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Abstract. The paper sketches and elaborates on a framework inte-
grating agent-based modelling with advanced quantitative probabilistic
methods based on copula theory. The motivation for such a framework
is illustrated on a artificial market functioning with canonical asset pric-
ing models, showing that dependencies specified by copulas can enrich
agent-based models to capture both micro-macro effects (e.g. herding be-
haviour) and macro-level dependencies (e.g. asset price dependencies). In
doing that, the paper highlights the theoretical challenges and extensions
that would complete and improve the proposal as a tool for risk analysis.
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1 Introduction

Complex systems like markets are known to exhibit properties and phenomenal
patterns at different levels (e.g. trader decision-making at micro-level and average
asset price at macro-level, individual defaults and contagion of defaults, etc.).
In general, such stratifications are irreducible: descriptions at the micro-level
cannot fully reproduce phenomena observed at macro-level, plausibly because
additional variables are failed to be captured or cannot be so. Yet, anomalies
of behaviour at macro-level are typically originated by the accumulation and/or
structuration of divergences of behaviour occurring at micro-level, (see e.g. [1]
for trade elasticities). Therefore, at least in principle, it should be possible to use
micro-divergences as a means to evaluate and possibly calibrate the macro-level
model. One of the crucial aspects for such an exercise would be to map which
features of the micro-level models impact (and do not impact) the macro-level
model. From a conceptual (better explainability) and a computational (better
tractability) point of view, such mapping would enable a practical decomposition
of the elements at stake, thus facilitating parameter calibration and estimation
from data. Moreover, supposing these parameters to be adequately extracted,
one could put the system in stress conditions and see what kind of systematic
response would be entailed by the identified dependence structure. The overall
approach could provide an additional analytical tool for systematic risk.
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With the purpose of studying and potentially providing a possible solution
to these requirements, we are currently working on establishing a theoretical
framework integrating agent-based modelling (ABM) with advanced quantitative
probabilistic methods based on copula theory. The intuition behind this choice is
the possibility to connect the causal, agentive dependencies captured by agent-
based models with the structural dependencies statistically captured by copulas,
in order to facilitate the micro-macro mappings, as well as the extraction of
dependencies observable at macro-level.

To the best of our knowledge, even if many research efforts targeting hybrid
qualitative-quantitative methods exist in the computational science and arti-
ficial intelligence literature, the methodological connection of ABM with cop-
ula theory is still an underexplored topic. A large-scale agent-based model of
trader agents incorporating serial dependence analysis, copula theory and co-
evolutionary artificial market, allowing traders to change their behaviour during
crisis periods, has been developed in [2]; the authors rely on copula to capture
cross-market linkages on macro-level. A similar approach is taken in [4]. Ex-
amples of risk analysis in network-based setting can be found for instance in
[5,6], in which the mechanisms of defaults and default contagion are separated
from other dependencies observed in the market. In [3], copula is used to model
low-level dependencies of natural hazards with agent-based models, in order to
study their impact at macro-level. In the present paper, we will use copula to
model dependencies among agents at micro-level, and we will propose a method
to combine aggregated micro-correlations at market scale.

The paper is structured as follows. Section 2 provides some background: it
elaborates on the combined need of agent-based modeling and of quantitative
methods, illustrating the challenges on a running example based on canonical
trader models for asset pricing, and gives a short presentation on copula theory.
Section 3 reports on the simulation of one specific hand-crafted instanciation of
copula producing a relevant result from the running example, and will elaborate
on extensions and theoretical challenges that remain to be solved for the proposal
to be operable. A note on future developments ends the paper.

2 Agent-based Modeling and Copula Theory

In financial modelling, when statistical models are constructed from time se-
ries data, it is common practice to separately estimate serial dependencies and
cross-sectional dependencies. The standard approach to capture serial depen-
dence (also referred to as autocorrelation) is to use autoregressive models [10].
If the time series exhibit volatility clustering–i.e. large changes tend to be fol-
lowed by large changes, of either sign, small changes tend to be followed by
small changes—then it is typical to use the generalized autoregressive condi-
tional heteroskedasticity model (GARCH) [11], or one of its variants [12]. Once
the GARCH model is estimated, the cross-sectional dependence analysis can be
performed on the residuals. Unfortunately, autoregressive models provide only
little information useful for interpretation; this is no surprise since these models
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are purely quantitative, and suffer problems similar to all data-driven methods.
As low interpretability goes along with limited possibility of performing coun-
terfactual or what-if reasoning (see e.g. the discussion in [9]), such models are
weakly justifiable in policy-making contexts, as for instance in establishing sound
risk balancing measures to be held by economic actors.

