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Abstract. We introduce a data-dependent regularization problem which
uses the geometry structure of the data to learn functions from incom-
plete data. We show another proof of the standard representer theorem
when introducing the problem. At the end of the paper, two applications
in image processing are used to illustrate the function learning frame-
work.
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1 Introduction

1.1 Background

Many machine learning problems involve the learning of multidimensional func-
tions from incomplete training data. For example, the classification problem can
be viewed as learning a function whose function values give the classes that the
inputs belong to. The direct representation of the function in high-dimensional
spaces often suffers from the issue of dimensionality. The large number of pa-
rameters in the function representation would translate to the need of extensive
training data, which is expensive to obtain. However, researchers found that
many natural datasets have extensive structure presented in them, which is usu-
ally known as manifold structure. The intrinsic structure of the data can then
be used to improve the learning results. Nowadays, assuming data lying on or
close to a manifold becomes more and more common in machine learning. It
is called manifold assumption in machine learning. Though researchers are not
clear about the theoretical reason why the datasets have manifold structure, it is
useful for supervised learning and it gives excellent performance. In this work, we
will exploit the manifold structure to learn functions from incomplete training
data.

1.2 A Motivated Example

One of the main problems in numerical analysis is function approximation. Dur-
ing the last several decades, researchers usually considered the following problem
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2 Q. Zou

to apply the theory of function approximation to real-world problems:

min
f
||Lf ||2, s.t. f(xi) = yi, (1)

where L is some linear operator, {(xi, yi)}ni=1 ⊂ X ×R are n accessible observa-
tions and X ⊂ Rd, d ≥ 1 is the input space. We can use the method of Lagrange
multiplier to solve Problem (1). Assume that the searching space for the function
f is large enough (for example L2 space). Then the Lagrangian function C(f) is
given by

C(f) = 〈Lf, Lf〉+

n∑
i=1

λi(f(xi)− yi).

Taking the gradient of the Lagrangian function w.r.t. the function f gives us

C ′(f) = lim
ε→0

C(f + εf)− C(f)

ε
= lim
ε→0

2ε〈Lf, Lf〉+ ε
∑
λiεf(xi)

ε

= 2〈Lf, Lf〉+

n∑
i=1

λif(xi).

Setting C ′(f) = 0, we have

2〈Lf, Lf〉 = −
n∑
i=1

λif(xi) = −
n∑
i=1

λi〈f(x), δ(x− xi)〉,

where δ(· − x) is the delta function. Suppose L∗ is the adjoint operator of L.
Then we have

2〈f(x), (L+ L∗)f〉 = 〈f(x),−
n∑
i=1

λiδ(x− xi)〉,

which gives us 2(L+L∗)f = −
∑n
i=1 λiδ(x−xi). This implies f =

∑n
i=1 ai`(x, xi),

for some ai and `(·, ·).

1.3 Kernels and Representer Theorem

As machine learning develops fast these years, kernel methods [1] have received
much attentions. Researchers found that working in the original data space is
somehow not well-performed. So, we would like to map the data to a high di-
mensional space (feature space) using some non-linear mapping (feature map).
Then we can do a better job (e.g. classification) in the feature space. When we
talk about feature map, one concept that is unavoidable to mention is the ker-
nel, which easily speaking is the inner product of the features. With a kernel
(positive definite), we can then have a corresponding reproducing kernel Hilbert
space (RKHS) [2] HK . We can now solve the problem that is similar to (1) in
the RKHS:

min
f∈HK

||f ||2HK
s.t. f(xi) = yi.
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A more feasible way is to consider a regularization problem in the RKHS:

min
f∈HK

||f(xi)− yi||2 + λ||f ||2HK
. (2)

Then the searching space of f becomes HK , which is a Hilbert space. Before
solving Problem (2), we would like to recall some basic concepts about the RKHS.
Suppose we have a positive definite kernel K : X ×X → R, i.e.,

n∑
i=1

n∑
j=1

aiajK(xi, xj) ≥ 0, n ∈ N, x1, · · · , xn ∈ X, a1, · · · , an ∈ R,

then HK is the Hilbert space corresponding to the kernel K(·, ·). It is defined by
all the possible linear combination of the kernel K(·, ·), i.e., HK = span{K(·, ·)}.
Thus, for any f(·) ∈ HK , there exists xi and αi such that

f(·) =
∑
i

αiK(·, xi).

