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Abstract. High-resolution reconstruction of emission rates from different 
sources is essential to achieve accurate simulations of atmospheric transport pro-
cesses. How to achieve real-time forecasts of atmospheric transport is still a great 
challenge, in particular due to the large computational demands of this problem. 
Considering a case study of volcanic sulfur dioxide emissions, the codes of the 
Lagrangian particle dispersion model MPTRAC and an inversion algorithm for 
emission rate estimation based on sequential importance resampling are deployed 
on the Tianhe-2 supercomputer. The high-throughput based parallel computing 
strategy shows excellent scalability and computational efficiency. Therefore, the 
spatial-temporal resolution of the emission reconstruction can be improved by 
increasing the parallel scale. In our study, the largest parallel scale is up to 1.446 
million compute processes, which allows us to obtain emission rates with a res-
olution of 30 minutes in time and 100 meters in altitude. By applying massive-
parallel computing systems such as Tianhe-2, real-time source estimation and 
forecasts of atmospheric transport are becoming feasible. 

Keywords: Source estimation, High-throughput computing, Transport simula-
tions, Volcanic emissions. 

1 Introduction 

Model simulations and forecasts of volcanic aerosol transport are of great importance 
in many fields, e.g., aviation safety [1], studies of global climate change [2,3] and at-
mospheric dynamics [4]. However, existing observation techniques, e.g., satellite meas-
urements, cannot provide detailed and complete spatial-temporal information due to 
their own limitations. With appropriate initial conditions, numerical simulations can 
provide relatively complete and high-resolution information in time and space. Model 
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predictions can help to provide early warning information for air traffic control or input 
to studies of complex global or regional atmospheric transport processes. 

In order to achieve accurate atmospheric transport simulations, it is necessary to first 
combine a series of numerical techniques with limited observational data to achieve 
high-resolution estimates of the emission sources. These techniques include backward 
trajectories methods [5], empirical estimates [6] and inverse approaches. Among them, 
the inverse approaches are universal and systematic in the identification of atmospheric 
emission sources due to their mathematical rigor. 

For instance, Stohl et al. [7] used an inversion scheme to estimate the volcanic ash 
emissions related to the volcanic eruptions of Eyjafjallajökull in 2010 and Kelut in 
2014. They utilized Tikhonov regularization to deal with the ill-posedness of the in-
verse problem. Flemming and Inness [8] applied the Monitoring Atmospheric Compo-
sition and Climate (MACC) system to estimate sulfur dioxide (SO2) emissions by Ey-
jafjallajökull in 2010 and Grimsvötn in 2011, in which the resolution of the emission 
rates is about 2-3 km in altitude and more than 6 h in time. Due to limitations in com-
putational power and algorithms, the spatial-temporal resolution of the reconstructed 
source obtained in previous studies is relatively low. 

The main limitations of real-time atmospheric transport forecasts are the great com-
putational effort and data I/O issues. Some researchers tried to employ graphics pro-
cessing units to reduce the computational time and got impressive results [9-11]. La-
grangian particle dispersion models are particularly well suited to distributed-memory 
parallelization, as each trajectory is calculated independently of each other. To reduce 
the computational cost, Larson et al. [12] applied a shared- and distributed-memory 
parallelization to a Lagrangian particle dispersion model and achieved nearly linear 
scaling in execution time with the distributed-memory version and a speed-up factor of 
about 1.4 with the shared-memory version. In the study of Müller et al [11], the paral-
lelization of the Lagrangian particle model was implemented in the OpenMP shared 
memory framework and good strong scalability up to 12 cores was achieved. 

In this work, we implement the Lagrangian particle dispersion model Massive-Par-
allel Trajectory Calculations (MPTRAC) [5] on the Tianhe-2 supercomputer, along 
with an inverse modeling algorithm based on the concept of sequential importance 
resampling [13] to estimate time- and altitude-dependent volcanic emission rates. In 
order to realize large-scale SO2 transport simulations on a global scale, high-resolution 
emission reconstructions and real-time forecasts, the implementation is based on state-
of-the-art techniques of supercomputing and big-data processing. The computing per-
formance is assessed in the form of strong and weak scalability tests. Good scalability 
and computational efficiency of our codes make it possible to reconstruct emission rates 
with unprecedented resolution both in time and altitude and enable real-time forecasts. 