2.1 Agent-Based Modelling

An alternative approach is given by agent-based modelling (ABM), through
which several interacting heterogeneous agents can be used to replicate pat-
terns in data (see e.g. [2]). Typically, agent models are manually specified from
known or plausible templates of behaviour. To a certain extent, their parame-
ters can be set or refined by means of some statistical methods. Model validation
is then performed by comparing the model execution results against some ex-
pected theoretical outcome or observational data. These models can be also used
to discover potential states of the system not yet observed [23], thus becoming
a powerful tool for policy-making. Independently from their construction, agent
models specify, at least qualitatively, both serial dependencies (for the functional
dependence between actions) and cross-sectional dependencies (for the topologi-
cal relationships between components), and are explainable in nature. However,
they do not complete the full picture of the social system, as the focus of the
designers of agent-based models is typically on the construction of its micro-level
components. Nevertheless, to elaborate on the connection between micro-level
and macro-level components of a social system we still need to start from captur-
ing behavioural variables associated to micro-level system components, assuming
them to have the strongest effect at micro-level (otherwise the micro-level would
be mostly determined by the macro-level).

Running Example: Asset Market We will then consider a paradigmatic sce-
nario for ABM: an asset market, in which traders concurrently sell, buy or hold
their assets. Our running example is based on canonical asset pricing models,
proceeding along [17].

Fundamental value The target asset has a publicly available fundamental value
given by a random walk process:

Ft = Ft−1 + η (1)

where η is a normally distributed random variable with mean zero and standard
deviation ση.

Market-maker agent At the end of each trading day, a market-maker agent sets
the price at which a trader agent can buy or sell the asset according to a simple
rule:

pt+1 = pt + ∆pt (2)
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where:

∆pt = a(1 +D(t)− S(t)) + δ

The variable D(t) denotes the number of buy orders at time t, S(t) denotes
number of sell orders at time t and δ is a normally distributed random variable
with zero mean and constant standard deviation σδ. The positive coefficient a
can be interpreted as the speed of price adjustment.

Fundamental traders Fundamental traders operate with the assumption that the
price of an asset eventually returns to its fundamental value. Therefore, for them
it is rational to sell if the value of an asset is above its fundamental value and buy
if the value of an asset is below its fundamental value. Their price expectation
can be written as:

Efund
t [pt+1] = pt + xfund(Ft − pt) + α (3)

where α is a normally distributed random variable with mean zero and standard
deviation σα. xfund can be interpreted as the strength of a mean-reverting belief
(i.e. the belief that the average price will return to the fundamental value).

Technical traders In contrast, technical traders, also referred to as chartists,
decide on the basis of past trend in data. They will buy if the value of an asset
is on the rise, because they expect this rise to continue and sell if the value is
on decline. Their expectation can be written as:

Etecht [pt+1] = pt + xtech(pt − pt−1) + β (4)

where β is a normally distributed random variable with mean zero and standard
deviation σβ . xtech can be interpreted as a strength of reaction to the trend.

Relevant Scenario: Herding Behaviour Because they are intrinsic charac-
teristics of each agent, xfund and xtech can be seen as capturing the behavioural
variables we intended to focus on at the beginning of this section.

