
Computational complexity of hierarchically
adapted meshes

Marcin Skotniczny1[0000−0002−1115−2996]

Department of Computer Science,
Faculty of Computer Science, Electronics and Telecommunications,

AGH University of Science and Technology,
al. Adama Mickiewicza 30, 30-059 Kraków, Poland

mskotn@agh.edu.pl

Abstract. We show that for meshes hierarchically adapted towards sin-
gularities there exists an order of variable elimination for direct solvers

that will result in time complexity not worse than O(max(N,N
3 q−1

q)),
where N is the number of nodes and q is the dimensionality of the singu-
larity. In particular, we show that this formula does not change depending
on the spatial dimensionality of the mesh. We also show the relationship
between the time complexity and the Kolmogorov dimension of the sin-
gularity.

Keywords: Computational complexity · Direct solvers · h-adaptation ·
Hierarchical grids · Kolmogorov dimension.

1 Introduction

Computational complexity, especially time complexity, is one of the most funda-
mental concepts of theoretical computer science, first defined in 1965 by Hartma-
nis and Stearns [1]. The time complexity of direct solvers [2, 3] for certain classes
of meshes, especially regular meshes, is well known. The problem of finding the
optimal order of elimination of unknowns for the direct solver, in general, is in-
deed NP-complete [7], however there are several heuristical algorithms analyzing
the sparsity pattern of the resulting matrix [8–12].

In particular, for three-dimensional uniformly refined grids, the computa-
tional cost is of the order of O(N2) [4, 5]. For three-dimensional grids adapted
towards a point, edge, and face, the time complexities are O(N),O(N), and
O(N1.5), respectively [6]. These estimates assume a prescribed order of elimina-
tion of variables [13, 14].

Similarly, for two dimensions, the time complexity for uniform grids is known
to be O(N1.5), and for the grids refined towards a point or edge it is O(N) [15].
These estimates assume a prescribed order of elimination of variables [16]. The
orderings resulting in such linear or quasi-linear computational costs can also be
used as preconditioners for iterative solvers [17].

For all others, there is no known general formula or method of calculation of
the computational complexity. It is neither hard to imagine that such a formula

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_17

https://dx.doi.org/10.1007/978-3-030-50420-5_17

2 M. Skotniczny

or method might not be discovered any time soon, nor that such formula or
method would be simple enough to be applicable in real-world problems. Thus
in this paper, we focus on a specific class of problems: hierarchically adapted
meshes refined towards singularities. This paper generalizes results discussed in
[6] into an arbitrary spatial dimension and arbitrary type of singularity. We,
however, do not take into the account the polynomial order of approximation p,
and we assume that this is a constant in our formula.

Singularities in the simulated mesh can lead, depending on the stop condition,
to an unlimited number of refinements. Thus, usually the refinement algorithm
will be capped by a certain refinement level that is common to the whole mesh.
In this paper, we analyze how the computational cost grows when the refinement
level is increased. The analysis is done only for a very specific class of meshes,
however the conclusions extend to a much wider spectrum of problems.

This publication is structured as follows. First, in Section 2 we define the
problem approached by this paper. Secondly, in Section 3 we show a method to
calculate an upper bound for the computational cost of direct solvers for sparse
matrices. Then, in Section 4 we calculate time complexity for meshes meeting
a certain set of criteria. Section 5 contains the analysis of properties of typical
h-adaptive meshes and the final Section 6 concludes the proof by showing how
those properties fit in with the earlier calculations.

2 Problem definition

In this paper we analyze finite element method meshes that are hierarchically
adapted towards some singularity – by singularity we mean a subset of the
space over which the finite element method never converges. The existence of a
singularity might cause the mesh to grow infinitely large, so a limit of refinement
rounds is necessary – we will call it the refinement level of the mesh. As the
refinement level of the mesh grows, the number of variables will grow as well
and so will the computational cost. For instance, if the singularity is defined
over a two-dimensional h-adaptive grid as shown in Figure 1, each refinement
of an element will increase the number of elements by three and (assuming that
p = 2 over the whole grid).

Fig. 1. Example of hierarchical adaptation towards a singularity (in green). Here, apart
from the refinement of elements overlapping the singularity, the 1-irregularity rule is
applied (see Section 5 for definition).

