Hybrid SWAN for fast and efficient practical
wave modelling - part 2*

Menno Genseberger! and John Donners?

! Deltares, P.O. Box 177, 2600 MH Delft, The Netherlands

Menno .Genseberger@deltares.nl
2 Atos, Munich, Germany

Abstract. In the Netherlands, for coastal and inland water applica-
tions, wave modelling with SWAN on structured computational grids
has become a main ingredient. However, computational times are rela-
tively high. Benchmarks showed that the MPI version of SWAN is not
that efficient as the OpenMP version within a single node.

Therefore, in a previous paper [5] a hybrid version of SWAN was proposed
for computations on structured computational grids. It combines the
efficiency of the OpenMP version on shared memory with the capability
of the MPI version to distribute memory over nodes. In the current paper
we extend this approach by an improved implementation, verification of
the model performance with a testbed, and extensive benchmarks of
its parallel performance. With these benchmarks for important real life
applications we show the significance of this hybrid version. We optimize
the approach and illustrate the behavior for larger number of nodes.
Parallel I/O will be subject of future research.

Keywords: wave modelling - hybrid method - distributed and shared
memory.

1 Introduction

In the Netherlands, for assessments of the primary water defences (for instance
[8]), operational forecasting of flooding [7, 9], and water quality studies in coastal
areas and shallow lakes (for instance [4]) waves are modelled with the third gen-
eration wave simulation software SWAN [1]. These are applications with SWAN
on structured computational grids. However, computational times of SWAN are
relatively high. Operational forecasting of flooding and water quality studies re-
quire a faster SWAN, at the moment this is a major bottleneck. Assessments of
the primary water defences require both a fast and efficient SWAN.

Therefore, in a previous paper [5] we studied the current MPI version [13]
and OpenMP version [2] of SWAN. That study was the basis of a hybrid version
of SWAN.

* We acknowledge the Dutch Ministry of Infrastructure and the Environment,
PRACE, Fortissimo, and NWO for supporting a part of this research. We acknowl-
edge PRACE for awarding us access to resource Cartesius based in The Netherlands
at SURFsara.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI{ 10.1007/978-3-030-50420-5_7 |

https://dx.doi.org/10.1007/978-3-030-50420-5_7

2 M. Genseberger and J. Donners

In the present paper ("part 27”), with results of extensive benchmarks for
important real life applications, we show the significance of the hybrid version.
For a proper understanding of the underlying principles we recapitulate the main
ingredients from [5] of SWAN and its parallel implementations in § 2 and § 3,
respectively. The setup of the benchmarks is outlined in § 4. In § 5 we indicate
how we verified the model performance of SWAN for the hybrid version. Then
we optimize the approach in § 6. § 7 ends with two illustrations of the behavior
of the hybrid version for larger number of nodes. Parallel I/O will be subject of
future research.

2 SWAN

The simulation software package SWAN (Simulating WAves Near-shore) de-
veloped at Delft University of Technology [1], computes random, short-crested
wind-generated waves in coastal areas and inland water systems. It solves a
spectral action balance equation that incorporates spatial propagation, refrac-
tion, shoaling, generation, dissipation, and nonlinear wave-wave interactions.
The coupling of wave energy via the spectral action balance equation is global
over the entire geographical domain of interest. Compared to spectral methods
for oceanic scales that can use explicit schemes, SWAN has to rely on implicit
upwind schemes to simulate wave propagation for shallow areas in a robust and
economic way. This is because typical scales (both spatial, temporal, and spec-
tral) may have large variations when, for instance, waves propagate from deep
water towards the surf zone in coastal areas.

For spectral and temporal discretization fully implicit techniques are applied. As
a consequence the solution procedure of SWAN is computationally intensive. For
typical applications these computations dominate other processes like memory
access and file I/0.

In the present paper we consider SWAN for structured computational grids (both
rectangular and curvilinear) that cover the geographical domain. The spectral
space is decomposed into four quadrants. In geographical space a Gauss-Seidel
iteration, or sweep technique is applied for each quadrant. This serial numerical
algorithm is based on the Strongly Implicit Procedure (SIP) by Stone [12]. Fig. 1
illustrates the sweep technique.