Now, if for all traders xfund or xtech happen to be realized with unexpectedly
large values at the same time, the effect of α and β will be diminished, and this
will result in higher (lower) expected value of the asset price and then in the
consequent decision of traders to buy (sell). Purchases (sales) in turn will lead
the market-maker agent to set the price higher (lower) at the next time step, thus
reinforcing the previous pattern and triggering herding behaviour. Such chain of
events are known to occur in markets, resulting in periods of rapid increase of
asset prices followed by periods of dramatic falls. Note however that this scenario
is not directly described by the agent-based models, but is entailed as a possible
consequence of specific classes of instantiations.
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2.2 Combining Agent-Based Models with Probability

Herding behaviour is recognized to be a destabilizing factor in markets, although
extreme time-varying volatility is usually both a cause and an effect of its oc-
currence. In the general case, factors contributing to herding behaviour are: the
situation on the global market, the situation in specific market sectors, policies
implemented by policy makers, etc. All these factors are somehow processed by
each human trader. However, because such mental reasoning is only partially
similar amongst the agents, and often includes non-deterministic components
(including the uncertainty related to the observational input), it is unlikely that
it can be specified by predefined, deterministic rules. For these reasons, proba-
bilistic models are a suitable candidate tool to recover the impossibility to go
beyond a certain level of model depth, in particular to capture the mechanisms
behind behavioural variables as xfund and xtech. In the following, we will therefore
consider two normally distributed random variables Xfund and Xtech realizing
them.4 This means that the traders will perceive the price difference in paren-
thesis of equations (3) and (4) differently, attributing to it different importance
at each time step.

Looking at equations (3) and (4) we can see that the essence of an agent’s
decision making lies in balancing his decision rule (e.g. for the fundamental
trader xfund(Ft − pt)) with the uncertainty about the asset price (e.g. α). If for
instance the strength of the mean-reversing belief xfund happens to be low (in
probabilistic terms, it would be a value from the lower tail), then the uncertainty
α will dominate the trader’s decision. In contrast, if xfund happens to be very
high (i.e. from the upper tail), then the trader will be less uncertain and trader’s
decision to buy or sell will be determined by (Ft − pt). Similar considerations
apply to technical traders.

Assuming that behavioural random variables are normally distributed, ob-
taining values from the upper tail is rather unlikely and, even if some agent’s
behavioural variable is high, it will not influence the asset price very much since
the asset price is influenced collectively. However, if all traders have strong be-
liefs about the rise or fall of the price of the asset, then the price will change
dramatically. The dependence of the price on a collective increase in certainty
cannot be directly modeled by the standard toolkit of probability, and motivates
the use of copulas.

2.3 Copulas

Copula theory is a sub-field of probability theory dealing with describing depen-
dencies holding between random variables. Application-wise, copulas are well
established tools for quantitative analysis in many domains, as e.g. economic
time series [15] and hydrological data [16].

4 We are not aware of behavioural research justifying this assumption of normality, but
for both variables it seems plausible that deviations larger than twice the standard
deviation from the mean will be rather improbable.
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Consider a random variable U = (U1, ..., Ud) described as a d-dimensional
vector. If all components of U are independent, we can compute its joint prob-
ability distribution function as FU(u1, .., ud) = FU1(u1) · ... · FUd

(ud), i.e. the
product of marginal distributions. In case of dependence among components we
need some function that specifies this dependence. The concept of copula is es-
sentially presented as a specific class of such functions, specifically defined on
uniform marginals [13]:

Definition 1. C : [0, 1]d → [0, 1] is a d-dimensional copula if C is a joint
cumulative distribution function of a d-dimensional random vector on the unit
cube [0, 1]d with uniform marginals.

To obtain a uniform marginal distribution from any random variable we can per-
form a probability integral transformation ui = Fi(xi), where Fi is the marginal
distribution function of the random variable Xi. In practice, when we estimate
the copula from data we estimate the marginals and copula components sepa-
rately. We can then introduce the most important theorem of copula theory:

Theorem 1. Let F be a distribution function with marginal distribution func-
tions F1, ..., Fd. There exists a copula C such that for all (x1, ..., xd) ∈ [−∞,∞]d,

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)) (5)

If F1, ..., Fd are continuous this copula is unique.

If we consider the partial derivatives of equation (5) we obtain the density
function in the form:

f(x1, ..., xd) = c(F1(x1), ..., Fd(xd))

d∏
i=1

fi(xi). (6)

where c is density of the copula and fi is marginal density of random variable
Xi. The reason why copulas gained popularity is that the cumulative distri-
bution function Fi contains all the information about the marginal, while the
copula contains the information about the structure of dependence, enabling a
principled decomposition for estimations.