The remainder of this manuscript is organized as follows: Section 2 introduces the 
forward model, the inverse modeling algorithm and the parallelization strategies. Sec-
tion 3 presents the parallel performance of the forward and inverse code on the Tianhe-
2 supercomputer. In section 4, the results of the emission reconstruction and forward 
simulation are presented for a case study. Discussion and conclusions are provided in 
section 5. 
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2 Data and Methods 

2.1 Lagrangian particle dispersion model 

In this work, the forward simulations are conducted with the Lagrangian particle dis-
persion model MPTRAC, which has been successfully applied for volcanic eruption 
cases of Grímsvötn, Puyehue-Cordón Caulle and Nabro [5]. Meteorological fields of 
the ERA-Interim reanalysis [13] provided by the European Centre for Medium-Range 
Weather Forecasts (ECMWF) are used as input data for the transport simulations. The 
trajectory of an individual air parcel is calculated by 

 
 

  , ,
d t

t t
dt


x

v x    (1) 

Where � = (�, �, �) denotes the spatial position and � = (�, �, �) denotes the velocity 
of the air parcel at time t. Here, x and y coordinates refer to latitude and longitude 
whereas the z coordinate refers to pressure. The horizontal wind components u and v 
and the vertical velocity � = �� ��⁄  are obtained by 4-D linear interpolation from the 
meteorology data, which is common in Lagrangian particle dispersion models [15]. 
Small-scale diffusion and subgrid-scale wind fluctuations are simulated based on a 
Markov model following Stohl et al. [16]. 

In our previous work [17], truncation errors of different numerical integration 
schemes of MPTRAC have been analyzed in order to obtain an optimal numerical so-
lution strategy with accurate results and minimum computational cost. The accuracy of 
the MPTRAC trajectory calculations has been analyzed in different studies, including 
[18], which compared trajectory calculations to superpressure balloon tracks. 

2.2 Evaluation of goodness-of-fit of forward simulation results  

Atmospheric InfraRed Sounder (AIRS) satellite observations are used to detect vol-
canic SO2 based on a brightness temperature differences (BTD) algorithm [19]. To 
evaluate the goodness-of-fit of the forward simulation results obtained by MPTRAC, 
the critical success index (CSI) [20] is calculated by 

                                                CSI= .x x y zC C C C   (2) 

Here, the number of positive forecasts with positive observations is Cx, the number of 
negative forecasts with positive observations is Cy, and the number of positive forecasts 
with negative observations is Cz. The CSI, representing the ratio of successful predicts 
to the total number of predicts that were either made (Cx+Cz) or needed (Cy), is com-
monly used for the assessment of the simulation results of volcanic eruptions and other 
large-scale SO2 transport problems. Basically, it provides a measure of the overlap of a 
simulated volcanic SO2 plume from the model with the real plume as found in the sat-
ellite observations. CSI time series are calculated using the AIRS satellite observations 
and MPTRAC simulation results mapped on a discrete grid, which are essential to the 
inverse modeling algorithm presented in the next section.  
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2.3 Inverse source estimation algorithm 

The strategy for the inverse estimation of time- and altitude-dependent emission rates 
is shown in Fig. 1 and Algorithm 1. The time- and altitude-dependent emissions are 

considered for the domain �:= ���, ��� × �, which is discretized with �� and �� uni-

form intervals into � = �� · �� subdomains. For each subdomain, a forward calcula-
tion of a set of air parcel trajectories is conducted with MPTRAC, which is referred to 
here as `unit simulation’ for a given time and altitude. Each unit simulation is assigned 
a certain amount of SO2, where we assume that the total SO2 mass over all unit simu-
lations is known a-priori. During the inversion, a set of importance weights 
��(� = 1,⋯ ,�), which satisfy ∑ �� = 1�

��� , are estimated to represent the relative pos-
terior probabilities of the occurrence of SO2 emission mass. 

