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Abstract. Hierarchical Genetic Strategy (HGS) is a general-purpose
optimization metaheuristic based on multi-deme evolutionary-like opti-
mization, while demes are parts of adaptive dynamically changing tree.
The paper focuses on adaptation of the classic HGS algorithm for multi-
criteria optimization problems, coupling the HGS with Particle Swarm
Optimization demes. The main contribution of the paper is showing the
efficacy and efficiency of the actor-based implementation of this meta-
heuristic algorithm.
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1 Introduction

Keeping balance between exploration and exploitation is a crucial task of an
expert, trying to solve complex problems with metaheuristics. A number of dif-
ferent approaches were made (like automatic adaptation of variation operators
in evolution strategies [1] or multi-deme evolution model [2].

About 20 years ago an interesting metaheuristics has been proposed by Schae-
fer and Kolodziej, namely Hierarchic Genetic Search [12], managing a whole tree
of demes which can be dynamically constructed or removed, depending on the
quality of their findings. Recently this metaheuristic was adapted to solving
multi-criteria optimization problems by Idzik et al. [9], and coupled with Par-
ticle Swarm Optimization as working nodes (demes) instead of classic genetic
algorithms. This new algorithm has proven to be efficient in many multi-criteria
benchmark problems, however as it is quite normal in the case of metaheuristics,
it is cursed with high computational complexity.

Nowadays HPC-related solutions (supercomputers, hybrid infrastructures etc.)
are very common and easy to access, especially for scientists1. High-level pro-
gramming languages, such as Scala/Akka or Erlang make the use of such facilities

? The research presented in this paper was financed by Polish National Science Centre
PRELUDIUM project no. 2017/25/N/ST6/02841.

1 E.g. Academic Computing Centre “Cyfronet” of AGH University of Science and
Technology makes possible to utilize supercomputing facilities to all scientists work-
ing in Poland or cooperating with Polish scientists, free of charge.
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very easy, and significantly decrease steepness of the learning curve for people
who want to try such solutions.

This paper deals with a concept of actor-based design and implementation
of Multiobjective HGS aiming at showing that such an approach yields a very
efficient and efficacious computing system. The next section discusses existing
actor-based implementations of metaheuristics, then the basics of HGS are given,
later the actor model of HGS is presented and the obtained experimental results
are shown and discussed in detail. Finally the paper is concluded and future
work plans are sketched out.

2 Actor-based implementation of metaheuristics

Actor-based concurrency is a popular, easy to apply paradigm for paralleliza-
tion and distribution of computing. As this paper is focused on parallelization
of a complex metaheuristic algorithm using the actor-based approach, let us
refer to existing similar high-level distributed and parallel implementations of
metaheuristics.

Evolutionary multi-agent system is an interesting metaheuristic algorithm
putting together the evolutionary and agent-based paradigms. Thus an agent
becomes not only a driver for realization of certain computing task, but also a
part of the computation, carrying the solution (genotype) and working towards
improving its quality throughout the whole population. The agents undergo de-
centralized selection process based on non-renewable resources assigned to agents
and the actions of reproduction and death. Such an approach (high decentral-
ization of control) resulted in several distributed and parallel implementations,
while one utilizing actor-model and defining so-called ”arenas” was particularly
efficient and interesting.

Its first implementation was realized in Scala [8]. The arenas were designed
as meeting places, where particular actors (agents) can go and do a relevant
task. E.g. at the meeting arena the agents were able to compare the qualities
of their solutions while at the reproduction arena they could produce offspring
etc. Another very efficient implementation of EMAS based on actor model was
realized using Erlang [18]. Those implementations were tested in supercomputing
environment and yielded very promising results.

Another interesting high-level approach to parallelization of metaheuristics
consists in using a high-level parallel patterns in order to be able to automatically
parallelize and distribute certain parts of code [17]. This approach has also been
widely tested on many available supercomputing facilities.

Finally, a high-level distributed implementation of Ant Colony Optimization
type algorithms was realized using Scala and Akka [16]. The approach is based on
distributing the pheromone table and assuring the updates of its state. Currently
the research shows that it might be possible to accept certain delays or even
lack of updates of the pheromone table, still maintaining the high quality and
scalability of the computing.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_13

https://dx.doi.org/10.1007/978-3-030-50420-5_13


Asynchronous Actor-based Approach to Multiobjective Hierarchical Strategy 3

Observing efficient outcomes of the above-mentioned approaches, we decided
to apply actor-based concurrency model for implementing HGS.