3 Parallel implementation

Given a serial numerical algorithm, in general two parallelization strategies can
be followed [3]: type (1): change the algorithm for a high degree of parallelism
or type (2): do not change the algorithm but try to implement it in parallel
as much as possible. For the serial numerical algorithm of SWAN based on im-
plicit schemes with sweep technique, a strategy of type (2) has an upperbound
of maximal parallelism for the computations. For each of the four sweeps of the
sweep technique this upperbound is related to a hyperplane ordering [3, § 4.1].
This depends on the stencil that couples the points in the computational grid:

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI{ 10.1007/978-3-030-50420-5_7 |

https://dx.doi.org/10.1007/978-3-030-50420-5_7

Hybrid SWAN for fast and efficient practical wave modelling - part 2 3

sweep 1 sweep 2 sweep 3 sweep 4
OO0OO0OO0OO0O000O0 O0O0OO0OO0OO000O0 O0O0OO0OO0O000O0 O0O0OO0OO0O000O0
OO0O0OO0OO0OO000O0 O0O0OO0OO0OO000O0 O0O0OO0OO0O000O0 O00OO0OO0O000O0
[O)e] 00000 [eNe] 00000 OOI_EOOOOO 00O O000O0
[eNeNe) OO000O0 [o)Ne)] OO0OO0O00O0 [o)Ne) OO000O0 [o)Ne) OO00O0O0
OO0OO0OO0OO0O000O0 O0O0OO0OO0OO000O0 O0O0OO0OO0O000O0 O00OO0OO0O000O0

245~ IR RV VRN

Fig. 1. lllustration of the sweep technique for the four quadrants. For every quadrant
the arrow indicates the sweep direction and the black bullet represents a computational
grid point that is being processed for which information comes from the two grey bullets
via the upwind coupling stencil.
computational grid

natural ordering hyperplane ordering

O0O0O0O00O0O0O0
Oo0O0O0O00O00O0
[e)ye} O000O0
(el o] O000O0
O0O0O0O00O0O0O0

37 38 39 40 41 42 43 44 45
28 29 30 31 32 33 34 35 36
19 20 21 22 23 24 25 26 27
10 11 12 13 14 15 16 17 18
123 456789

5

BN oW A

N WAoo

w s oo N

A0 N ®

9
8
7
6
5

10 11 12 13
9 10 11 12
8 9 1011
7 8 910
6 7 8 9

Fig. 2. Natural ordering and corresponding hyperplane ordering for sweep 1 of the
sweep technique. The black bullet represents a point in the computational grid that is
being processed for which information comes from the two grey bullets via the upwind
coupling stencil.

a new value at a point in the computational grid cannot be computed before
values are known at neighbouring points that are coupled via this stencil. If
computations proceed via some ordering (for instance the natural ordering for
sweep 1 as shown in Fig. 2) then the corresponding hyperplane ordering shows
those points in the computational grid for which new values can be computed
simultaneously (i.e. concurrent computations, in parallel, with opportunity for
fine-grained synchronization). These points have the same number in the order-
ing (a hyperplane), points on which they depend via the coupling stencil have a
lower number (data dependency).

3.1 Distributed memory

To reduce computational times of SWAN, Zijlema [13] considered parallelization
approaches for distributed memory architectures. The current MPI version of
SWAN is based on this work. The approach followed is of type (2): a block
wavefront approach for which the author of [13] was inspired by a parallelization
of an incomplete LU factorization.

In fact, it is based in a more coarse-grained way on the hyperplane ordering for
the sweeps of the sweep technique from § 3. For this purpose, the computational
grid is decomposed into strips in one direction. The number of computational
grid points in this direction is equal or higher than the number of computational
grid points in the other direction. Fig. 3 illustrates the block wavefont approach

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI{ 10.1007/978-3-030-50420-5_7 |

https://dx.doi.org/10.1007/978-3-030-50420-5_7

4 M. Genseberger and J. Donners

iteration 1 iteration 2 iteration 3 iteration 4
procl proc2 proc3 procl proc2 proc3 procl proc2 proc3 procl proc2 proc3
O OO0 00|00 O0 O O Ol0O0 0|00 O OO0 O0Ol0O0 0|00 O [oXeNe][eNeNelioNoNe]
O OO0 00|00 O0 O O Ol0O0 0|00 O OO0 O0Ol00 0|00 O L N JleNeNelioRoNe]
O O 0Ol0 00|00 O0 O O Ol0O0 0|00 O ®®®O0O0OO000O0 00000 00O
O OO0 00|00 O0 ®® 0000000 [CRCNCIT N N JloReNe) o000 000COOS
® ®0O 00000 @0 00 0® 0000 0000000 S o000 0000OO
active idle idle active active idle active active active active active active

Fig. 3. Illustration of the block wavefront approach for sweep 1 of the sweep tech-
nique. Shown are succeeding iterations in case of three parallel processing units (procl,
proc2, and proc3). The black bullets represent computational grid points that are being
updated in the current iteration. The grey bullets were updated in a previous iteration.