Since HK is a Hilbert space, it is equipped with an inner product. The
principle to define the inner product is to let HK have representer K(·, x) and
the representer performs like the delta function for functions in L2 (note that
delta function is not in L2). In other word, we want to have a similar result to
the following formula:

f(x) = 〈f(·), δ(· − x)〉L2
.

This is called reproducing relation or reproducing property. In HK , we want to
define the inner product so that we have the reproducing relation in HK :

f(x) = 〈f(·),K(·, x)〉HK
.

To achieve this goal, we can define

〈f, g〉HK
= 〈
∑
i

αiK(·, xi),
∑
j

βjK(·, xj)〉HK

=:
∑
i

∑
j

αiβjK(xi, xj).

Then we have
〈K(·, x),K(·, y)〉HK

= K(x, y)

With the kernel, the feature map Φ·(x) can be defined as

Φ·(x) = K(·, x).

Having these knowledge about the RKHS, we can now look at the solution of
Problem (2). It can be characterized by the famous conclusion named representer
theorem, which states that the solution of Problem (2) is

f(x) =

n∑
i=1

αiK(x, xi).
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4 Q. Zou

The standard proof of the representer theorem is well-known and can be found
in many literatures, see for example [3, 4]. While the drawback of the standard
proof is that the proof did not provide the expression of the coefficients αi.
In the first part of this work, we will provide another proof of the representer
theorem. As a by-product, we can also build the relation between Problem (1)
and Problem (2).

2 Another Proof of Representer Theorem

To give another proof of the representer theorem, we first build some relations
between 〈·, ·〉HK

and 〈·, ·〉L2 . We endow the dataset X with a measure µ. Then
the corresponding L2(X) inner product is given by

〈f, g〉L2
=

∫
X

f · gdµ.

Consider an operator L on f with respect to the kernel K:

Lf(x) =

∫
X

f(y)K(x, y)dµ, (3)

which is the Hilbert-Schmidt integral operator [5]. This operator is self-adjoint,
bounded and compact. By the spectral theorem [6], we can obtain that the
eigenfunctions e1(x), e2(x), · · · of the operator will form an orthonormal basis of
L2(X), i.e.,

〈ei, ej〉L2 =

{
1, i = j

0, i 6= j
.

With the operator L defined as (3), we can look at the relations between
〈·, ·〉L2(X) and 〈·, ·〉HK

. Suppose ei(x) are the eigenfunctions of the operator L
and λi are the corresponding eigenvalues, then

〈K(x, y), ei(y)〉L2(X) =

∫
X

ei(y)K(x, y)dµ = λiei(x). (4)

But by the reproducing relation, we have

〈K(x, y), ei(y)〉HK
= ei(x).

Now, let us look at how to represent K(x, y) by the eigenfunctions. We have

K(x, y) =
∑
i

λiei(x)ei(y),

and λi can be computed by

λi =

∫
X

∫
X

K(x, y)ei(x)ei(y)dxdy.

To see K(x, y) =
∑
i λiei(x)ei(y), we can just plug it into (4) to verify it:

〈K(x, y), ei(y)〉L2(X) =

∫
X

ei(y)
∑
j

λjej(x)ej(y)dµ(y)
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=
∑
j

λj

∫
X

ej(x)ei(y)ej(y)dµ(y) =
∑
j

λjej(x)

∫
X

ei(y)ej(y)dy = λiei(x).

Since the eigenfunctions of L form an orthogonal basis of L2(X), then for
any f ∈ L2, it can be written as f =

∑
i aiei(x). So we have

〈K(x, ·), f(·)〉HK
= f(x) =

∑
i

aiei(x).

While for the L2 norm, we have

〈K(x, ·), f(·)〉L2(X) = 〈K(x, ·),
∑
i

aiei(·)〉L2(X)

=
∑
i

ai〈K(x, ·), ei(·)〉L2(X) =
∑
i

aiλiei(x).

Next we show that the orthonormal basis ei(x) are within HK . Note that

ei(x) = 〈K(x, ·), ei(·)〉HK
= 〈
∑
j

λjej(x)ej(·), ei(·)〉HK
,

which implies

ei(x) =
∑
j

λjej(x)〈ej(·), ei(·)〉HK
.

