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Abstract. Every individual text or document is generated for specific  purpose(s). 

Sometime, the text  is deployed to convey a specific message about an event or a 

product. Other occasions, it may be communicating   a scientific breakthrough, 

development or new model and so on. Given any specific objective, the creators 

and the users of documents may like to know which part(s) of the documents are 

more influential in conveying their specific messages or achieving their objec-

tives. Understanding which parts of a document has more impact on the viewer’s 

perception would allow the content creators to  design more effective content. 

Detecting the more impactful parts of a content would help content users, such 

as advertisers, to  concentrate their efforts more on those parts of the content and 

thus to avoid spending resources on the rest of the document. This work uses a 

regularized attention-based method to detect the most influential part(s) of any 

given document or text. The model uses an encoder-decoder architecture based 

on attention-based decoder with regularization applied to the corresponding 

weights. 

 

Keywords: Artificial Neural Networks, Natural Language Processing,  Sparse 

Loss Function, Regularization, Transformer. 

1 Motivation of  This Work 

1.1 Review 

The main purpose of NLP (Natural Language Processing) and NLU (Natural Language 

Understanding) is to understand the language. More specifically, they are focused on 

not just to see the context of text but also to see  how human uses the language in daily 

life. Thus, among other ways of utilizing this, we could provide an optimal online ex-

perience addressing needs of  users’ digital experience. Language processing and un-

derstanding is much more complex than many other applications in machine learning 

such as image classification as NLP and NLU involve deeper context analysis than 

other machine learning applications. This paper is written as a short paper and focuses 

on  explaining only the parts that are contribution of this paper to the state-of-the art. 

Thus, this paper does not describe the state-of-the-art works in details and  uses those 

works [2, 4, 5, 8, 53, 59, 65, 69, 73, 83] to build its model as a modification and 
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extension of the state of the art. Therefore, a comprehensive set of reference works have 

been added for anyone interested in learning more details of the previous state of the 

art research [3, 5, 10, 17, 32, 47, 48, 60, 61, 62, 66-72, 75, 76, 89, 90, 92 ]. 

1.2 Attention Based Model 

Deep Learning has become a main model in natural language processing applications 

[6, 7, 11, 22, 37, 55, 63, 70, 74, 77-80, 84, 87, 93] . Among deep learning models, often 

RNN-based models like LSTM and GRU  have been deployed for text analysis [9, 13, 

16, 23, 31, 38, 39, 40, 41, 49-51, 58]. Though, modified version of RNN like LSTM 

and GRU  have been improvement over RNN ( recurrent neural networks) in dealing 

with vanishing gradients and long-term memory loss, still they suffer from many defi-

ciencies. As a specific example, a RNN-based encoder-decoder architecture uses the 

encoded vector (feature vector), computed at the end of encoder, as the input to the 

decoder and uses this vector as a compressed representation of all the data and infor-

mation from encoder (input). This ignores the possibility of looking at all previous se-

quences of the encoder and thus suffers from information bottleneck leading to low 

precision, especially for texts of  medium or long sequences. To address this problem, 

global attention-based model [2, 5] where each of the encoder sequence uses all of the 

encoder sequences. Figure 1 shows an attention-based model. 
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Fig. 1. A description of attention-based encoder-decoder architecture. The attention weights for                                           

one of the  decoder sequences (the first decoder sequence) are displayed. 
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Where  𝑖=1:n is the encoder sequences and , 𝑡=1:m represents the decoder sequences. 

Each of the encoder states looks into the data from all the encoder sequences with  spe-

cific attention measured by the weights. Each weight,  wti, indicates the attention de-

coder network 𝑡 pays for the encoder network 𝑖. These weights are dependent on the 

previous decoder and output states and  present encoder state as shown in figure 2.  

Given the complexity of these dependencies, a neural network model is used to compute 

these weights. Two layers (1024) of fully connected layers and ReLU activation func-

tion is used. 
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Fig. 2. The computation model of  weights using  fully-connected  networks and SoftMax layer.  

 

Where 𝐻 is the state of the encoder networks, 𝑠𝑡−1 is the previous state of the decoder 

and 𝑣𝑡−1is the previous decoder output. Also,  Wt is the weights of the encoder state 𝑡.  
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Since  𝑊𝑡 are the output from softmax function, then, 

 

  ∑ 𝑤𝑖𝑡𝑛
𝑖=1 = 1 (2) 

 

2 Sparse Attention-Based Model 

This section overviews of the contribution of this paper and explains the extension 

made over the state-of-the-art model. 
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2.1 Imposing Sparsity on the Weight Vectors 

A major point of attention for many texts related analysis is to determine which part(s) 

of the input text has had more impact in determining the output. he length of input text 

could be very long combining of potentially hundreds and thousands of words or se-

quences, i.e., n could be very large number. Thus, there are many weights (wti) in de-

termining any part of output vt, and also since many of these weights are correlated,  

it’s difficult to determine the significance of any input sequence in computing any out-

put sequence vt. To make these dependencies clearer and to recognize the most signif-

icant input sequences for any output sequence, we apply a zero-norm penalty to make 

the corresponding weight vector to become a sparse vector. To achieve the desired spar-

sity, zero-norm (𝐿0 ) is applied to make any corresponding Wt vector very sparse as the 

penalty leads to minimization of the number of non-zero entries in Wt. The process is 

implemented by imposing the constraint of, 

   ‖Wt‖0 ≤  𝜗 (3) 

Since 𝐿0 is computationally intractable, we could use surrogate norms such as  𝐿1 norm 

or Euclidean norm, 𝐿2. To impose sparsity, the 𝐿1 norm, LASSO [8, 14, 15, 18, 21] is 

used in this work, 

 

   ‖Wt‖1 ≤  𝜗 (4) 

Or,  

   𝛽‖Wt‖1 (5) 

 

As the penalty function to enforce sparsity on the weight vectors. 