for sweep 1 of the sweep technique (the idea for the other sweeps is similar).
In iteration 1, following the dependencies of the upwind stencil, processor 1
updates the values at the computational grid points in the lowest row of strip
1. All other processors are idle in iteration 1. When sweep 1 arrives at the
right-most point in the lowest row of strip 1, after the update the corresponding
value is communicated to strip 2. Then processor 2 is activated. In iteration 2,
processor 1 performs sweep 1 on the next row of strip 1, processor 2 performs
sweep 1 on the lowest row of strip 2. Etcetera. Note that not all processors are
fully active during start and end phase of this approach. However, for a larger
number of computational grid points (compared to the number of processors)
this becomes less important. The block wavefront approach is implemented in the
current editions of SWAN with MPI. Data is distributed via the decomposition
in strips. For each sweep, at the end of every iteration communication between
adjacent strips is needed to pass updated values. This global dependency of data
may hamper good parallel performance on distributed memory architectures.
Note that the MPI version can run on shared memory multi-core architectures
too. Furthermore, this approach can be seen as a block (or strip) version of the
approach that will be discussed next.

3.2 Shared memory

In [2], Campbell, Cazes, and Rogers considered a parallelization strategy of type
(2) for SWAN. The approach is based in a fine-grained way on the hyperplane
ordering for the given sweep from § 3. This ordering determines the data depen-
dency and enables concurrent computations with maximal parallelism for type
(2). For the implementation with fine-grained synchronization, [2] uses pipelined
parallel steps in one direction of the computational grid. Lines with computa-
tional grid points in the other direction are assigned to the available processors
in a round-robin way. Fig. 4 illustrates the pipelined parallel approach based
on the hyperplane ordering for sweep 1 of the sweep technique (the idea for the
other sweeps is similar). In the current editions of SWAN, this approach is im-
plemented on shared memory multi-core architectures (or SM-MIMD, [11, § 2.4,
2012] with OpenMP.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI{ 10.1007/978-3-030-50420-5_7 |

https://dx.doi.org/10.1007/978-3-030-50420-5_7

Hybrid SWAN for fast and efficient practical wave modelling - part 2 5

o godu=-N
3 step 1 33
8 8:8:
2 BN
0'0:0 000
0:0.0 000
0'0:0 00 0
00000
©:'@0000
ggg step 6
[Tz
N

Fig. 4. Illustration of the pipelined parallel approach based on the hyperplane ordering
for sweep 1 of the sweep technique. Shown are succeeding steps in case of three parallel
processing units (procl, proc2, and proc3). The black bullets represent computational
grid points that are being updated in the current step. The grey bullets were updated
in a previous step.

3.3 Hybrid version

Further inspection of the approaches used by the MPI and OpenMP versions of
SWAN learned us that, conceptually, a combination should be quite straightfor-
ward. We illustrated the conceptual approaches for both versions in Fig. 3 and
Fig. 4, respectively. Both illustrations were for the same computational grid.
Let us reconsider the situation for the approach of the OpenMP version in § 3.2.
As the approach is based on the hyperplane ordering for the given sweep, the
approach also holds for the transpose of the situation shown in Fig. 4. (In fact
[2] uses this transposed situation as illustration.) In this transposed situation
lines with computational grid points perpendicular to the other direction are
assigned to the available processors in a round-robin way. Now, the point is that
this transposed situation for the pipelined parallel approach fits nicely in one
strip of the block wavefront approach of § 3.1. The block wavefront approach
distributes the strips and for each strip the grid lines are processed efficiently by
the pipelined parallel approach within shared memory. In this way the part of
the sweeps inside the strips are built up by the pipelined parallel approach and
the block wavefront approach couples the sweeps over the strips. Again, the par-
allelization strategy is of type (2): all computations can be performed without
changing the original serial numerical algorithm. Therefore, except for rounding
errors, the hybrid version gives identical results to the original serial numerical
algorithm.

Note that, for one strip the hybrid approach reduces to the pipelined parallel
approach, whereas for one processor per strip it reduces to the block wavefront
approach.

In Fig. 5 we illustrate this hybrid version for sweep 1 of the sweep technique.
To make the link with the actual implementation we give a short description in

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI{ 10.1007/978-3-030-50420-5_7 |

https://dx.doi.org/10.1007/978-3-030-50420-5_7

6 M. Genseberger and J. Donners

node 1 node 2 node 1 node 2 node 1 node 2

OO0OO0O0O0OOOO0
OO0 00|00 O0OO
OO0OO0O0O0OOOO0
00000000

thread1 |@ 0 0O 0|00 OO

[oXeeNe]
O00O0
[oXeeNe]

ocooo0
0000
Re){eXeXeXe)
oloooo oloooo
oooo| threadl | ocoo0o0

active idle active idle active idle

nodel node2 node 1 node 2 node 1l node 2
oooof 00000000
0000 thread 1)|O 0 0 O
0|00 00 thread 3)[© 0 00
0|00 00 thread 2 OO0l
@ 0000 ©© @ @® 0O 0O thread 1 @0 000 e00|threadl

active idle active active active active

nodel node2 node 1 node 2 node 1l node2

active active active active active active

Fig. 5. Illustration of the hybrid approach based on a combination of the block wave-
front approach and the pipelined parallel approach for sweep 1 of the sweep technique.
Shown are succeeding steps in case of three OpenMP threads (thread 1, thread 2, and
thread 3) within two MPI processes (node 1 and node 2). The black bullets represent
computational grid points that are being updated in the current step. The grey bullets
were updated in a previous step.