At first, the subdomains are populated with SO2 emissions (air parcels) according to 
an equal-probability strategy. N parallel unit simulations with a certain amount of air 

parcels are performed in an iterative process and the corresponding time series �CSI�
� � 

with � = 1,⋯ , ��at different times tk and � = 1,⋯ ,� are calculated to evaluate the 
agreement of the simulations with the satellite observations. Then, the importance 
weights are updated according to the following formulas: 

                                                    
1
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During the iteration, the mi represents the probability of emitted source air parcels that 
fall in the ith temporal and spatial subdomain. Finally, after the termination criterion is 
satisfied, the emission source is obtained based on the final importance weight distri-
bution. To define the stopping criterion, we calculate the relative difference d by 
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where r denotes the iterative step and the norm is defined by 
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As a stopping criterion, threshold of the relative difference d is chosen to be 1%.  
In practice, in order to deal with the complexity of the SO2 air parcel transport, a so-

called “product rule” is utilized in the resampling process, in which the average CSI 
time series is replaced by the product of two average CSI time series in subsequent and 
separate time periods: 
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where ��
�  is a “split point” of the time series. This strategy can better eliminate some 

low-probability local emissions when reconstructing source terms, thus leading to ac-
curate final forward simulation results locally and globally. A detailed description of 
the inverse algorithm and the improvements due to applying the product rule can be 
found in [21].  

 

Fig. 1. Flow chart of the inverse modeling strategy 

Algorithm 1 Importance sampling algorithm in the inverse modeling 

Initialize: Set r = 1, and initially set all importance weights ��
� = 1 �⁄ ; 

repeat  

for i = 1 : N do in parallel  

Perform forward simulation with ��
���; 

Calculate CSI�
� = �� (�� + �� + ��)⁄  ; 

Update ��
�, ��

� with Equation (3), (7); 

end 
Calculate �(��,����) with Equation (5), (6); 

Set r=r+1; 

until d ≤ 0.01 

Output:��. 
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2.4 Parallel implementation 

The Tianhe-2 supercomputer at the National Supercomputing Center of Guangzhou 
(NSCC-GZ) consists of 16000 compute nodes, with each node containing two 12-core 
Intel Xeon E5-2692 CPUs with 64 GB memory [22]. The advanced computing perfor-
mance and massive computing resources of Tianhe-2 provide the possibility to conduct 
more complex mathematical research and simulations on much larger scales than be-
fore. Based on off-line simulations in previous work, we expect that Tianhe-2 will fa-
cilitate applications of real-time forecasts for larger-scale problems. The computational 
efficiency of the high-precision inverse reconstruction of emission source will directly 
determine whether the atmospheric SO2 transport process can be predicted in real time. 

To our best knowledge, few studies focus on both, direct inverse source estimation 
and forecasts, at near-real-time. Fu et al. [23] conducted a near-real-time prediction 
study on volcanic eruptions based on the LOTOS-EUROS model and an ensemble Kal-
man filter. Santos et al. [10] developed a GPU-based code to process the calculations 
in near real time. In this work, we attempt to further develop the parallel inverse algo-
rithm for reconstruction of volcanic SO2 emission rates based on sequential importance 
resampling methods, utilizing the computational power of the Tianhe-2 supercomputer 
to achieve large-scale SO2 transport simulations and real-time or near-real-time predic-
tions. 