So we can get

〈ej , ei〉HK
=

{
0, i 6= j
1
λi
, i = j

<∞.

Therefore, we get ei(x) ∈ HK .

We now need to investigate that for any f =
∑
i aiei(x) ∈ L2(X), when will

we have that f ∈ HK . To let f ∈ HK , we need to have ||f ||2HK
≤ ∞. So

||f ||2HK
= 〈f, f〉HK

= 〈
∑
i

aiei(x),
∑
i

aiei(x)〉HK

=
∑
i

a2i 〈ej , ei〉HK
=
∑
i

a2i ·
1

λi
<∞.

This means that to let f =
∑
i aiei(x) ∈ HK , we need to have

∑
i
a2i
λi
<∞ [7].

Combining all these analysis, we can then get the following relation between
〈·, ·〉L2(X) and 〈·, ·〉HK

:

〈f, g〉L2(X) = 〈L1/2f, L1/2g〉HK
, ∀f, g ∈ HK , L = L1/2 ◦ L1/2.

According to which, we can have another proof of the representer theorem.
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Proof. Suppose e1, e2, · · · are eigenfunctions of the operator L. Then we can

write the solution as f∗ =
∑
i aiei(x). To let f∗ ∈ HK , we require

∑
i
a2i
λi
<∞.

We consider here a more general form of Problem (2):

min
f∈HK

n∑
i=1

E ((xi, yi), f(xi)) + λ||f ||2HK
,

where E(·, ·) is the error function which is differentiable with respect to each ai.
We would use the tools in L2(X) space to get the solution.

The cost function of the regularization problem is

C(f) =
n∑
i=1

E ((xi, yi), f(xi)) + λ||f ||2HK
.

By substituting f∗ into the cost function, we have

C(f∗) =

n∑
i=1

E

(xi, yi),
∑
j

ajej(xi)

+ λ||f∗||2HK
.

Since

||f∗||2HK
= ||

∑
i

aiei(x)||2HK
= 〈
∑
i

aiei(x),
∑
i

aiei(x)〉HK
=
∑
i

a2i
λi

(<∞),

differentiating C(f∗) w.r.t. each ai and setting it equal to zero gives

∂C(f∗)

∂ak
=

n∑
i=1

ek(xi)∂2E

(xi, yi),
∑
j

ajej(xi)

+ 2λ
ak
λk

= 0.

Solving ak, we get

ak = −λk
2λ

n∑
i=1

ek(xi)∂2E ((xi, yi), f
∗) .

Since f∗ =
∑
k akek(x), we have

f∗ =
∑
k

(
−λk

2λ

n∑
i=1

ek(xi)∂2E ((xi, yi), f
∗)

)
ek(x)
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= − 1

2λ

n∑
i=1

(∑
k

λkek(xi)ek(x)∂2E ((xi, yi), f
∗)

)

= − 1

2λ

n∑
i=1

K(x, xi) · ∂2E ((xi, yi), f
∗)

=

n∑
i=1

(
− 1

2λ
∂2E ((xi, yi), f

∗)

)
︸ ︷︷ ︸

:=αi

·K(x, xi) =:

n∑
i=1

αiK(x, xi).

This proves the representer theorem.

Note that this result not only proves the representer theorem, but also gives
the expression of the coefficients αi.

With the operator L, we can also build a relation between Problem (1) and
Problem (2). Define the operator in Problem (1) to be the inverse of the Hilbert-
Schmidt Integral operator. The discussion on the inverse of the Hilbert-Schmidt
Integral operator can be found in [8]. Note that for the delta function, we have

Lδ(x, xi) =

∫
X

δ(y, xi)K(x, y)dy = K(x, xi).

Then the solution of Problem (1) becomes 2(2L−1)f = −
∑n
i=1 λiδ(x, xi). So we

have L−1f = −
∑n
i=1

λi

4 δ(x, xi). Applying L on both sides gives

L(L−1f) =

n∑
i=1

(−λi
4

)Lδ(x, xi).

By which we obtain

f =

n∑
i=1

(−λi
4

)K(x, xi) =:

n∑
i=1

βiK(x, xi).