terms of OpenMP threads and MPI processes. Shown are succeeding steps in
case of three OpenMP threads (thread 1, thread 2, and thread 3) within two
MPI processes. The black bullets represent computational grid points that are
being updated in the current step. The grey bullets were updated in a previous
step. Note that, the OpenMP threads on node 1 and node 2 are different threads.
With MPI two strips are created: strip 1 is located on node 1, strip 2 on node
2. On node 1, OpenMP starts with the pipelined parallel approach for strip 1.
Lines (horizontal for this example) with computational grid points are assigned
to the three OpenMP threads in a round-robin way. Node 2 stays idle until sweep
1 arrives at the right-most point in the lowest row of strip 1, after the update
the corresponding value is communicated to node 2. Then on node 2 OpenMP
starts with the pipelined parallel approach on strip 2. Etcetera.

The hybrid version required some subtle modifications in the source code of
SWAN for structured computational grids. They are essential to accomodate
the combination of OpenMP and MPI. To make the hybrid version available
for general use, we handed these modifications to the maintainers of the official
SWAN version at Delft University of Technology [1].

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI{ 10.1007/978-3-030-50420-5_7 |

https://dx.doi.org/10.1007/978-3-030-50420-5_7

Hybrid SWAN for fast and efficient practical wave modelling - part 2 7
4 Setup of benchmarks

As a central case for the benchmarks a SWAN model is used that has been devel-
oped for the assessment of the primary water defences in the northern part of the
Netherlands [8]. The model covers the Dutch part of the Wadden Sea, a complex
area of tidal channels and flats sheltered by barrier islands from the North Sea.
See Fig. 6 in [5] for the bathymetry. The model is relatively large compared to
other SWAN models, with a 2280 x 979 curvilinear computational grid for the
geographical domain, resulting in more than 2 million active computational grid
points and a required working memory of about 6 GB.

In addition, benchmarks are performed for SWAN models of Lake IJssel (454
X 626 rectangular computational grid with full simulation period and I/O) and
Lake Marken (195 x 204, 586 x 614, and 975 x 1024 curvilinear computational
grids with shortened simulation period and no I/0O). See Fig. 6 in [5] for the
locations. These models are incorporated too as they differ in size and concern
other important application areas. The first model has been developed for oper-
ational forecasting of flooding near the Dutch major lakes [7]. The second model
has been developed for water quality studies in Lake Marken and is used in
combination with a shallow water and advection diffusion solver for modelling
resuspention and sedimentation, light penetration, and related ecological effects
[4,6].

Here we present results of benchmarks that were performed on “2690 v3”
nodes of the Cartesius supercomputer (Mellanox ConnectX-3 InfiniBand adapter
providing 4 x FDR resulting in 56 Gbit/s inter-node bandwidth, Intel MPI, Bull
B720 bullx system, SURFsara, the Netherlands). Each node contains 2 Intel
twelve-core Xeon E5-2690 v3 processors resulting in 24 cores per node with 2.60
Ghz per core. There is 30 MB cache per processor, no hyperthreading is used.

Benchmarks have been performed for MPI, OpenMP, and hybrid implemen-
tations of Deltares® SWAN versions 40.72ABCDE (Wadden Sea and Lake IJssel
cases) and 40.91AB.8 (Lake Marken case) for Linux 64 bits platforms. Note that
for one computational process with one thread, the OpenMP, MPI, and hybrid
version are functionally identical to the serial version of SWAN. Standard com-
piler settings are used as supplied with the Fortran source code at the SWAN
website [1] resulting in level 2 optimization for the Intel Fortran 14 compiler as
used on the Intel processors.

Timings of the wall-clock time have been performed three times. Results
presented here are averages of these timings. To have an indication of the variance
(i.e. measurement error), also the average minus the standard deviation and the
average plus the standard deviation are included. Shown are double logarithmic
plots for wall-clock time as a function of the number of computational cores. In
case of linear parallel scaling, lines will have a downward slope of 45°.