The parallelization of MPTRAC and the inverse algorithm is realized by means of a 
hybrid scheme based on the Message Passing Interface (MPI) and Open Multi-Pro-
cessing (OpenMP). Since each trajectory can be computed independently, the ensem-
bles of unit simulations are distributed to different compute nodes using the MPI dis-
tributed memory parallelization. On a particular compute node, the trajectory calcula-
tions of the individual unit simulations are distributed using the OpenMP shared 
memory parallelization. Theoretically, the calculation time will decrease near linearly 
with an increasing number of compute processes. Therefore, sufficient computational 
performance can greatly reduce the computational costs and enable simulations of hun-
dreds of millions of air parcels on the supercomputer system. 

The implementation of the inverse algorithm is designed based on a high-throughput 
computing strategy. At each iterative step, the time- and altitude-dependent domain 

�:= ���, ��� × �  is discretized with ��  and ��  uniform intervals � = �� · �� , which 

leads to � = �� · �� unit simulations that are calculated in parallel as shown in Fig. 1. 
Theoretically, the high-throughput parallel computing strategy can greatly improve the 
resolution of the inversion in time and altitude through increasing the value of N. Only 
little communication overhead is needed to distribute the tasks and gather the results. 
With more computing resources, it is possible to operate on more detailed spatial-tem-
poral grids and to obtain more accurate results. In this work, we have achieved a reso-
lution of 30 min in time and 100 m in altitude for the first time with our modeling 
system. 

In summary, the goal of this work is to develop an inverse modeling system using 
parallel computing on a scale of millions of cores, including high-throughput submis-
sion, monitoring, error tolerance management and analysis of results. A multi-level task 
scheduling strategy has been employed, i.e., the computational performance of each 
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sub-task was analyzed to maximize load balancing. During the calculation, every task 
is monitored by a daemon with an error tolerance mechanism being established to avoid 
accidental interruptions and invalid calculations. 

3 Parallel performance analysis 

In this section, we evaluate the model parallel performance on the Tianhe-2 supercom-
puter based on the single-node performance of MPTRAC for the unit simulations and 
the multi-node performance of the sequential importance resampling algorithm. 

Since our parallel strategy is based on high-throughput computing to avoid commu-
nication across the compute nodes, the single-node computing performance is essential 
in determining the global computing efficiency. To test the single-node computing per-
formance, we employ the Paratune Application Runtime Characterization Analyzer to 
measure the floating-point speed. An ensemble of 100 million air parcels was simulated 
on a single node and the gigaflops per second (Gflops) turned out to be 13.16. The 
strong scalability test on a single node is conducted by simulating an ensemble of 1 
million air parcels. The results on strong scaling are listed in Table 1 and the results on 
weak scaling are listed in Table 2. Referred to a single process calculation, the strong 
and weak scaling efficiency using 16 computing processes reach 84.25% and 85.63%, 
respectively.  

Table 1. Strong scaling of a single-node MPTRAC simulation 

Problem 
size 

Number of pro-
cesses Nprocess 

Clock 
time/s 

Strong 
Speed-up 

ratio Rs 

Efficiency (Rs 
/Nprocess) 

1 million 
parcels 

1 1496 1x 100% 

4 399 3.75x 93.75% 

16 111 13.48x 84.25% 

Table 2. Weak scaling of a single-node MPTRAC simulation 

Problem 
size 

Number of 
processes Nprocess 

clock 
time/s 

Weak 
speed-up 
ratio Rw 

Efficiency (Rw 
/ Nprocess) 

1 million 
parcels 

1 1496 1x 100% 

4 million 
parcels 

4 1597 3.75x 93.75% 

16 million 
parcels 

16 1753 13.7x 85.63% 

Since the ensemble simulations with MPTRAC covering multiple unit simulations are 
conducted independently on each node, the scaling efficiency of the MPI parallelization 
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is mostly limited by I/O issues rather than communication or computation. Neverthe-
less, we tested the strong and weak scalability of the high-throughput based inverse 
calculation process, with a maximum computing scale of up to 38400 computing pro-
cesses. The results are shown in Tables 3 and 4. The scaling is nearly linear with respect 
to the number of compute nodes. Especially for weak scaling, the efficiency is close to 
ideal conditions, except for little extra costs related to the calculation of the CSI and 
I/O issues. 