3 Data-dependent Regularization

So far, we have introduced the standard representer theorem. While as we dis-
cussed at the very beginning, many natural datasets have the manifold structure
presented in them. So based on the classical Problem (2), we would like to intro-
duce a new learning problem which exploits the manifold structure of the data.
We call it the data-dependent regularization problem. Regularization problem
has a long history going back to Tikhonov [9]. He proposed the Tikhonov regu-
larization to solve the ill-posed inverse problem.

To exploit the manifold structure of the data, we can then divide a function
into two parts: the function restricted on the manifold and the function restricted
outside the manifold. So the problem can be formulated as

min
f∈HK

||f(xi)− yi||2 + α||f1||2M + β||f2||2Mc , (5)
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where f1 = f |M and f2 = f |Mc . The norms || · ||M and || · ||Mc will be explained
later in details. α and β are two parameters which control the degree for penal-
izing the energy of the function on the manifold and outside the manifold. We
will show later that by controlling the two balancing parameters (set α = β),
the standard representer theorem is a special case of Problem (5).

We now discuss something about the functions f1 and f2. Consider the am-
bient space X ⊂ Rn (or Rn) and a positive definite kernel K. Let us first look at
the restriction of K to the manifold M⊂ X. The restriction is again a positive
definite kernel [2] and it will then have a corresponding Hilbert space. We con-
sider the relation between the RKHS HK and the restricted RKHS to explain
the norms || · ||M and || · ||Mc .

Lemma 1 ( [10]). Suppose K : X × X → R (or Rn × Rn → R) is a positive
definite kernel. Let M be a subset of X (or Rn). F(M) denote all the functions
defined on M. Then the RKHS given by the restricted kernel K1 :M×M→ R
is

H1(M) = {f1 ∈ F(M) : f1 = f |M for some f ∈ HK} (6)

with the norm defined as

||f1||M =: min{||f ||HK
: f ∈ HK , f |M = f1}.

Proof. Define the set

S(M) =: {fr ∈ F(M) : ∃f ∈ HK s.t. fr = f |M}.

We first show that the set A = {||f ||HK
: f ∈ HK , f |M = fr} has a minuma for

any fr ∈ S(M). Choose a sequence {fi}∞i=1 ⊂ HK . Then the sequence is bounded
because the space HK is a Hilbert space. It is reasonable to assume that {fi}∞i=1

is weakly convergent because of the Banach-Alaoglu theorem [11]. By the weakly
convergence, we can obtain pointwise convergence according to the reproducing
property. So the limit of the sequence {fi}∞i=1 attains the minima.

We further define ||fr||S(M) = minA. We show that
(
S(M), || · ||S(M)

)
is a

Hilbert space by the parallelogram law. In other word, we are going to show that

2(||f1||2S(M) + ||g1||2S(M)) = ||f1 + g1||2S(M) + ||f1 − g1||2S(M), ∀f1, g1 ∈ S(M).

Since we defined ||fr||S(M) = minA. Then for all f1, g1 ∈ S(M), there exists
f, g ∈ HK such that

2(||f1||2S(M) + ||g1||2S(M)) ≤ 2(||f ||2HK
+ ||g||2HK

) = ||f + g||HK
+ ||f − g||HK

.

By the definition of S(M), we can choose f1, g1such that

||f1 + g1||2S(M) = ||f + g||2HK

and
||f1 − g1||2S(M) = ||f − g||2HK

.
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Thus, we have

2(||f1||2S(M) + ||g1||2S(M)) ≤ ||f1 + g1||2S(M) + ||f1 − g1||2S(M).

For the reverse inequality, we first choose f1, g1 such that ||f1||2S(M) = ||f ||2HK

and ||g1||2S(M) = ||g||2HK
. Then

2(||f1||2S(M) + ||g1||2S(M)) = 2(||f ||2HK
+ ||g||2HK

)

=||f + g||2HK
+ ||f − g||2HK

≥ ||f1 + g1||2S(M) + ||f1 − g1||2S(M).

Therefore, we get

2(||f1||2S(M) + ||g1||2S(M)) = ||f1 + g1||2S(M) + ||f1 − g1||2S(M).