3 This Deltares version is in use for the applications mentioned in § 1. It has some
small but subtle additional functionalities compared to the official version at Delft
University of Technology (see website [1]) to enable interaction with a shallow water
solver and wave growth in depth-limited situations like Lake IJssel and Lake Marken.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI{ 10.1007/978-3-030-50420-5_7 |

https://dx.doi.org/10.1007/978-3-030-50420-5_7

8 M. Genseberger and J. Donners

5 Verification of model performance

As mentioned before, the MPI, OpenMP, and hybrid versions do not change
the original serial numerical algorithm for parallelization. Therefore, except for
rounding errors, these versions give identical results to the original serial numer-
ical algorithm, i.e. the model performance of SWAN stays the same.

During the benchmarks we verified this aspect by checking for all benchmark
cases that the different combinations (MPI version, OpenMP version, hybrid
version, hardware, number of processes / threads) show the same convergence
behavior of the numerical algorithm of SWAN. Furthermore, for the hybrid im-
plementation of Deltares SWAN version 40.91AB.8 the Deltares SWAN testbed
was run to verify this aspect too for all testcases in the testbed. The Deltares
SWAN testbed originates from the ONR testbed for SWAN [10]. It runs analyt-
ical, laboratory, and field testcases for SWAN for typical functionality and com-
pares results with previous tested versions on different platforms and measured
wave characteristics. Based on statistical postprocessing results of the testbed
runs can be accumulated in numbers that indicate the model performance on
which it can be decided to accept a new SWAN version. For the hybrid imple-
mentation of Deltares SWAN version 40.91AB.8 no significant differences were
observed.

6 Further optimization and behavior inside a node

Current hardware trends show an increase in the number of computational cores
per processor whereas multiple processors share memory inside a node. There-
fore, here we first try to further optimize the MPI, OpenMP, and hybrid version
before we scale up to larger number of nodes. Note that, by doing so, no new
discoveries are expected, the only aim is to have a good basis on the hardware
before scaling up. For this purpose, with some numerical experiments we investi-
gate the effect of the position of the computational processes on specific locations
(cores, processors) inside a node. Considered are the iterations of the Wadden
Sea case (i.e. no I/0).

Fig. 6 shows the parallel performance of the serial, MPI, and OpenMP ver-
sions on one Cartesius 2690 v3 node as a function of the number of cores used.
For the MPI and OpenMP version two ways of pinning the processes / threads
to the cores are shown:

compact: computational processes of neighbouring strips (MPI) or lines
(OpenMP) are placed as close as possible to each other and

spread: computational processes of neighbouring strips (MPI) or lines
(OpenMP) are placed in corresponding order but spread over the free cores
as much as possible.

For example: if only 6 cores are used then for compact the computational pro-
cesses 1, 2, 3, 4, 5, and 6 are placed on physical cores 0, 1, 2, 3, 4, and 5,
respectively. For spread they are placed on physical cores 0, 4, 8, 12, 16, and

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI{ 10.1007/978-3-030-50420-5_7 |

https://dx.doi.org/10.1007/978-3-030-50420-5_7

Hybrid SWAN for fast and efficient practical wave modelling - part 2

64

w
N
T

i
=)
T

wall-clock time (minutes)

——
—-0—

—x—

serial

OpenMP, compact
OpenMP, spread
MPI, compact

—A— - MPI, spread
&
ON
AN
WX
%\\
RS
R $.\x b
NN
NN Y
NUA
NN
X i
SN
LY \,,!
N N
\v \\
N .
\% \
, AN
\r .\.

N N
® ¥y

\,

\‘
\‘
N
®
i i i i i i i

1 2 3 4 6 8 12 16 24

computational cores

9

Fig. 6. Parallel performance of the serial, MPI, and OpenMP versions of SWAN for the
Wadden Sea case on one Cartesius 2690 v3 node as a function of the number of cores
used. For the MPI and OpenMP version two ways of pinning the processes/threads to
the cores are shown: compact and spread. See § 6 for further explanation. Shown is the
wall-clock time in minutes for the iterations.

wall-clock time (minutes)

8 T
- —%— hybrid

O OpenMP P

O MPI
s Pl R

x"
7’
6 7’
oy |- _.*-/
.—‘,*_‘_I_._*-I-’
*='"
5% | | | | | |
1 2 3 4 6 8 12 24

number of MPI processes = (24 / number of OpenMP threads)

Fig. 7. Parallel performance of the hybrid version of SWAN for the Wadden Sea case
on one Cartesius 2690 v3 node using all 24 cores as a function of the number of MPI
processes. Each MPI process uses (24 / number of MPI processes) OpenMP threads. See
§ 6 for further explanation. Shown is the wall-clock time in minutes for the iterations.