3 Hierarchic Genetic Strategy

Another approach involving multiple evolving populations is Hierarchic Genetic
Strategy (HGS) [12]. The algorithm dynamically creates subpopulations (demes)
and lays them out in tree-like hierarchy (see Fig. 1). The search accuracy of a
particular deme depends on its depth in the hierarchy. Nodes closer to the root
perform more chaotic search to find promising areas. Each tree node is assigned
with an internal evolutionary algorithm (driver, in single-objective processing it
is the Simple Genetic Algorithm).

The process of HGS can be divided into several steps, called metaepochs.
Each metaepoch consists of several epochs of a driver. Additionally, HGS-specific
mechanics are applied. The most promising individuals of each node have a
chance to become seeds of next-level child nodes (sprouting procedure). A child
node runs with reduced variance settings, so that its population will mostly
explore that region. To eliminate risk of redundant exploration of independently
evolving demes, branch comparison procedure is performed. If the area is already
explored by one of other children, then sprouting is cancelled and next candidate
for sprouting is considered. Furthermore, the branch reduction compares and
removes populations at the same level of the HGS tree that perform search in
the common landscape region or in already explored regions.

Following very good results obtained for single-objectve problems, the HGS
metaheuristic has been adapted for multi-objectve optimization tasks (MO-
HGS [3]). This direction was further explored and improved [9] to create more
generic solution, able to incorporate any multi-objective evolutionary algorithm
(MOEA) as HGS driver.

The basic structure of this approach, denoted as Multiobjective Optimization
Hierarchic Genetic Strategy with maturing (MO-mHGS) is similar to classical
HGS, but the following features of the basic algorithm had to be adapted in
order to tackle multi-objective problems:

– Flexibility of proposed model – different MOEA approaches may vary sub-
stantially. There are algorithms basing on Pareto dominance relation, al-
gorithms built around quality indicator or algorithms decomposing multi-
objective problem into subproblems to handle larger set of objectives. More-
over, some of them are generational approaches, others are steady-state.
They all should be supported as MO-mHGS drivers.

– Evaluating quality of internal algorithm outcome – MOEA have specific
set of quality indicators measuring distance from Pareto front, individuals
spread, coverage of separate parts of a front, etc.

– Killing of the node based on lack of improvement of the solution in the
last metaepoch – in MO-mHGS hypervolume metric is used as a factor for
checking the spread of the population processed at the node.
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Fig. 1. Left panel: exemplary HGS tree with three levels. The left-most leaf is being
reduced, the right-most leaf is being created. Right panel: three-dimensional genetic
spaces in the real-number encoding, corresponding to levels in HGS tree.

Hierarchic strategies are also a subject of hybridization. They can be com-
bined with local methods, e.g. local gradient-based search [6], and with clustering
([11] and [7], for HGS and MO-HGS, respectively).

4 Actor-based HGS models

In recent research we have shown [9] that hierarchical multi-deme model can
be used in combination with any single-deme MOEA. We considered mainly
variable evaluation accuracy as a crucial MO-mHGS feature. The results were
promising and proved its applicability to real-world problems, where time of
calculating a single fitness evaluation depends on the accuracy.

However, HGS model has additional properties we can take advantage of.
Similarly to other multi-deme aproaches such as Island Model [10], calculations
can be naturally divided into several processes. These processes are able to run
simultaneously, ensuring benefits of parallel execution.

4.1 Adapting HGS to asynchronous environment

In classic MO-mHGS initial population is evaluated with assigned MOEA driver
(e.g. NSGAII). After reaching specified progress ratio between 2 last metaepochs,
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HGS may create additional sprouts – MOEA nodes with smaller populations
created basing on the most promising individuals. On final stages of computing,
MO-mHGS may consist of multiple sprouts connected in tree-like node struc-
ture. Each sprout can be treated as separate, independent unit. This specific
calculation structure can be naturally transformed into actor-based model with
parallel execution capabilities. Therefore, our goal was to adapt and optimize
MO-mHGS to meet the actor model’s requirements. It resulted in creating new
improved model, Multiobjective Optimization Distributed HGS (denoted as MO-
DHGS or DHGS).