Next, we show (6) by showing that for all fr ∈ S(M) and x ∈M,

fr(x) = 〈fr(·),K1(·, x)〉S(M),

where K1 = K|M×M.
Choose f ∈ HK such that fr = f |M and ||fr||S(M) = ||f ||HK

. This is possible
because of the analysis above. Specially, we have

||K1(·, x)||S(M) = ||K(·, x)||HK
, ∀x ∈M.

Now, for any function f ∈ HK such that f |M = 0, we have

||K(·, x) + f ||2HK
= ||K(·, x)||2HK

+ ||f ||2HK
+ 2〈f,K(·, x)〉HK

=||K(·, x)||2HK
+ ||f ||2HK

+ 2f(x) = ||K(·, x)||2HK
+ ||f ||2HK

.

Thus,

〈fr(·),K1(·, x)〉S(M) = 〈f,K(·, x)〉HK
= f(x) = fr(x), ∀x ∈M.

This completes the proof of the lemma.

With this lemma, the solution of Problem (5) then becomes easy to obtain.
By the representer theorem we mentioned before, we know that the function
satisfies

min
f∈HK

||f(xi)− yi||2 + λ||f ||2HK

is f =
∑n
i=1 aiK(x, xi). Since we have

||f1||2M = min{||f ||HK
: f |M = f1},

||f2||2Mc = min{||f ||HK
: f |Mc = f2}.

Thus, we can conclude that is solution of (5) is exactly

f =

n∑
i=1

aiK(x, xi),
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where the coefficients ai are controlled by the parameters α and β.
With the norms || · ||M and || · ||Mc being well-defined, we would like to seek

the relation between || · ||M, || · ||Mc and || · ||HK
. Before stating the relation, we

would like to restate some of the notations to make the statement more clear.
Let

K1 = K|M×M , K2 = K|(M×M)c

and
H1(M) = {f1 ∈ F(M) : f1 = f |M for some f ∈ HK},

||f1||M =: min{||f ||HK
: f ∈ HK , f |M = f1}.

H2(Mc) = {f2 ∈ F(Mc) : f2 = f |Mc for some f ∈ HK},

||f2||Mc =: min{||f ||HK
: f ∈ HK , f |Mc = f2}.

To find the relation between || · ||M, || · ||Mc and || · ||HK
, we need to pullback

the restricted kernel K1 and K2 to the original space. To do so, define

Kp
1 =

{
K1, (x, y) ∈M×M
0, (x, y) ∈ (M×M)c

.

Kp
2 =

{
K2, (x, y) ∈ (M×M)c

0, (x, y) ∈M×M
.

Then we have K = Kp
1 +Kp

2 . The corresponding Hilbert spaces for Kp
1 and Kp

2

are
Hp1(M) = {fp1 ∈ F(X) : fp1 |M = f1, f

p
1 |Mc = 0},

Hp2(Mc) = {fp2 ∈ F(X) : fp2 |Mc = f2, f
p
2 |M = 0}.

It is straightforward to define that

||fp1 ||HK
p
1

= ||f1||M,

||fp2 ||HK
p
2

= ||f2||Mc .

The following lemma shows the relation between || · ||HK
p
1

, || · ||HK
p
2

and || · ||HK
,

which also reveals the relation between || · ||M, || · ||Mc and || · ||HK
by Moore-

Aronszajn theorem [12].

Lemma 2. Suppose K1,K2 : Y × Y → R (or Rn × Rn → R) are two positive
definie kernels. If K = K1 +K2, then

HK = {f1 + f2 : f1 ∈ HK1 , f2 ∈ HK2}

is a Hilbert space with the norm defined by

||f ||2HK
= min
f1∈HK1

,f2∈HK2
,f=f1+f2

||f1||2HK1
+ ||f2||2HK2

.
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The idea of the proof of this lemma is exactly the same as the one for Lemma
1. Thus we omit it here.

A direct corollary of this lemma is:

Corollary 1. Under the assumption of Lemma 2, if the functions in HK1
and

HK2
have no functions except for zero function in common. Then the norm of

HK is given simply by

||f ||2HK
= ||f1||2HK1

+ ||f2||2HK2
.

If we go back to our scenario, we can get the following result by Corollary 1:

||f ||2HK
= ||f1||2M + ||f2||2Mc .