Correspondingly to the high variety of dependence structures observed in the
real world, there exists many parametric families of copulas, specializing for spe-
cific types of dependence. The most interesting type for economic applications is
tail dependence. For example, if there is nothing unusual happening on the mar-
ket and time series revolve around its mean value, then the time series might
seem only weakly correlated. However, co-movements far away from mean value
tend to be correlated much more strongly. In probabilistic terms, the copula de-
scribing such dependence between random variables has strong tail dependence.
Tail dependence does not have to be always symmetrical. Certain types of cop-
ulas have strong upper tail dependence and weaker lower tail dependence. In
simple terms this means that there is higher probability of observing random
variables together realized in the upper quantile of their distribution than in the
lower quantile. One of the parametric copulas having such properties is the Joe
copula [13], illustrated in Figure 1.
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Fig. 1. Density and scatter plot of a bivariate Joe copula, with parameter set to 8.
(picture taken from http://pilot.52north.org/shinyApps/copulatheque/copulas/)

3 Tracking Dependencies

This section aims to show how copulas can be effectively used to enrich stochastic
agent-based models with additional dependencies, relative to micro- and macro-
levels. In particular, we will focus on the phenomenon of dependence of the asset
price to a collective increase in strength of belief associated to herding behaviour
scenarios, observed in section 2.2. To model the balance between certainty and
uncertainty of each trader with respect to current price of the asset, we need
to set the marginal distribution functions of Xfund and Xtech to have a mean
value and standard deviation such that if herding behaviour occurs then the
uncertainty parameters α and β will play essentially no role, but if herding
behaviour is not occurring, then α and β will stop traders from massive buying
or selling. Therefore the parameters for Xfund, Xtech and α, β are not entirely
arbitrary.

3.1 Market Simulation

To illustrate the influence of dependence structures of behavioural random vari-
ables we will compare simulations of the market with independent behavioural
random variables to simulations of the market whose random variables have a
dependence structure defined by Joe copula. It is important to make clear that
this exercise does not have any empirical claim: it is meant just to show that
copula can be used for a probabilistic characterization of the social behaviour of
the system.

Consider a group of Ntotal = 1000 trader agents consisting of Nfund = 300
fundamental traders and Ntech = 700 technical traders (this ration roughly
reflects the situation of a real market). Let us denote with X the vector collecting
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Parameter Definition Value

N Number of traders 1000

Nfund Number of fundamental traders 300

Ntech Number of technical traders 700

T Time steps (not including initial value) 500

Sim Number of simulations 100

a Price adjustment 0.2 ∗ 10−2

σδ S.d. of random factor in price process 0.005

α Uncertainty of fundamental trader N(0, 1)

β Uncertainty of technical trader N(0, 1)

xfund Behavioural r.v. fundamental trader N(0.6, 0.1)

xchar Behavioural r.v. technical trader N(0.8, 0.4)

Table 1. Table of parameters used for the simulations

Fig. 2. 100 simulations when behavioural variables are independent.

all behavioural random variables of the traders. Table 1 reports all parameters
we have used for our simulation. The sequence of fundamental values {Ft}Tt=1

is generated by equation (1) at the beginning and remains the same for all
simulations.

Independence scenario At first, we will assume that the (normally distributed)
behavioural random variable assigned to each trader is independent of other nor-
mally distributed behavioural variables. This means that the probability density
function capturing all behavioural variables of market can be written as a simple
product of marginal density functions:

fX(x) =

Nfund∏
i=1

fXfund
(xfund)

Ntech∏
i=1

fXtech
(xtech) (7)

We have considered T = 502 time steps with initialization p1 = 10 and p2 =
10.02574. Fig. 2 illustrates the output of 100 simulations of the market with
a probability density function given by the equation (7). The simulations on
average follow the fundamental price of an asset. The marginal distribution of
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Fig. 3. 100 simulations when behavioural random variables have a dependence struc-
ture of defined by Joe copula.

Fig. 4. Histogram of increments for an independence structure (left) and dependence
structure defined by Joe copula (right).

the increments ∆pt taking realizations of the generated time series (Fig. 2) clearly
follows a normal distribution (left of Fig. 4).