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_17

https://dx.doi.org/10.1007/978-3-030-50420-5_17

Computational complexity of hierarchically adapted meshes 3

When referring to a mesh hierarchically refined towards a singularity S up
to a refinement level R we will have in mind a mesh that has been through
R refinement rounds from its initial state. During each refinement round, all
elements that have an overlap with the singularity S of at least one point will
undergo a division into smaller elements, then, if required by given type of the
finite element method, some extra elements might also get divided to keep some
mesh constraints. We generally assume that the hierarchical refinements are done
uniformly for all dimensions of the grid, however the findings from this paper
should also extend to other types of refinements.

In this paper we analyze the relationship between the computational cost of
the solver as a direct function of the number of variables and state it using big
O notation. By definition of the big O notation, when we denote that the time
complexity of the problem is T (N) = O(f(N)), it means that for some large
enough N0 there exists a positive constant C such as the computational cost is
no larger than C · f(N) for all N ≥ N0. In this paper, we are considering how
the computational cost increases as the number of variables N grows. As N is
a function of the refinement level R, we can alternatively state the definition of
time complexity as follows:

T (N) = O(f(N))⇐⇒ ∃R0 ≥ 0, C > 0 : ∀R ≥ R0 : |T (N(R))| ≤ C · f(N(R))
(1)

As the polynomial order p is constant in the analyzed meshes, the number of
variables grows linearly proportional with the growth of the number of all ele-
ments of the mesh. Thus, in almost all formulas for time complexity, we can use
the number of elements and the number of variables interchangeably.

3 Time complexity of sparse matrix direct solvers

In the general case, the time complexity of solving a system of equations for
a finite element method application in exact numbers (that is using a direct
solver) will be the complexity of general case of Gaussian elimination – that is
a pessimistic O(N3), where N is the number of variables. However, on sparse
matrices the complexity of the factorization can be lowered if a proper row
elimination order is used – in some cases even a linear time complexity can be
achieved. The matrices corresponding to hierarchically adapted meshes are not
only sparse but will also have a highly regular structure that corresponds to the
geometrical structure of the mesh.

In the matrices constructed for finite element method, we assign exactly one
row and column (with the same indexes) to each variable. A non-zero value
on an intersection of a row and column is only allowed if the basis functions
corresponding to the variables assigned to that row and column have overlapping
supports.

If a proper implementation of the elimination algorithm is used, when elim-
inating a row we will only need to do a number of subtractions over the matrix
that is equal to the number of non-zero elements in that row multiplied by the

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_17

https://dx.doi.org/10.1007/978-3-030-50420-5_17

4 M. Skotniczny

number of non-zero values in the column of the leading coefficient in the remain-
ing rows. This way, as long as we are able to keep the sparsity of the matrix
high during the run of the algorithm, the total computation cost will be lower.
To achieve that we can reorder the matrix rows and columns.

In this paper we will analyze the speed improvements gained from the or-
dering created through recursive section of the mesh and traversal of generated
elimination tree. The tree will be built according to the following algorithm,
starting with the whole mesh with all the variables as the input:

1. If there is only one variable, create an elimination tree node with it and
return it.

2. Else:
(a) Divide the elements in the mesh into two or more continuous submeshes

using some division strategy. The division strategy should be a function
that assigns each element to one and exactly one resulting submesh.

(b) For each submesh, assign to it all the variables, which have their support
contained in the elements of that submesh.

(c) Create an elimination tree node with all the variables that have not
been assigned in the previous step. Those variables correspond to basis
functions with support spread over two or more of the submeshes.

(d) For each submesh that has been assigned at least one variable, recursively
run the same algorithm, using that submesh and the assigned variables
as the new input. Any submeshes without any variables assigned can be
skipped.

(e) Create and return the tree created by taking the elimination tree node
created in step 2c as its root and connecting the roots of the subtrees
returned from the recursive calls in step 2d as its children.

An example of such process has been shown on Figure 2.
From the generated tree we will create an elimination order by listing all

variables in nodes visited in post-order direction. An example of an elimination
tree with the order of elimination can be seen on Figure 3.

The created tree has an important property that if two variables have non-
zero values on the intersection of their columns and rows, then one of them will
either be listed in the elimination tree node that is an ancestor of elimination
tree node containing the other variable, or they can be both listed in the same
node.