To cite this paper please use the final published version:

ICCS Camera Ready Version 2020

DOT{ 10.1007/978-3-030-50420-5_7 |

https://dx.doi.org/10.1007/978-3-030-50420-5_7

10 M. Genseberger and J. Donners

20, respectively. From the figure we may conclude that, as might be expected,
when using not all cores inside a node, it is beneficial for the wall-clock time
to “spread” the computational processes over the cores. Note that differences
between “compact” and “spread” are not that large, this may be explained from
the intensive computations of SWAN that dominate in the wall-clock time (see
§ 2). Furthermore, in Fig. 6 it can be seen that this effect disappears when using
more than 8 cores and that then also the difference between MPI and OpenMP
becomes more prominent.

A similar observation can be made from Fig. 7. This figure shows the parallel
performance of the hybrid version of SWAN on one Cartesius 2690 v3 node
using all 24 cores as a function of the number of MPI processes. Each MPI
process uses (24 / number of MPI processes) OpenMP threads. Note that for
one MPI process the hybrid version reduces to the original OpenMP version with
24 OpenMP threads (most left), whereas for 24 MPI processes it reduces to the
original MPT version (most right). For each MPI process of the hybrid version
the OpenMP threads are pinned compact to the cores, for the next MPI process
in the ordering of the algorithm the OpenMP threads are pinned compact to the
next cores in the ordering of the node. For the MPI and OpenMP versions the
MPI processes respectively OpenMP threads are pinned compact to the cores of
the node. Shown is the wall-clock time in minutes for the iterations.

Based on the previous numerical experiments we conclude that, when using
all cores of a Cartesius 2960 v3 node, optimal settings for the MPI, OpenMP, and
hybrid versions is pinning the MPI processes and/or OpenMP threads compact
to the cores. We will use these settings for the remainder of this paper.

Table 1. Wall-clock time in minutes of the MPI, OpenMP, and hybrid versions on 1
node (top), 2 nodes (middle), and 4 nodes (bottom) for Cartesius 2690 v3 nodes for
the Wadden Sea case.

1 node, 24 processes / threads MPI version (t1) OpenMP version (t2) t1 / t2
wall-clock time iterations (m) 7.645 + 0.013 5.236 £ 0.026 1.4601
2 nodes, 48 processes / threads MPI version (t1) hybrid version (t2) t1 / t2
wall-clock time iterations (m) 4.530 £+ 0.002 2.994 + 0.002 1.5130
4 nodes, 96 processes / threads MPI version (t1) hybrid version (t2) t1 / t2
wall-clock time iterations (m) 2.540 + 0.012 1.668 + 0.005 1.5228

With this knowledge / settings we extend the numerical experiments in § 4.2
of [5] with results on 1, 2, and 4 Cartesius nodes for the Wadden Sea case
(iterations, no I/O) in Table 1 and the Lake IJssel case (full simulation with I/0O)
in Table 2. These results confirm the trends observed in the previous paper (the
same cases are used in the benchmarks there) that the hybrid version improves
the parallel performance of the current MPI version for larger number of cores
per node and/or more nodes.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI{ 10.1007/978-3-030-50420-5_7 |

https://dx.doi.org/10.1007/978-3-030-50420-5_7

Hybrid SWAN for fast and efficient practical wave modelling - part 2 11

Table 2. Wall-clock time in minutes of the MPI, OpenMP, and hybrid versions on 1
node (top), 2 nodes (middle), and 4 nodes (bottom) for Cartesius 2690 v3 nodes for
the Lake IJssel case.

1 node, 24 processes / threads MPI version (t1) OpenMP version (t2) t1 / t2

wall-clock time full simulation (m) 117.229 + 0.153 60.600 £ 0.350 1.9345
wall-clock time iterations (m) 115.493 + 0.165 57.736 £+ 0.410 2.0004
wall-clock time I/O at end (m) 1.736 £ 0.012 2.863 + 0.060 0.6064
2 nodes, 48 processes / threads ~ MPI version (t1) hybrid version (t2) t1 / t2
wall-clock time full simulation (m) 65.509 + 0.051 45.906 £ 0.119 1.4270
wall-clock time iterations (m) 64.373 £+ 0.055 43.197 + 0.151 1.4902
wall-clock time I/O at end (m) 1.136 + 0.004 2.709 £ 0.032 0.4193
4 nodes, 96 processes / threads =~ MPI version (t1) hybrid version (t2) t1 /t2
wall-clock time full simulation (m) 38.282 + 0.025 27.480 £ 0.052 1.3931
wall-clock time iterations (m) 37.351 + 0.052 25.101 + 1.071 1.4880
wall-clock time I/O at end (m) 0.931 £ 0.027 2.379 £ 1.019 0.3913

7 Behavior for large number of nodes

We end with two numerical experiments in which we increase the number of
nodes.