The key problem was to identify types of actors and messages exchanged
between them without loosing basic flow of MO-mHGS algorithm. Eventually,
we defined two kinds of actors: Supervisor and Node. The actor system consist
of one Supervisor and multiple Nodes that can be added dynamically during
sprouting procedure. Supervisor should manage metaepochs and ensure parallel
execution of Nodes is limited by the algorithm flow. Node is just an equivalent
of single HGS sprout. At the beginning of simulation Supervisor creates single
(root) node. Supervisor communicates with Nodes by passing messages that may
contain additional data. There are several messages types used during single
metaepoch:

– GetState – asking node about it current HGS state (alive/dead), maturity,
etc;

– StartMetaepoch – triggering new epoch’s calculation in each node that re-
ceive this message;

– GetPopulation – asking a node about current population. Some of this mes-
sages may be used on different stages of computing, but we focused on min-
imizing unnecessary data exchange due to its impact on the performance.

Apart from architectural changes, we also had to modify the control flow. Core
MO-mHGS procedure was left intact, so a single DHGS step can be described
as the same sequence of phases: 1) Run Metaepoch 2) Trim Not Progresssing
Sprouts 3) Trim redundant sprouts 4) Release sprouts 5) Revive dead tree. How-
ever, each phase was adapted to the actor model. In case of phases 2-5 it required
major changes, because these procedures require exchanging a lot of information
between supervisor and nodes (or even between nodes). In classical approach,
where whole memory was shared between all units, it could be easily achieved.
In case of asynchronous model it often leads to messages overload or disturbing
order of processed data. It may not only have negative impact on performance,
but also violate the algorithm assumptions.

Algorithm 1 shows new, actor-based, supervised sprouting procedures. In
classical approach, sprouting was simple, recursive procedure. Every node asked
its old sprouts to perform sprouting and, at the end, released new sprouts if
constraints (ξ – sproutivness, amount of children created after a metaepoch and
ξmax – maximum number of living children in a tree node) had been preserved.
In actor-based approach there are two major problems that need to be addressed.
First of all, in order to preserve sproutivness, node has to filter out alive sprouts.
It can be achieved by sending GetState message to each sprout and wait for all
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Algorithm 1 Supervisor Sprouting Task

1: procedure InitSprouting(hgsNodes)
2: currentLevelStates← ∅
3: nextLevelStates← ∅
4: lvl← FindLeafLevel(hgsNodes)
5: i← 0
6: node← hgsNodeslvl,i
7: Send(node, ”SproutingRequest”, nextLevelStates)
8: end procedure
9:

10: procedure ReceiveSproutingAnswer(node, state, sproutStates)
11: currentLevelStates← currentLevelStates ∪ {state}
12: nextLevelStates← currentLevelStates ∪ sproutStates
13: i← i+ 1
14: if i ≥ |hgsNodeslvl| then
15: lvl← lvl − 1
16: i← 0
17: nextLevelStates← currentLevelStates
18: currentLevelStates← ∅
19: if lvl < 0 then
20: return . End of sprouting procedure
21: end if
22: end if
23: node← hgsNodeslvl,i
24: Send(node, ”SproutingRequest”, nextLevelStates)
25: end procedure
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responses at the beginning of procedure. There is guarantee that state can’t be
changed at this point of the algorithm so it suffices to do it once per sprouting
procedure. The second issue is more difficult to handle. Comparing best individu-
als (Γ ) to choose seed of new sprout’s population requires gathering information
from all next level nodes (not only sprouts of the current node). If we let each
node to perform sprouting asynchronously, new sprouts will impact comparison
procedure of other nodes. Depending of gathering time the results may vary –
some nodes might have finished sprouting, others have not even started. This is
why the whole sprouting procedure in actor-based version should be supervised.
Our approach is to divide sprouting into 2 tasks. First task is conducted by
the Supervisor. It runs sprouting sequentially traversing all nodes from a tree
level, starting with leaves. Supervisor gathers information about sprout states
that may be used in comparison procedure. After receiving sprouting summary
from a node that finished its procedure, supervisor updates nextLevelStates set
with states of newly created sprouts. This set is later passed to another node
starting sprouting. It also keeps updating currentLevelStates that eventually
becomes nextLevelStates when supervisor goes to a lower tree level. That’s how
we ensure every node operates on the most current knowledge about HGS tree.
Moreover, each node sends this information to supervisor only once so that we
can minimize required communication.

Sprouting procedure is the most complex (and important) part of HGS. The
remaining HGS procedures also required adjusting to the new model, but usu-
ally solutions were similar to described idea and other differences lie mainly in
implementation details. Full implementation of DHGS can be found in Evogil
project, our open-source evolutionary computing platform 2.