The computational cost of elimination can be analyzed as a sum of costs of
elimination of rows for each tree node. Let us make the following set of observa-
tions:

1. A non-zero element in the initial matrix happens when the two basis func-
tions corresponding to that row and column have overlapping supports (see
the example in the left side of Figure 4). Let us denote the graph generated
from the initial matrix (if we consider it to be an adjacency matrix) as an
overlap graph. Two variables cannot be neighbors in overlap graph unless
the supports of their basis functions overlap.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_17

https://dx.doi.org/10.1007/978-3-030-50420-5_17

Computational complexity of hierarchically adapted meshes 5

Fig. 2. Example of the generation of an elimination tree for h-adaptive mesh of p = 2.
Large green nodes are assigned to the new node created during each recursive call. In
the first recursion, a vertical cut through the vertices 3 and 17 is made. Vertex basis
functions 3 and 17 and edge basis function 8 have supports spreading over both sides
of the cut. The remaining sets of variables are then divided into the two submeshes
created and the process is repeated until all variables are assigned. The cuts shown on
the example are not necessarily optimal.

2. When a row is eliminated, the new non-zero elements will be created on the
intersection of columns and rows that had non-zero values in the eliminated
row or the column of the lead coefficient (see the right side of Figure 4). If
we analyze the matrix as a graph, then elimination of the row corresponding
to a graph node will potentially produce edges between all nodes that were
neighbors of the node being removed.

3. If at any given time during the forward elimination step a non-zero element
exists on the intersection of a row and column corresponding to two grid
nodes, then either those two nodes are neighbors in the overlap graph, or
that there exists a path between those two nodes in the overlap graph that
traverses only graph nodes corresponding to rows eliminated already.

4. All variables corresponding to the neighboring nodes of the graph node of
the variable x in the overlap graph will be either:

(a) listed in one of the elimination tree nodes that are descendants of the
elimination tree node listing the variable x – and those variables are
eliminated already by the time this variable is eliminated, or

(b) listed in the same elimination tree node as the variable x, or

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_17

https://dx.doi.org/10.1007/978-3-030-50420-5_17

6 M. Skotniczny

(c) having support of the corresponding basis function intersected by the
boundary of the submesh of the elimination tree node containing the
variable x – those graph nodes will be listed in one of the ancestors of
the elimination tree node listing the variable x.

Thus, in the overlap graph there are no edges between nodes that be-
long to two different elimination tree nodes that are not in an ancestor-
descendant relationship. At the same time, any path that connects a pair
of non-neighboring nodes in the overlap graph will have to go through at
least one graph node corresponding to a variable that is listed in a common
ancestor of the elimination tree nodes containing the variables from that pair
of nodes.

We can infer from Observations 3 and 4 that by the time a row (or analo-
gously column) is eliminated, the non-zero values can exist only on intersections
with other variables eliminated together in the same tree node and variables
corresponding to basis functions intersected by the boundary of the subspace of
the tree node. During traversal of one tree node we eliminate a variables from b
variables with rows or columns potentially modified, where b− a is the number
of variables on the boundary of that tree node. Thus, the cost of elimination of
variables of a single tree node is equal to the cost of eliminating a variables from
a matrix of size b – let us denote that by Cr(a, b) = O(ab2).

4 Quasi-optimal elimination trees for dimensionality q

A method of elimination tree generation will generate quasi-optimal elimination
trees for dimensionality q, if each elimination tree generated:

(a) is a K-nary tree, where K ≥ 2 is shared by all trees generated (a tree is
K-nary if each node has up to K children; a binary tree has K = 2.);

(b) has height not larger than some H = dlogK Ne+H0, where H0 is a constant
for the method (for brevity, let us define the height of the tree H as the
longest path from a leaf to the root plus 1; a tree of single root node will
have height H = 1). This also means that O(N) = O(KH);

Fig. 3. Elimination tree generated in the process shown on Figure 2. Induced ordering
is: 1, 2, 6, 7, then 15, 16, then 4, 5, 9, 11, then 13, 14, 18, 19, then 10, 12, then 3, 8, 17.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_17

https://dx.doi.org/10.1007/978-3-030-50420-5_17

Computational complexity of hierarchically adapted meshes 7

Fig. 4. On the left, the matrix generated for the mesh from Figure 2 – potentially non-
zero elements are marked in grey. On the right, the first elimination of a row (variable
1) is shown; all the elements changed during that elimination are marked: blue elements
are modified with a potentially non-zero value, yellow elements are zeroed.