First, to compare MPI and hybrid implementations, we consider the Wadden
Sea case (iterations, no I/O) on Cartesius 2690 v3 nodes. So in fact we extend
Table 1 to larger number of nodes. Per node all 24 cores are used and MPI
processes and/or OpenMP threads are pinned compact as described in § 6.
Fig. 8 shows the resulting wall-clock times in minutes for the OpenMP, MPI,
and hybrid versions. It can be seen that the gap between the MPI and hybrid
version stays constant up to 16 nodes. From this point on the wall-clock time for
the MPI version increases as the strips are becoming very thin. The MPI version
divides the computational work in only one direction. For this it chooses the
direction with most computational grid points, for the Wadden Sea case with
2280 x 979 computational grid this is the first grid direction. For 32 nodes the
computational work is divided in 32 x 24 = 768 strips whereas there are only
2280 grid points in this direction, resulting in only 2 to 3 grid points per strip.
For 128 nodes there are not enough grid points anymore to have at least one
grid point per strip. In that case, the current software implementation of the
MPT version (as provided by the maintainers of the official SWAN version at
Delft University of Technology [1]) crashes. For the hybrid version, however, the
number of MPI processes is a factor 24 lower and the OpenMP threads work in
the other grid direction. In Fig. 8 the wall-clock time for the hybrid version still
decreases after 16 nodes. The lowest value occurs between 64 and 128 nodes.
After 128 nodes the wall-clock time increases again. In case of 95 nodes the
hybrid version has strips of width 2280 / 95 = 24. Then, with 24 OpenMP
threads per node, precisely all points in the computational grid for which new
values can be computed simultaneously are processed at the same time. So for
this situation we obtain the maximal parallelism that we can obtain for the given

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI{ 10.1007/978-3-030-50420-5_7 |

https://dx.doi.org/10.1007/978-3-030-50420-5_7

12 M. Genseberger and J. Donners

algorithm (see also § 3 from [5]). This corresponds with the observation that the
lowest value of the wall-clock time occurs between 64 and 128 nodes.

Second, to study the effect of increasing the grid size on the parallel per-
formance of the hybrid version of SWAN, we consider the Lake Marken case
(iterations, no I/0) on Cartesius 2690 v3 nodes. For this purpose the original
195 x 204 curvilinear computational grid of [4,6] is uniformly refined with a
factor of 3, respectively 5, in both horizontal grid directions. This resulted in a
586 x 614 and 975 x 1024 curvilinear computational grid. The corresponding
number of computational grids points is 39780 (original grid), 359804 (3 x 3
refined grid), and 998400 (5 x 5 refined grid). (For the Wadden Sea case these
numbers are 2280 x 979 = 2232120.) The study of the effect of the refine-
ment on computational times of SWAN is important as the original grid is quite
coarse for local ecological impact assessments like in [6]. We did not take into
account the coupling with the shallow water solver nor the advection diffusion
solver as we only want to know a lower bound of the contribution of SWAN to
the computational times. Furthermore we restricted the simulation period to 1
day (instead of a typical full simulation period of 373 days). Fig. 9 shows the
resulting wall-clock times in minutes for the different grid sizes. As can be seen
the behavior is similar as for the Wadden Sea case in Fig. 8. For larger grids,
more nodes can be used to lower computational times. Again, lowest values of
the wall-clock time occur for the maximal parallelism that we can obtain for the
given algorithm: for 204 / 24 ~ 9 nodes, 614 / 24 ~ 26 nodes, and 1024 / 24 ~
43 nodes (for 195 x 204, 586 x 614, and 975 x 1024 grid, respectively).

8 Conclusions and outlook

Because of the importance for real life applications in the Netherlands, we in-
vestigated the parallel efficiency of the current MPI and OpenMP versions of
SWAN for computations on structured computational grids. In a previous paper
[5] we proposed a hybrid version of SWAN that naturally evolves from these
versions. It combines the efficiency of the OpenMP version with the capability
of the MPI version to use more nodes.

In the current paper we extended this approach. With extensive benchmarks
for important real life applications we showed the significance of this hybrid
version. We optimized the approach. Numerical experiments showed that the
hybrid version improves the parallel performance of the current MPI version
even more for larger number of cores per node and/or larger number of nodes.
Given the current trends in hardware this is of great importance. Parallel 1/O
will be subject of future research.