4.2 Evaluation methodology

In order to measure hypothetical impact of parallel HGS nodes on overall MO-
DHGS performance, we have measured the cost of calculations. Cost is expressed
as number of fitness function evaluations. Each algorithm had the same cost
constraints (budget). We assumed that in case of parallel execution a cost of
single metaepoch can be reduced to cost of longest running node. In other words,
for set of costs {c1, c2, ...cn} where ci is a cost of metaepoch of a node i, the overall
DHGS metaepoch cost can be expressed as CDHGS = max{c1, c2, ...cn}, while
cost of sequential MO-mHGS is CHGS =

∑n
i=1 ci.

All runs of the system were performed on Evogil platform with the same
algorithms’ parameters as in our previous research [9]. This time we focused on
comparing 2 specific algorithms that were combined with MO-mHGS and DHGS
models: classical dominance-based approach NSGAII [4] and a hybrid of MOEA
and particle swarm optimizer, OMOPSO [15]. In the later case, choice was dic-
tated by promising results of previous research, where OMOPSO characteristics
have proved to be well fit to HGS meta-model. Algorithms were evaluated on
ZDT and CEC09 benchmark families.

2 https://github.com/Soamid/evogil

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_13

https://dx.doi.org/10.1007/978-3-030-50420-5_13


8 Authors Suppressed Due to Excessive Length

Cost and error scaling on different tree levels were also adjusted as in our pre-
vious work, simulating real-world problems behaviour. Again, we chose to take
into consideration only the best working set of parameters, thus cost modifiers
were set to 〈0.1, 0.5, 1.0〉 and error variation levels to 〈10%, 1%, 0.1%〉. These
parameters were configured for both MO-mHGS and MO-DHGS.

4.3 MO-DHGS results
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Fig. 2. Run summary (budget=2500, NSGAII hybridization). Markers represent algo-
rithms’ normalized metric outcomes at final stage of system run. MO-DHGS outcomes
are connected with lines.

For each result set we have evaluated several quality indicators. In this pa-
per we focus on three popular metrics: Average Hausdorff Distance (AHD)] [14]
(combination of GD and IGD metrics), Hypervolume [5] and Spacing [13]. Fig-
ure 2 shows summary of results from end of the system run for first considered
algorithm, NSGAII. It is clear that DHGS improves performance of single-deme
NSGAII, but also almost always wins with classical MO-mHGS regardless of
metric. In terms of distance from Pareto front and individuals distribution there
are significant differences between HGS methods, up to 50% of AHD value (UF4).

If we take a closer look on UF4 problem case and distribution of metric value
over consumed budget (Fig 3), we can observe that DHGS achieves good results
also on earlier stages of system run. However, DHGS converges much faster
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Fig. 3. Detailed results of NSGAII hybridization for all considered quality indicators
tackling UF4 benchmark.)

than MO-mHGS and gap between these two increases with time. It is related
to parallel architecture of DHGS: at the beginning it operates on single root
node. Additional nodes (evaluated in parallel) are created later, after reaching
satisfying progress ratio on lower level nodes.

Similar behaviour can be observed during OMOPSO computing. Summary
of results across all benchmark problems (Fig 4 lead to the same conclusions:
DHGS outperforms other solutions in vast majority of cases. Detailed charts
of representative example (UF5, Fig 5 present how taking advantage of par-
allelism may eventually provide tremendous results. It is worth to note that in
case of UF5 problem DHGS struggled to beat MO-mHGS in first half of the pro-
cess. Later (after reaching promising outcomes in root node) it released sprouts,
pushing final results farther and resulting in higher Hypervolume. It also found
better individuals in terms of AHD after reaching about 60% of the total budget
(even in comparison to final MO-mHGS results). This observation is important
for our research, as MO-mHGS with OMOPSO driver was our best hybridiza-
tion attempt in the previous research. This version of algorithm always reached
optimal values very fast.

In order to summarize DHGS experiments, the outcomes we calculated score
for each algorithm at two stages: after reaching budget equal to 1000 fitness
evaluations and at the end of system run (2500 evaluations). Score was calculated
basing on number of strong and weak wins for a given problem and budget step.
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Fig. 4. Run summary (budget=2500, OMOPSO hybridization). Markers represent al-
gorithms’ normalized metric outcomes at final stage of system run. MO-DHGS out-
comes are connected with lines.