(c) its nodes will not have more than J · max(h,K
q−1
q h) variables assigned to

each of them; J is some constant shared by each tree generated and h is
the height of the whole tree minus the distance of that node from the root
(i.e. h = H for the root node, h = H − 1 for its children, etc. For brevity,
later in this paper we will call such defined h as the height of tree node,
slightly modifying the usual definition of the height of a node). This limit is

equivalent to J · h for q ≤ 1 and J ·K
q−1
q h for q > 1);

(d) for each node, the supports of the variables assigned to that tree node will

overlap with no more than J ·max(h,Kh q−1
q) supports of the variables as-

signed to tree nodes that are the ancestors of that tree node.

For a quasi-optimal elimination tree, the cost of eliminating of all the vari-
ables belonging to a tree node Sh with height h will be no more than:

T =

{
Cr(J · h, 2J · h) = O(4J3h3) if q ≤ 1

Cr(J · (Kh q−1
q), 2J · (Kh q−1

q)) = O(4J3 · (K3h q−1
q)) if q > 1

(2)

This means that for q ≤ 1, the computational cost of a solver will be no more
than:

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_17

https://dx.doi.org/10.1007/978-3-030-50420-5_17

8 M. Skotniczny

T (N) =

H∑
h=1

O(KH−h) · O(4(J3h3))

// There are no more than KH−h nodes of height h.

= O(4J3KH
H∑

h=1

(K−hh3))

= O(4J3KH(
13

K1
+

23

K2
+

33

K3
+ · · ·+ (H − 1)3

KH−1
+

H3

KH
))

// This summation converges to some C ≤ 26 (C = 26 for K = 2).

= O(4J3KHC)

// Eliminating the constants.

= O(KH) = O(K logK(N)KH0) = O(N ·KH0) = O(N) (3)

For q > 1, the computational cost of the solver will be no more than:

T (N) =

H∑
h=1

O(KH−h) · O(4J3(K3h q−1
q)) = O(4J3

H∑
h=1

KH−h+3h q−1
q)

= O(4J3KH
H∑

h=1

K(2− 3
q)h) = O(4J3KH

H∑
h=1

(K2− 3
q)h)

(4)

Then, depending on the value of q, this will become:

If 1 < q <
3

2
: T (N) = O(4J3KHK2 1−KH(2− 3

q)

K
3
q −K2

)

= O(4J3KH+2) = O(KH) = O(N) (5)

If q =
3

2
: T (N) = O(4J3KHH) = O(KHH)

= O(K logK N logK N) = O(N logN) (6)

If q >
3

2
: T (N) = O(4J3KHK2K

H(2− 3
q) − 1

K2 −K
3
q

)

= O(4J3KHK2KH(2− 3
q))

= O(KH+H(2− 3
q)) = O((KH)3−

3
q)

= O(N3− 3
q) = O(N3 q−1

q)) (7)

Let us denote a singularity of a shape with Kolmogorov dimension q as q-
dimensional singularity. For example, point singularity is 0-dimensional, linear
singularity (that is, a singularity in a shape of a curve or line segment) is 1-
dimensional, surface singulararity (in shape of a finite surface) is 2-dimensional,

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_17

https://dx.doi.org/10.1007/978-3-030-50420-5_17

Computational complexity of hierarchically adapted meshes 9

etc. A union of finite number of non-fractal singularities will have the Kol-
mogorov dimension equal to the highest of dimensions of the components, so,
for example, a singularity consisting of a finite number of points will also be
0-dimensional.

With the calculation above, if we can show that for a sequence of meshes
of consecutive refinement levels over a q-dimensional singularity there exists a
method that constructs quasi-optimal elimination trees for dimensionality q, we
will prove that there exists a solver algorithm with time complexity defined by
the following formula:

T (N) =


O(N) if q < 3

2

O(N logN) if q = 3
2

O(N3 q−1
q) if q > 3

2

(8)

5 h-adaptive meshes

In this section we will show how the proof framework from the preceding Section
4 applies to real meshes by focusing on h-adaptive meshes. Those meshes have
basis functions defined over geometrical features of its elements: vertices and
segments in 1D, vertices, edges and interiors in 2D, vertices, edges, faces and
interiors in 3D, vertices, edges, faces, hyperfaces and interiors in 4D, etc. Basis
functions in 2D with their supports have been shown on Figure 5. For illustrative
purposes the h-adaptation analyzed here has only uniform refinements into 2D

elements with length of the edge 2 times smaller, where D is the dimensionality of
the mesh – the observations will also hold for refinements into any KD elements
for any small natural K.