References

1. Booij, N., Ris, R.C., Holthuijsen, L.H.: A third-generation wave model for
coastal regions, part i, model description and validation. J. Geoph.Research
104(C4), 7649-7666 (1999), (Software (GNU GPL) can be downloaded from
http://swanmodel.sourceforge.net)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI{ 10.1007/978-3-030-50420-5_7 |

https://dx.doi.org/10.1007/978-3-030-50420-5_7

wall-clock time (minutes)

Hybrid SWAN for fast and efficient practical wave modelling - part 2 13

T T T T T T T

\'\ - —%—"OpenMP
* : : : : |+ —0—"MPI
: : : : | —@= hvbrid
41+ ; : : : : : yorn
N, : : : : :
N : : : : :
N b\ : : : o © : :
2+ NN : : > : : g
& N : R : :
N, © : ' : :
N TS 4 : :
~N ~, N B B
~d : :
ir oL, : : : A
Soe : g
o, : L. g
s : #
~ : .z E
05 LG 2B i
ﬁj;—:«z;aﬂ’
0.25 i i i I i i i
1 4 8 16 32 64 128 256 512
nodes

Fig. 8. Parallel performance of the OpenMP, MPI, and hybrid versions of SWAN for
the Wadden Sea case on Cartesius 2690 v3 nodes for large numbers of nodes. Shown
is the wall-clock time in minutes for the iterations.

wall-clock time (minutes)

164

: : : ‘.| -—B— 975 x 1024 grid |

T T T T T T T
© | —%—-195 x 204 grid
- —0- 586 x 614 grid

0.25
1

Fig. 9. Parallel performance of the hybrid version of SWAN for the Lake Marken case
on Cartesius 2690 v3 nodes for large numbers of nodes and different grid sizes. Shown
is the wall-clock time in minutes for the iterations.

ICCS Camera Ready Version 2020

To cite this paper please use the final published version:

DOT{ 10.1007/978-3-030-50420-5_7 |

https://dx.doi.org/10.1007/978-3-030-50420-5_7

14

10.

11.

12.

13.

M. Genseberger and J. Donners

. Campbell, T., Cazes, V., Rogers, E..: Implementation of an im-

portant wave model on parallel architectures. In: Oceans 2002
MTS/IEEE Conference. pp. 1509-1514. IEEE (2002), online at
http://www7320.nrlssc.navy.mil/pubs/2002/Campbell.etal.pdf

Chan, T.C., van der Vorst, H.A.: Approximate and incomplete factorizations. In:
Parallel Numerical Algorithms, ICASE/LaRC Interdisciplinary Series in Science
and Engineering. vol. 4, pp. 167-202. Kluwer Academic (1997)

Donners, J., Genseberger, M., Jagers, H.R.A., Thiange, C.X.O., Schaap,
H.M., Boderie, P.M.A., Emerson, A., Guarrasi, M., de Kler, T., van Meers-
bergen, M.: Using high performance computing to enable interactive de-
sign of measures to improve water quality and ecological state of lake
Marken. In: Proceedings 15th World Lake Conference (2014), online at
http://www.unescowaterchair.org/activities/publications

Genseberger, M., Donners, J.: A hybrid SWAN version for fast and efficient practi-
cal wave modelling. In: Procedia Computer Science. vol. 51, pp. 1524-1533 (2015)
Genseberger, M., Noordhuis, R., Thiange, C.X.0., Boderie, P.M.A.: Practical mea-
sures for improving the ecological state of lake Marken using in-depth system
knowledge. Lakes & Reservoirs: Research & Management 21(1), 5664 (2016)
Genseberger, M., Smale, A.J., Hartholt, H.: Real-time forecasting of flood levels,
wind driven waves, wave runup, and overtopping at dikes around Dutch lakes. In:
2nd European Conference on FLOODrisk Management. pp. 1519-1525. Taylor &
Francis Group (2013)

Groeneweg, J., Beckers, J., Gautier, C.: A probabilistic model for the determination
of hydraulic boundary conditions in a dynamic coastal system. In: International
Conference on Coastal Engineering (ICCE2010) (2010)

Kleermaeker, S.H.D., Verlaan, M., Kroos, J., Zijl, F.: A new coastal flood forecast-
ing system for the Netherlands. In: Hydrol2 Conference. Hydrographic Society
Benelux (2012), online at http://proceedings.utwente.nl/246

Ris, R.C., Holthuijsen, L.H., Smith, J.M., Booij, N., van Dongeren, A.R.: The
ONR test bed for coastal and oceanic wave models. In: International Conference
on Coastal Engineering (ICCE2002) (2002)

van der Steen, A.J.: Overview of recent supercomputers. Tech. rep., NWO-NCF
(2008, 2010, 2011, 2012), online at http://www.euroben.nl/reports.php. 2010 ver-
sion appeared in J. J. Dongarra and A. J. van der Steen. High-performance com-
puting systems. Acta Numerica, 21:379-474, 2012

Stone, H.L.: Iterative solution of implicit approximations of multidimensional par-
tial differential equations. STAM J. Numer. Anal. 5, 530-558 (1968)

Zijlema, M.: Parallelization of a nearshore wind wave model for distributed mem-
ory architectures. In: Parallel Computational Fluid Dynamics - Multidisciplinary
applications. pp. 207-214. Elsevier Science (2005)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI{ 10.1007/978-3-030-50420-5_7 |

https://dx.doi.org/10.1007/978-3-030-50420-5_7