 

 

This penalty,  𝛽‖Wt‖1, is the first extension to the attention model [2, 5 ]. Here, 𝛽 is 

the regularization parameter which is set as a hyperparameter where its value is set 

before learning. Higher constraint leads to higher sparsity with  higher added regulari-

zation  biased error and lower values of the regularization parameter leads to lower 

sparsity and lesser regularization bias. 

2.2 Embedding Loss Penalty 

The main goal of this work is to find out which parts of encoder sequences are most 

critical in determining and computing any output. The output could be a word, a sen-

tence or any other  subsequence. The goal is critical especially in application such as 

machine translation, image captioning, sentiment analysis, topic modeling and  predic-

tive modeling such as time series analysis and prediction. 
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To add another layer of regularization, this work imposes  embedding error penalty to 

the objective function (usually, cross entropy). This added penalty also helps to address 

the “coverage problem”  (the phenomenon of often observed dropping or frequently 

repeating words - - or any other subsequence - -  by the network). The embedding reg-

ularization is,  

 𝛼‖𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟‖2 (6) 

 

 

Input to any model has to be a number and hence the raw input of words or text se-

quence needs to be transformed to continuous numbers. This is done by using one-hot 

encoding of the words and then using embedding as shown in fig.3. 
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Fig. 3. The process of representation  of input words by one-hot encoding and embedding. 

Where  𝑢𝑖̇   is the raw input text,  𝑢𝑖̌ is the one-hot encoding representation of the raw 

input and 𝑢𝑖 is the embedding of the i-th input or sequence. Also, 𝛼 is the regularization 

parameter. 

                  

The idea of embedding is based on that embedding should preserve word similarities, 

i.e., the words that are synonyms before embedding, should remain synonyms after 

embedding. Using this  concept of embedding, the scaled embedding error is, 

 

 L(𝑈)=∑ ∑ (𝐿(𝑢𝑖̇  , 𝑢 𝑗̇) − 𝐿(𝑢𝑖  , 𝑢𝑗 ))
2

𝑛
𝑗=1

𝑛
𝑖=1  (7) 

 

Or, after scaling the embedding error, 

𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 

𝑂𝑛𝑒 ℎ𝑜𝑡  

𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔 

 

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_20

https://dx.doi.org/10.1007/978-3-030-50420-5_20


6 

 L(𝑈)=
1

2𝑛
∑ ∑ (𝐿(𝑢𝑖̇  , 𝑢 𝑗̇) − 𝐿(𝑢𝑖  , 𝑢𝑗  ))

2
𝑛
𝑗=1

𝑛
𝑖=1  (8) 

 

Which could be re-written, using a regularization parameter (𝛼),  as, 

 L(U)= 𝛼 (
1

2𝑛
∑ (𝐿(𝑢𝑖̇  , 𝑢 𝑗̇) − 𝐿(𝑢𝑖  , 𝑢𝑗  ))

2
𝑛
𝑖,𝑗=1 ) (9) 

Where  L is the measure or metric of similarity of  words representations. Here, for all 

similarity measures, both Euclidean norm and cosine similarity (dissimilarity) have 

been used. In this work, the embedding error using the Euclidean norm is used, 

 L(U)= 𝛼 (
1

2𝑛
∑ (𝐿2(𝑢

𝑖̇  , 𝑢 𝑗̇) − 𝐿2(𝑢
𝑖  , 𝑢𝑗  ))

2
𝑛
𝑖,𝑗=1 ) (10) 

 

Alternatively, we could include the embedding error of the output sequence in  equation 

(10). When the input sequence (or the dictionary) is too long, to prevent high computa-

tional complexity of computing similarity of  each specific word with all other words,  

we  choose a random (uniform) sample of the input sequences to compute the embed-

ding error. The regularization parameter, 𝛼, is computed using cross validation [26-30]. 

Alternatively, adaptive regularization parameters [81, 82] could be used. 

 

2.3 Results and Experiments 

This model was applied  on Wikipedia datasets for English-German translation (one-

way translation) with 1000 sentences. The idea was to determine which specific input 

word (in English) is the most important one for the corresponding German translation. 

The results were often an almost diagonal weight matrix, with few non-zero off diago-

nal entries, indicating the significance of the corresponding word(s) in the original lan-

guage (English). Since the model is an unsupervised approach, it’s hard to evaluate its 

performance without using domain knowledge. The next step in this work would be to 

develop a unified and interpretable metric for automatic testing and evaluation of the 

model without using any domain knowledge and also to apply the model to other ap-

plications such as sentiment analysis. 
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