Fig. 5. Basis functions of 2-dimensional h-adaptive mesh with p = 2 and their support
– based on vertex, edge and interior respectively.

It is worth noting that, during the mesh adaptation, if the basis functions are
created naively, one basis function of lower refinement level can possibly have a
support that completely contains the support of another basis function of the
same type but higher level. In such instance, the function of lower refinement
level will be modified by subtracting the other function multiplied by such factor
that it cancels out part of the support of the lower level function, as illustrated

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_17

https://dx.doi.org/10.1007/978-3-030-50420-5_17

10 M. Skotniczny

in Figure 6 – let us refer to this procedure as indentation of a basis function. This
modification doesn’t change the mathematical properties of the basis, but will
significantly reduce the number of non-zero elements in the generated matrix.

Fig. 6. Basis function indentation.

In addition to the above, a 1-irregularity rule will be enforced: two elements
sharing any point cannot differ in refinement level by more than 1 (a variant of 1-
irregularity rule constraining elements sharing an edge instead of a vertex is also
sometimes used, but the vertex version is easier to analyze). When splitting an
element in the refinement process, any larger elements sharing a vertex should be
split as well. This procedure will reduce the number of different shapes of basis
functions created during the indentation, which will make the implementation
easier. At the same time, if not for this rule, a single basis function could have
overlap with an arbitrarily large number of other functions what would disrupt
the sparsity of the generated matrix, as illustrated in Figure 7.

Fig. 7. If 1-irregularity rule is not met, one basis function can overlap any number of
others.

It is important to note that during a refinement round an element will be
split only if it overlaps a part of singularity or one of its neighbors overlaps a
part of singularity, the distance between an element and the closest point of

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_17

https://dx.doi.org/10.1007/978-3-030-50420-5_17

Computational complexity of hierarchically adapted meshes 11

singularity cannot be larger than the length of the size of the element multiplied
by a small constant. This has several important implications:

(a) The number of new elements created with each refinement level is O(2Rq) as
refinement level R→∞, where q is the Kolmogorov dimension (also known
as Minkowski dimension or box-counting dimension) of the singularity (or
O(KRq) if the refinements are into KD elements). This also means that as
R → ∞, the total number of elements is O(R) if q = 0 or O(2Rq) if q > 0.
The same will hold for the number of variables, as it is linearly proportional
to the number of elements (as long as p is constant).

(b) If we consider a cut (i.e. a surface, volume, hypervolume, etc. dividing the
mesh into two parts) of a mesh with a singularity with a simple topology (i.e.
not fractal), then, as R→∞, the number of elements intersecting with the
cut (assuming that elements are open sets, i.e. don’t contain their bound-
aries) will grow as O(2Rs) (or O(R) for s = 0), where s is the Kolmogorov
dimension of the intersection of that cut and the singularity. Intuitively, this
observation should also extend to singularities that are well-behaved fractals.

6 Time complexity of hierarchical meshes based on
singularities

It is easy to see that for topologically simple sets (i.e. non-fractals) of integer
Kolmogorov dimension q it is possible to divide them by a cut such that the Kol-
mogorov dimension of the intersection will be no more than q−1. For example, if
we consider a singularity in a shape of line segment embedded in 3-dimensional
space, any plane that is not parallel to the segment will have intersection of at
most a single point. By recursively selecting such a cut that divides elements
into two roughly equal parts (that is, as R→∞, the proportion of the number
of elements in the two parts will approach 1:1), we can generate an elimination

tree with cuts having no more than O(max (R, (2Rq)
q−1
q)) elements (finding the

exact method of how such cuts should be generated is out of scope of this paper).
The resulting elimination tree will have the following properties:

1. Each elimination tree node will have up to two children (K = 2).
2. As each subtree of a tree node will have at most half of the variables, the

height of the tree H will not exceed dlog2Ne.
3. Depending on the value of q:

(a) If q > 1, as the R grows by 1, the height of the given subtree grows by
about q, but the number of variables that will be cut through grows by
about 2q−1. Thus the number of variables in a root of a subtree of height

h will be no more than J · 2
q−1
q h.