This means that if we set α = β in Problem (5), it will reduce to Problem
(2). Therefore, the standard representer theorem is a special case of our data-
dependent regularization problem (5).

4 Applications

As we said in the introduction part, many engineering problems can be viewed
as learning multidimensional functions from incomplete data. In this section, we
would like to show two applications of functions learning: image interpolation
and patch-based iamge denoising.

4.1 Image Interpolation

Image interpolation tries to best approximate the color and intensity of a pixel
based on the values at surrounding pixels. See Fig. 1 for illustration. From func-
tion learning perspective, image interpolation is to learn a function from the
known pixels and their corresponding positions.

Fig. 1. Illustration of image interpolation. The size of the original image is 6 × 6. We
want to enlarge it as an 11 × 11 image. Then the blue shaded positions are unknown.
Using image interpolation, we can find the values of these positions.

We would like to use the Lena image as shown in Fig. 2 (a) to give an example
of image interpolation utilizing the proposed framework. The zoomed image is
shown in Fig. 2 (d). In the image interpolation example, the two balancing
parameters are set to be the same and the Laplacian kernel [13] is used:

K(x, y) = exp

(
−||x− y||

σ

)
.
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Note that we can also use other kernels, for example, polynomial kernel and
Gaussian kernel to proceed image interpolation. Choosing the right kernel is
an interesting problem and we do not have enough space to compare different
kernels in this paper.

In Fig. 2 (b), we downsampled the original image by a factor of 3 in each
direction. The zoomed image is shown in Fig. 2 (e). The interpolation result
with the zoomed image are shown in Fig. 2 (c) and Fig. 2 (f).

(a) Original (b) Downsampled (c) Interpolation

(d) Original zoomed (e) Downsampled zoomed (f) Interpolation zoomed

Fig. 2. Illustration of image interpolation. The original image is downsampled by a
factor of 3 in each direction. We use the proposed function learning framework to
obtain the interpolation function from downsampled image. From the results, we can
see that the proposed framework works for image interpolation.

4.2 Patch-based Image Denoising
From the function learning point of view, the patch-based image denoising prob-
lem can be viewed as learning a function from noisy patches to their “noise-free”
centered pixels. See Fig. 3 for illustration.

In the patch-based image denoising application, we use the Laplacian kernel
as well. We assume that the noisy patches are lying close to some manifold so
we set the balancing parameter which controls the energy outside the manifold
to be large enough. We use the images in Fig. 4 as known data to learn the
function. Then for a given noisy image, we can use the learned function to do
image denoising. To speed up the learning process, we randomly choose only
10% of the known data to learn the function.
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Fig. 3. Illustration of patch-based image denoising. It can be viewed as learning a
function from the m×m noisy patches to the centered clean pixels.

(a) Barbara (b) Couple (c) House (d) hill

Fig. 4. Four training images. We use noisy images and clean pixels to learn the denois-
ing function.

We use the image Baboon to test the learned denoising function. The denois-
ing results are shown in Fig. 5. Each column shows the result corresponding to
one noise level.

(a) σ = 10, PSNR =
28.09 dB

(b) σ = 20, PSNR =
22.07 dB

(c) σ = 30, PSNR =
18.55 dB

(d) σ = 40, PSNR =
16.05 dB

(e) PSNR=29.86 dB (f) PSNR=26.11 dB (g) PSNR=23.49 dB (h) PSNR=22.84 dB

Fig. 5. Illustration of the denoising results.
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5 Conclusion and Future Work

In this paper, we introduced a framework of learning functions from part of the
data. We gave a data-dependent regularization problem which helps us learn a
function using the manifold structure of the data. We used two applications to
illustrate the learning framework. While these two applications are just part of
the learning framework. They are special cases of the data-dependent regulariza-
tion problem. However, for the general application, we need to calculate ||f1||2M
and ||f2||2Mc , which is hard to do so since we only have partial data. So we need
to approximate ||f1||2M and ||f2||2Mc from incomplete data and to propose a new
learning algorithm so that our framework can be used in a general application.
This is part of our future work. Another line for the future work is from the
theoretical aspect. We showed that the solution of the data-dependent regular-
ization problem is the linear combination of the kernel. It then can be viewed as
a function approximation result. If it is an approximated function, then we can
consider the error analysis of the approximated function.
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