Table 3. Strong scaling of the multi-node inverse algorithm (Each unit simulation cover 1 mil-
lion air parcels. The same goes for Table 4) 

Problem size 
Number of 
processes 

Nprocess 

clock 
time/s 

Strong 
Speed-up 

ratio Rs 

Efficiency (Rs / 
Nprocess) 

1600 unit  
simulations 

2400 16775 1x 100% 

9600 4452 3.77x 94.25% 

38400 1138 14.74x 92.13% 

Table 4. Weak scaling of multi-node inverse algorithm 

Problem size 
Number of 
processes  

Nprocess 

clock 
time/s 

Weak 
speed-up 
ratio Rw 

Efficiency (Rw 
/Nprocess) 

100 unit  
simulations 

2400 1123 1x 100% 

400 unit 
simulations 

9600 1132 3.97x 99.25% 

1600 unit 
simulations 

38400 1138 15.79x 98.69% 

In summary, the high-throughput based hybrid MPI/OpenMP parallel strategy of 
MPTRAC and the inverse algorithm shows good strong and excellent weak scalability 
on the Tianhe-2 supercomputer. That means the inverse modeling system has high po-
tential in massive parallel applications, meeting the requirements of real-time forecasts. 
However, the forward calculation still has some potential for optimization. In future 
work, we will investigate the possibility of cross-node computing with MPTRAC and 
try to further improve the single-node computing performance by using hyper thread-
ing. Besides, some further improvements may also be possible for the multi-node par-
allelization, in particular for the I/O issues and the efficiency of temporary file storage. 

4 Case study of the Nabro volcanic eruption 

Following Heng et al. [21], we choose an eruption of the Nabro volcano, Eritrea, as a 
case study to test the inverse modeling system on the Tianhe-2 supercomputer. The 
Nabro volcano erupted at about 20:30 UTC on 12 June 2011, causing a release of about 
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1.5 x 109 kg of volcanic SO2 into the troposphere and lower stratosphere. The volcanic 
activity lasted over 5 days with varying plume altitudes. The simulation results obtained 
for the Nabro volcanic eruption are of particular interest for studies of the Asian mon-
soon circulation [4,24]. 

4.1 Reconstructed emission results with different resolutions 

In general, with increasing resolution of the initial emissions, the forward simulation 
results are expected to become more accurate, but the calculation cost will also be much 
larger. In this work, the resolution of the volcanic SO2 emission rates has been raised 
to 30 minutes of time and 100 meters of altitude for the first time. The largest computing 
scale employs 60250 compute nodes on Tianhe-2 simultaneously. Each node calculated 
the kinematic trajectories of 1 million air parcels using a total of 24 cores. On such a 
computing scale, the inverse reconstruction and final forward simulation take about 22 
minutes and require about 530,000 core hours in total. 

Based on the inverse algorithm and parallel strategy described in sections 2 and 3, 
the SO2 emission rates are reconstructed at different temporal and spatial resolutions, 
as shown in Fig. 2. The resolutions are (a) 6 hours of time, 2.5 km of altitude, (b) 3 
hours of time, 1 km of altitude, (c) 1 hour of time, 250 m of altitude, and (d) 30 minutes 
of time, 100 meters of altitude. More fine structures in the emission rates become visi-
ble at higher resolution in Figs. 2a to 2c. However, the overall result in Fig. 2d at the 
highest resolution appears to be unstable with oscillations occurring between 12 to 16 
km of altitude. The reason of this is not clear and will require further study, e.g., in 
terms of regularization of the inverse problem. For the time being, we employ the re-
sults in the Fig. 2c for the final forward simulation. 