(b) If q ≤ 1, each tree node will have at most J · h variables – the number
of elements of each refinement level that are being cut through such cut
is limited by a constant.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_17

https://dx.doi.org/10.1007/978-3-030-50420-5_17

12 M. Skotniczny

4. Variables from a tree node can only overlap with the variables on the bound-
ary of the subspace corresponding to that tree node. The amount of variables

of the boundary should not exceed then J · 2
q−1
q h if q > 1 or J · h if q ≤ 1.

Thus, h-adaptive meshes with q-dimensional singularity are quasi-optimal as
defined in Section 4. To generalize, the same will hold true for any hierarchical
meshes that fulfill the following constraints:

(a) each basis function can be assigned to an element (let us call it an origin
of the function) such that its support will not extend further than some
constant radius from that element, measured in the number of elements to
be traversed (for example, in case of h-adaptation, supports do not extend
further than 2 elements from its origin).

(b) the elements will not have more than B basis functions with supports over-
lapping them, where B is some small constant specific for the type of mesh;
in particular, one element can be the origin of at most B basis functions.
For example, h-adaptive mesh in 2D with p = 2 will have B = 9, as each
element can have at most 4 vertex basis functions, 4 edge basis functions
and 1 interior basis function.

(c) and no basis functions will overlap more than C elements, where C is another
some small constant specific for the type of mesh. For example, C = 8 in h-
adaptive mesh in 2D with p = 2 as long as the 1-irregularity rule is observed,
as a basis function defined over a vertex and indented twice can overlap 8
elements.

Those constraints are also met by meshes with T-splines or with meshes in
which elements have shapes of triangles, which means that well formed hierar-
chically adapted meshes can be solved by direct solvers with time complexity of

O(max(N,N3 q−1
q)), where N is the number of nodes and q is the dimensionality

of the singularity.This means that for point, edge and face singularities, the time
complexity will be O(N), O(N) and O(N1.5) respectively, which corresponds to
the current results in the literature for both two and three dimensional meshes[6,
15]. For higher dimensional singularities, the resulting time complexity is O(N2),
O(N2.25), O(N2.4) and O(N2.5) for singularities of dimensionality 3, 4, 5 and
6 respectively.

An important observation here is that the time complexity does not change
when the dimensionality of the mesh changes, as long as the dimensionality of
the singularity stays the same.

7 Conclusions and future work

In this paper we have shown that for meshes hierarchically adapted towards
singularities there exists an order of variable elimination that results in compu-

tational complexity of direct solvers not worse than O(max(N,N3D−1
D)), where

N is the number of nodes and q is the dimensionality of the singularity. This
formula does not depend on the spatial dimensionality of the mesh. We have

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_17

https://dx.doi.org/10.1007/978-3-030-50420-5_17

Computational complexity of hierarchically adapted meshes 13

also shown the relationship between the time complexity and the Kolmogorov
dimension of the singularity.

Additionally, we claim the following conjecture:

Conjecture 1. For any set of points S with Kolmogorov dimension q ≥ 1 defined
in Euclidean space with dimension D and any point in that space p there exists
a cut of the space that divides the set S into two parts of equal size, for which
the intersection of that cut and the set S has Kolmogorov dimension of q − 1
or less. Parts of equal size for q < D are to be meant intuivitely: as the size of
covering boxes (as defined in the definition of Kolmogorov dimension) decreases
to 0, the difference between the number of boxes in both parts should decrease
to 0.

It remains to be verified if the Conjecture 1 is true for well-behaved fractals
and what kinds of fractals can be thought of as well behaved. If so, then meshes
of the kinds that fulfill the constraints set in previous Section 6 built on a
signularities in the shape of well-behaved fractals of non-integer Kolmogorov
dimension q can be also solved with time complexity stated in Equation 8. The
proof of the conjecture is left for future work.

We can however illustrate the principle by the example of Sierpinski’s triangle
– a fractal of Kolmogorov dimension of log 3

log 2 = 1.58496250072116 To build
an elimination tree, we will divide the space into three roughly equal parts as
shown in Figure 8. The Kolmogorov dimension of the boundary of such division
is 0, which is less than log 3

log 2 − 1.

Fig. 8. Division of the space for Sierpinski triangle.