We define weak win as a situation when specified algorithm is no worse than all
other solutions with some arbitrary chosen confidence value. In our experiments
we set the confidence to 0.5% for Hypervolume and 5% for all other metrics.
Algorithm is marked as strong winner if there are no weak winners for the
considered result set. At the end, each strong winner obtains 2 points and weak
winner scores 1 point. Table 1 contains summarized values of strong and weak
wins in all considered situations. Again, DHGS versions of algorithms gather
best scores in all cases. In multiple examples DHGS score value is improved at
the end of system run (with one notable exception of NSGAII spacing: DHGS
score decrases from 24 to 14 while single-deme NSGAII gahters some points).

5 Evaluating DHGS in asynchronous environment

Results presented in previous section should be considered as hypothetical. They
are based on several assumptions about possibility of fitness adjustment and
cost-free parallel execution. Real world problems results will be determined by
proper model configuration, but also by technical conditions. In order to test
DHGS model we implemented realistic multi-process version of the algorithm.
We used thespian and rxPy Python libraries to include DHGS as new Evogil
platform component. Then we created new simulation mode: to measure realistic
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Fig. 5. Detailed results of OMOPSO hybridization for all considered quality indicators
tackling UF5 benchmark.)

performance we applied time constraints instead of budget. During simulation
we have measured time of each metaepoch and sampled current results every 2
seconds. Whole simulation had 20s timeout.

Note that all presented simulations were run without fitness evaluation ad-
justing – these are the same benchmark problems that were used in previous
simulations, but they evaluate fitness the same way on every HGS node, regard-
less of tree level. That’s why in time-bound tests even MO-mHGS ends up with
worse results than single-deme algorithm.

All experiments were conducted on Windows 10 with Intel Core i9-9900K
(3.6GHz with 8 cores and 16 threads) and 16GB RAM.

As predicted, results summary of realistic OMOPSO hybridization (Fig 6
look different than its simulated version. DHGS still outperforms MO-mHGS
and single-deme algorithm in most situations, but it happens less frequently.
Especially in terms of spacing indicator final results do not seem to have one
dominating solution. On the other hand, basic AHD metric looks much better:
usually asynchronous DHGS beats at least one of its competitors and almost
always improves synchronous MO-mHGS results.

In fact, there are to separate sources of the problem here. First of all, the lack
of aforementioned fitness evaluation adjusting that can be implemented in real-
world problems, but it is not applicable to popular benchmark problems. That’s
why DHGS (and MO-mHGS) can’t beat NSGAII performance even though both
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Table 1. Scores of NSGAII and OMOPSO system in all benchmark problems. For
each metric and budget stage, all wining methods are shown. Values in parentheses
represent methods’ scores. If method is not present in a cell, its score is 0.

1000 2500

ahd DHGS+NSGAII(22),
HGS+NSGAII(6)

DHGS+NSGAII(23),
HGS+NSGAII(5), NSGAII(2)

hypervolume DHGS+NSGAII(15),
HGS+NSGAII(13), NSGAII(2)
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HGS+NSGAII(9), NSGAII(5)
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spacing DHGS+OMOPSO(14),
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OMOPSO(2)
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HGS+OMOPSO(9), OMOPSO(2)
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Fig. 6. Realistic simulation summary (time=20s, OMOPSO hybridization). Markers
represent algorithms’ normalized metric outcomes at final stage of simulation. MO-
DHGS outcomes are connected with lines.

were clearly better in simulated version of our experiment. Moreover, original
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reviving procedure does not allow us to remove dead nodes (or reuse their pro-
cesses for creating new nodes), as they can be bring back to life later. Therefore,
if the algorithm releases many sprouts in specific problem case, there will be also
many processes. Obviously, it has negative impact on performance of whole simu-
lation. This interesting observation leaves space for further research of adjusting
number of processing units or improving HGS reviving procedure.

6 Conclusion

Striving toward construction of efficient metaheuristics can help in reasonable
utilization of nowadays very popular supercomputing facilities. Moreover, focus-
ing on high-level programming languages makes possible for the user to focus
on the algorithm itself, relying on the technology supporting the development
process.

In this paper we have shown, that actor-based DHGS model can be a natural
improvement of MO-mHGS. Tree-like structure of HGS concept gave us oppor-
tunity to create generic, multi-deme asynchronous algorithm able to outperform
its synchronous version and converge faster on later stages of the system run.

We have shown that the proposed solution is sensitive to environment con-
ditions and implementation details nodes which leaves room for further investi-
gation.

Nevertheless, in combination with fitness evaluation adjusting mechanism,
DHGS is a powerful tool for solving real-world multi-objective problems.

In the future we will focus on experimenting scalability in broader range,
which seems to be promising because of the actual actor model used for syn-
chronization of the systems work.
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