Dependence scenario Let us keep same number of agents and exactly the same
parameters, but this time consider a dependence structure between the be-
havioural variables described by a Joe copula with parameter equal to 8. As
shown in Fig. 1, this copula has strong right upper tail dependence. The Joe
copula is an Archimedean copula, which means it attributes an univariate gen-
erator, hence drawing samples from this copula is not time consuming, even for
large dimensions. In our case, each sample will be a Ntotal dimensional vector U
with components ui from the unit interval. For each agent, a quantile transfor-
mation will be made xA,i = QXA,i

(ui) by the quantile function QXA,i
of i-the

agent A = {fund, tech} to obtain the realization from the agent’s density func-
tion. Here the i-th agent A’s behavioural random variable is again distributed
following what specified in table 1.

Running 100 market simulations, the time-series we obtain this time are much
more unstable (Fig. 3). This is due to the structural change in the marginal
distribution function of ∆pt, which has now much fatter tails. The fatter tails
can be seen on the right histogram on Fig. 4, and on the comparison of both
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Fig. 5. Normal QQ-plots comparing distribution functions of increments ∆pt to normal
distribution of behavioural variables with an independence structure (left) and with a
dependence structure defined by Joe copula (right).

histograms by normal QQ-plots in Fig. 5. We see that for independence the
increments follow a normal distribution very closely, but for dependence defined
by Joe copula the tails of marginal distribution deviate greatly and approximates
a normal distribution only around the mean.

3.2 Directions for Model Aggregation

For applications in finance it would be desirable to extend this model to consider
broader contexts: e.g. a market with many assets, whose prices in general may
exhibit mutual dependencies. A way to obtain this extension is to introduce
adequate aggregators, following for instance what was suggested in [14, 3.11.3]. In
order to apply this method, however, we need to make explicit a few assumptions.

Step-wise computation assumption The increase or the decrease of the price of
the asset ∆pt is obtained via the simulation of the agent-based market model. As
it can be seen in formulas (3) and (4), the increment ∆pt at time t depends on
the realization of random variables X at time t with agents observing previous
market values pt−1 and pt−2. This means that ∆pt is also a continuous random
variable and its probability density function should be written as f∆pt|pt−1,pt−2,X.
Note that this function can be entirely different at each time t depending on
what values of pt−1, pt−2 the agents observe. Since the time steps are discrete,
then the density functions forms a sequence {f∆pt|pt−1,pt−2,X}t=Tt=t0 . In this paper,
for simplicity, we will not describe the full dynamics of this sequence; we will
focus only on one density function in one time step, assuming therefore that
the computation can be performed step-wise. By fixing time, pt−1, pt−2 are also
fixed (they have already occurred), so we can omit them and write just f∆pt|X.

Generalizing to multiple assets Consider m non-overlapping groups of abso-
lutely continuous random variables X1, ...,Xm, where each group consists of
behavioural random variables, or, to make our interpretation more general, pre-
dictor variables that determine the value of an asset. Each group Xg forms a
random vector and has a scalar aggregation random variable Vg = hg(Xg). This
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means that each value of an asset is determined by a mechanism specified by the
function hg, which might be an agent-based model similar to the one explored
in the previous section, but this time each group of predictor random variables
will have its own distribution function. We can write then:

fX1,...,Xm
(x1, ...,xm) =

fV(v1, ..., vm)∏m
i=1 fVi

(vi)

m∏
i=1

fXi
(xi) (8)

where f denotes the marginal (joint) probability density function of the corre-
sponding variable (variables) written as a subscript. The validity of (8) relies
on two assumptions: (a) conditional independence of the groups given aggrega-
tion variables V1, .., Vm and (b) conditional distribution function of the group
Xg conditioned on V1, ..., Vm is the same as the conditional distribution of Xg

conditioned on Vg (for a 2-dimensional proof see [14]). These assumptions are
in principle not problematic in our application because we are assuming that
all interactions on micro-level of the agents are sufficiently well captured by the
distribution of aggregation variables. Hence formula (8) should be viewed as a
crucial means for simplification, because it enables a principled decomposition.