Compared with our previous work performed on the JuRoPA supercomputer at the 
Jülich Supercomputing Centre [21], the simulation results of this work performed on 
Tianhe-2 are rather similar. The reconstructed emissions show that the Nabro volcano 
had three strong eruptions on June 13, 14 and 16. For validation, Table 5 compares 
altitude and time of the major eruptions obtained with observations from different sat-
ellite sensors, which shows that the emission data constructed by the inverse modeling 
approach qualitatively agree with the measurements. Here, we also refer to the time 
series of the 2011 Nabro eruption based on Meteosat Visible and InfraRed Imager 
(MVIRI) infrared imagery (IR) and water-vapor (WV) measurements, which were used 
as validation data sets in [21] as shown in Fig. 3.  

Table 5. Major eruption altitudes of the Nabro volcano on different days 

 June 13 June 14 June 16 

CALIOP and MIPAS data 19 km 9-13 km - 

Fromm et al. (2013) [25] 15-19 km - - 

Fromm et al. (2014) [26] - - 17.4 km 

Result from this work 15-17 km 9-13 km 17 km 
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(a) Simulation on 210 compute nodes (5040 processes) 

 
(b) Simulation on 1025 compute nodes (24600 processes) 

 
(c) Simulation on 12100 compute nodes (290,400 processes) 

 
(d) Simulation on 60250 compute nodes (1,446,000 processes) 

Fig. 2. Reconstructed volcanic SO2 emission rates of the Nabro eruption in June 2011. The x-

axis refers to time, the y-axis refers to altitude (km), and the color bar refers to the emission 

rate (kg m-1 s-1). 
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Fig. 3. Time line of the 2011 Nabro eruption based on MVIRI IR and WV measurements. Here 
white is none, light blue is low level, blue is medium level, dark blue is high level [21] 

4.2 Final forward simulation results 

Based on the reconstructed emission data with 1 hour in time and 250 meters in altitude 
resolution, the final simulation applying the product rule was conducted on the Tianhe-
2 supercomputer for further evaluation. Fig. 5 illustrates the simulated SO2 transport, 
providing information on both, altitude and concentration, which are comparable to the 
AIRS observation maps shown in Fig. 4, suggesting the results are stable and accurate. 

 

 

 
 

Fig. 4. The AIRS satellite observations on 14, 16, 18, 20 June 2011, 06:00 UTC (SO2 index is a 
function of column density obtained from radiative transfer calculations. Here we refer to [19] 
for more detailed description of detection of volcanic emissions based on brightness tempera-

ture differences (BTDs) technique.) 
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(a) Simulation results for 14 June: air parcels altitude distribution (left), SO2 vertical col-

umn density (right). 

 
 (b) Same as (a), but for 16 June. 

 
 (c) Same as (a), but for 18 June. 

 

(d) Same as (a), but for 20 June. 

Fig. 5. Final forward simulation results of volcanic SO2 released by the Nabro eruption. The 
black square indicates the location of the Nabro volcano. 

5 Conclusions and outlook  

The high-resolution reconstruction of source information is critical to obtain precise 
atmospheric aerosol and trace gas transport simulations. The work we present in this 
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paper has potential applications for studying the effects of large-scale industrial emis-
sions, nuclear leaks and other pollutions of the atmosphere and environment. The com-
putational costs and efficiency of the inverse model will directly determine whether the 
atmospheric pollutant transport process can be predicted in real time or near real time. 
For this purpose, we implemented and assessed a high-throughput based inverse algo-
rithm using the MPTRAC model on the Tianhe-2 supercomputer. The good scalability 
test results demonstrate that the algorithm is well suited for large-scale parallel compu-
ting. In our case study, the computational costs for the inverse reconstruction and final 
forward simulation at unprecedented resolution satisfy the requirements of real-time 
forecasts. 

In the future work, we will study further improvements of the computational effi-
ciency, e.g., multi-node parallel usage of MPTRAC, mitigation of remaining I/O issues, 
post-processing overhead, efficient storage of temporary files, etc. Also, some stability 
problems at the highest resolution problems need to be addressed, e.g., by means of 
regularization techniques. Nevertheless, we think that the inverse modeling system in 
its present form is ready to be tested in further applications. 
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