), ROC curves over logarithmic FAR axis (Fig. 5a), test accuracy measures
for selected best detectors (Tab. 4). Accuracy results were obtained by a batch
detection procedure on 200 test images including 417 targets (within the total
of 3 746 383 windows).
The results show that detectors based on features obtained by the numerically

safe formula achieved higher classification quality. This can be well observed in
ROCs, where solid curves related to the NER variant dominate dashed curves,
and is particularly evident for higher orders ρ and ̺ (blue and red lines in
Fig. 5a). These observations are also confirmed by Tab. 4

Fig. 4. “Synthetic A letters”: detection examples. Two last images show error examples
— a misdetection and a false alarm (yellow).

Experiment: “Faces” The learning material for this experiment consisted
of 3 000 images with faces (in upright position) looked up using theGoogle Images
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(a): "Synthetic A letters" ROCs

ZMs-M: (375) [8, 8, 8]; RB+DT: T = 512, B = 64
ZMs-M-NER: (375) [8, 8, 8]; RB+DT: T = 512, B = 64
ZMs-E: (3975) [8, 8, 8]; RB+DT: T = 512, B = 64
ZMs-E-NER: (3975) [8, 8, 8]; RB+DT: T = 512, B = 64
ZMs-M: (540) [10, 10, 8]; RB+DT: T = 512, B = 64
ZMs-M-NER: (540) [10, 10, 8]; RB+DT: T = 512, B = 64
ZMs-E: (7950) [10, 10, 8]; RB+DT: T = 512, B = 64
ZMs-E-NER: (7950) [10, 10, 8]; RB+DT: T = 512, B = 64
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((): "FACES" ROCs

ZMs-M (735) [12, 12, 8];  B+DT: T=512, B=64
ZM)-M-NE  (735) [12, 12, 8];  B+DT: T=512, B=64
ZM)-M (840) [13, 13, 8];  B+DT: T=512, B=64
ZM)-M-NE  (840) [13, 13, 8];  B+DT: T=512, B=64
ZM)-E (14250) [12, 12, 8];  B+DT: T=512, B=64
ZM)-E-NE  (14250) [12, 12, 8];  B+DT: T=512, B=64
ZM)-E (17775) [13, 13, 8];  B+DT: T=512, B=64
ZM)-E-NE  (17775) [13, 13, 8];  B+DT: T=512, B=64
HF): (21780) [90+11.25- ];  B+B: T=512, B=16

Fig. 5. (a): “Synthetic A letters”: ROC curves for test data, (b) “Faces”: ROC curves
for test data for prescreeners and one example of angle-dependent classifier.

and produced a train set with 7 258 face examples (positives). The testing phase
was a two-stage process, consisting of preliminary and final tests. Preliminary
tests were meant to generate ROC curves and make an initial comparison of
detectors. For this purpose we used another set of faces (also in upright position)
containing 1 000 positives and 2 000 000 negatives. The final batch tests were
meant to verify the rotational invariance. For this purpose we have prepared the
third set, looking up faces in unnatural rotated positions (example search queries:
“people lying down in circle”, “people on floor”, “face leaning to shoulder”, etc.).
We stopped after finding 100 such images containing 263 faces in total.

Table 3. “Faces”: experimental setup.

train data (upright faces) final test data (rotated faces) detection procedure
quantity / parameter valuequantity / parameter valuequantity / parameter value

no. of positives 7 258no. of positives 263 image height 480
no. of negatives 100 000no. of negatives 14 600 464window growing coef. 1.2
total set size 107 258total set size 14 600 564smallest window 48× 48

no. of images 100 largest window 172× 172
window jumping coefficient 0.05

Zernike invariants as prescreeners Preliminary tests revealed that classifiers
trained on Zernike features were not accurate enough to work as standalone face
detectors invariant to rotation. ROC curves (Fig. 5b) indicate that sensitivities
at satisfactory levels of ≈90% are coupled with false alarm rates ≈ 2·10−4, which,
though improved with respect to [2]3, is still too high to accept. Therefore, we
decided to apply obtained detectors as prescreeners invariant to rotation. Candi-
date windows selected via prescreening4 were then analyzed by angle-dependent
classifiers. We prepared 16 such classifiers, each responsible for an angular sec-
tion of 22.5◦, trained using 10 125 HFs and RB+B algorithm. Fig. 5b shows an
example of ROC for an angle-dependent classifier (90◦±11.25◦). The precreening
eliminated about 99.5% of all windows for ZMs-M and 97.5% for ZMs-E.
Table 4 reports detailed accuracy results, while Fig. 6 shows detection exam-

ples. It is fair to remark that this experiment turned out to be much harder than

3 In [2] the analogical false alarm rates were at the level ≈ 5 · 10−3.
4 We chose decision thresholds for prescreeners to correspond to 99.5% sensitivity.
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Table 4. Batch detection results for: “Synthetic A letters” and “Faces”.

“Synthetic A letters” “Faces”

feature space

(no. of feats.)
sensi-
tivity

FAR
per

image

FAR
per

window

[·10−6]

accuracy
per

window

feature space

(no. of feats.)
sensi-
tivity

FAR
per

image

FAR
per

window

[·10−7]

accuracy
per

window

ZMs-M (375) .979 8/200 2.13 .999995734 ZMs-M (735) .890 14/100 9.6 .999997054

ZMs-M-NER (375) .979 8/200 2.13 .999995734 ZMs-M-NER (735) .905 16/100 11.0 .999997192

ZMs-M (540) .966 17/200 4.53 .999992001 ZMs-M (840) .897 15/100 10.3 .999997123

ZMs-M-NER (540) .987 8/200 2.13 .999996534 ZMs-M-NER (840) .905 8/100 5.5 .999997740

ZMs-E (3975) .982 3/200 0.80 .999997334 ZMs-E (14250) .867 6/100 4.1 .999997192

ZMs-E-NER (3975) .979 2/200 0.53 .999997334ZMs-E-NER (14250) .878 8/100 5.5 .999997260

ZMs-E (7950) .971 9/200 2.40 .999994667 ZMs-E (17775) .897 6/100 4.1 .999997740

ZMs-E-NER (7950) .992 0/200 0 .999999200ZMs-E-NER (17775) .875 10/100 6.8 .999997055

the former one. Our best face detectors based on ZMs and invariant to rotation
have the sensitivity of about 90% together with about 7% of false alarms per
image, which indicates that further fine-tuning or larger training sets should be
considered. As regards the comparison between standard and NER variants, as
previously the ROC curves show a clear advantage of NER prescreeners (solid
curved dominate their dashed counterparts). Accuracy results presented in Table
4 also show such a general tendency but are less evident. One should remember
that these results pertain to combinations: ‘prescreener (ZMs) + postscreener
(HFs)’. An improvement in the prescreener alone may, but does not have to,
influence directly the quality of the whole system.

Fig. 6. “Faces”: detection examples. Images prescreened with ZMs-E features then
processed with angle-dependent classifiers (HFs).

5 Conclusion

We have improved the numerical stability of floating-point computations for
Zernike moments (ZMs) backed with piecewise integral images. We hope this
proposition can pave way to more numerous detection applications involving
ZMs. A possible future direction for this research could be to analyze the com-
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putational overhead introduced by the proposed approach. Such analysis can be
carried out in terms of expected value of the number of needed growth operations.
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