Expressing the density function of V in (8) using formula (6) as copula, we
obtain:

fX1,...,Xm
(x1, ...,xm) = cV(FV1

(v1), ..., FVm
(vm))

m∏
i=1

fXi
(xi) (9)

This formula provides us a way to integrate in the same model mechanisms
associated to the different assets in the market by means of a copula at aggregate
level. In other words, by this formula, it is possible to calculate the probability
of rare events, and therefore estimate systematic risk, based on the dependencies
of aggregation variables and on the knowledge of micro-behaviour specified by
group density functions of the agent-based models. The marginal distribution
functions FVi

(vi) can be estimated either from real world data (e.g. asset price
time series), or from simulations. Note that whether we estimate from real world
data or an agent-based market model should not matter in principle, since, if
well constructed, the agent-based model should generate the same distribution
of ∆p as the distribution estimated from real world data. The density function
fXg

(xg) of an individual random vector Xg can be defined as we did in our
simulation study. However, to bring this approach into practice, three problems
remain be investigated:

– estimation of copula. We need to consider possible structural time depen-
dencies and serial dependencies in the individual aggregation variables. Addi-
tionally, the agents might change their behavioural script (e.g. traders might
pass from technical to fundamental at certain thresholds conditions).

– high dimensionality of equations (8) and (9). If we consider N predictor
variables for each group g = 1, ...,m we will end up with a N ·m-dimensional
density function.
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– interpolation of function hg. Calculating high-dimensional integrals that
occur for instance in formula (8), with function hg being implicitly computed
by the simulation of an agent-based market model, is clearly intractable.

For the first problem, we observe that time dependence with respect to cop-
ulas is still an active area of research. Most estimation methods do not allow
for serial dependence of random variables. One approach to solve this is to filter
the serial dependence by an autoregressive model as described at the beginning
of section 2. Another approach is to consider a dynamic copula, similarly as in
[14] [20,21]. A very interesting related work is presented in [22], where ARMA-
GARCH and ARMA-EGARCH are used to filter serial dependence, but the
regime switching copula is considered on the basis of two-states Markov models.
Using an agent-based model instead of (or integrated with) a Markov model
would be a very interesting research direction, because the change of regime
would also have a qualitative interpretation.

For the second problem, although in our example we have used 1000 agents,
in general this might be not necessary, considering that ABMs might be not
as heterogeneous, and aggregators might work with intermediate layers between
micro and macro-levels.

For the third problem, a better approach would be to interpolate the ABM
simulation by some function with closed form. In future works, we are going to
evaluate the use of neural networks (NNs), which means creating a model of our
agent-based model, that is, a meta-model. The general concept of meta-models
is a well-established design pattern [18] and the usage of NNs for such purposes
dates back to [19]. In our example the basic idea would be to obtain samples
from the distribution fXg (xg) as input, the results of an ABM simulation vg as
output, and then feed both input and output to train a dedicated NN, to be
used at runtime. This would be done for each group g. The biggest advantage
of this approach, if applicable in our case, is that we will have both a quick
way to evaluate a function approximating hg, but we will also have the interpre-
tative power of the agent-based market model, resulting in an overall powerful
modelling architecture.

4 Conclusions and Future Developments

Agent-based models are a natural means to integrate expert (typically quali-
tative) knowledge, and directly support the interpretability of computational
analysis. However, both the calibration on real-data and the model exploration
phases cannot be conducted by symbolic means only. The paper sketched a
framework integrating agent-based models with advanced quantitative proba-
bilistic methods based on copula theory, which comes with a series of data-driven
tools for dealing with dependencies. The framework has been illustrated with
canonical asset pricing models, exploring dependencies at micro- and macro-
levels, showing that it is indeed possible to capture quantitatively social char-
acteristic of the systems. This also provided us with a novel view on market
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destabilization, usually explained in terms of strategy switching [24,25]. Sec-
ond, the paper formally sketched a principled model decomposition, based on
theoretical contributions presented in the literature.

The ultimate goal of integrating agent-based models, advanced statistical
methods (and possibly neural networks) is to obtain an unified model for risk
evaluation, crucially centered around equation (9). Clearly, additional theoreti-
cal challenges for such a result remains to be investigated, amongst which: (a)
probabilistic models other than copulas to be related to the agent’s decision
mechanism, (b) structural changes of dependence structures, (c) potential causal
mechanisms on the aggregation variables and related concepts as time dependen-
cies (memory effects, hysteresis, etc.) and latency of responses. These directions,
together with the development of a prototype testing the applicability of the
approach, set our future research agenda.
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