As the refinement level R grows, the number of elements grows asO(2
log 3
log 2R) =

O(3R) and as the elimination tree s ternary, the partition tree will have height
of log3 3R + H0 = logK N + H0. In addition, as the Kolmogorov dimension of
the boundary of each elimination tree node is 0, there are at most O(log h) vari-
ables in each elimination tree node and on the overlap with nodes of ancestors

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_17

https://dx.doi.org/10.1007/978-3-030-50420-5_17

14 M. Skotniczny

is also limited by the same number. As this number is less than O(3h
q−1
q), both

conditions of quasi-optimal mesh with q-dimensional singularity are met, which
means that it is possible to solve system build on a singularity of the shape of

Sierpinski triangle in time not worse than O(N3
log 3/ log 2−1
log 3/ log 2) = O(N1.10721...).

References

1. J. Hartmanis and R. Stearns: On the computational complexity of algorithms.
Transactions of the American Mathematical Society, (117) (1965) 285-306.

2. I. S. Duff, J. K., Reid The multifrontal solution of indefinite sparse symmetric linear
systems. ACM Transactions on Mathematical Software, 9 (1983) 302-325

3. I. S. Duff, J. K. Reid, The multifrontal solution of unsymmetric sets of linear sys-
tems., SIAM Journal on Scientific and Statistical Computing, 5 (1984) 633-641

4. J.W.H. Liu, The multifrontal method for sparse matrix solution: theory and practice,
SIAM Review 34 (1992), 82-109.

5. V. M. Calo, N. Collier, D. Pardo, M. Paszyński, Computational complexity and
memory usage for multi-frontal direct solvers used in p finite element analysis, Pro-
cedia Computer Science 4 (2011) 1854-1861

6. M. Paszyński, V. M. Calo, D. Pardo, A direct solver with reutilization of previously-
computed LU factorizations for h-adaptive finite element grids with point singular-
ities, Computers & Mathematics with Applications, 65(8) (2013) 1140-1151

7. M. Yannakakis, Computing the minimum fill-in is NP-complete, SIAM Journal on
Algebraic Discrete Methods, 2 (1981) 77-79

8. G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning
irregular graphs, SIAM Journal of Scientiffic Computing, 20, 1 (1998) 359-392.

9. P. Heggernes, S.C. Eisenstat, G. Kumfert, A. Pothen, The Computational Com-
plexity of the Minimum Degree Algorithm, ICASE Report No. 2001-42, (2001).

10. J. Schulze, Towards a tighter coupling of bottom-up and top-down sparse matrix
ordering methods, BIT, 41, 4 (2001) 800.

11. P. R. Amestoy, T. A. Davis, I. S. Du, An Approximate Minimum Degree Ordering
Algorithm, SIAM Journal of Matrix Analysis & Application, 17, 4 (1996) 886-905.

12. G.W. Flake, R.E. Tarjan, K. Tsioutsiouliklis, Graph clustering and minimum cut
trees, Internet Mathematics 1 (2003), 385-408.

13. A. Paszyńska, Volume and neighbors algorithm for finding elimination trees for
three dimensional h-adaptive grids, Computers & Mathematics with Applications,
68(10) (2014) 1467-1478

14. M. Skotniczny, M. Paszyński, A. Paszyńska, Bisection weighted by element size or-
dering algorithm for multi-frontal solver executed over 3D h-refined grids, Computer
Methods in Materials Science, 16(1) (2016) 54-61

15. A. Paszyńska, M. Paszyński, K. Jopek, M. Woźniak, D. Goik, P. Gurgul, H.
AbouEisha, M. Moshkov, V. M. Calo, A. Lenharth, D. Nguyen, K. Pingali, Quasi-
optimal elimination trees for 2D grids with singularities, Scientific Programming,
Article ID 303024 (2015), 1-18

16. H. AbouEisha, V. M. Calo, K. Jopek, M. Moshkov, A. Paszyńska, M. Paszyński,
Bisections-Weighted-by-Element-Size-and-Order Algorithm to Optimize Direct
Solver Performance on 3D hp-adaptive Grids, Lecture Notes in Computer Science,
10861 (2018) 760-772

17. A. Paszyńska, K. Jopek, K. Banaś, M. Paszyński, P. Gurgul, A. Lenerth, D.
Nguyen, K. Pingali, L. Dalcin, V. Calo, Telescopic hybrid fast solver for 3D elliptic
problems with point singularities, Procedia Computer Science, 51 (2015) 2744-2748

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_17

https://dx.doi.org/10.1007/978-3-030-50420-5_17

