
The challenge of onboard SAR processing: a
GPU opportunity

Diego Romano1[0000−0002−2640−157X], Valeria Mele2[0000−0002−2643−3483], and
Marco Lapegna2[0000−0001−9953−1319]

1 Institute for High Performance Computing and Networking (ICAR), CNR,
Naples, Italy

diego.romano@cnr.it
2 University of Naples Federico II,

Naples, Italy
valeria.mele,marco.lapegna@unina.it

Abstract. Data acquired by a Synthetic Aperture Radar (SAR), on-
board a satellite or an airborne platform, must be processed to pro-
duce a visible image. For this reason, data must be transferred to the
ground station and processed through a time/computing-consuming fo-
cusing algorithm. Thanks to the advances in avionic technology, now
GPUs are available for onboard processing, and an opportunity for SAR
focusing opened. Due to the unavailability of avionic platforms for this
research, we developed a GPU-parallel algorithm on commercial off-the-
shelf graphics cards, and with the help of a proper scaling factor, we
projected execution times for the case of an avionic GPU. We evalu-
ated performance using ENVISAT (Environmental Satellite) ASAR Im-
age Mode level 0 on both NVIDIA Kepler and Turing architectures.

Keywords: Onboard SAR focusing · GPU-parallel · Range-Doppler al-
gorithm.

1 Introduction

In the domain of environmental monitoring, Synthetic Aperture Radar (SAR)
plays an important role. It is an active microwave imaging technology for remote
sensing, which can be employed for observations in all-day and all-weather con-
texts. Satellites and aircraft have limited space for a radar antenna, therefore a
SAR sensor creates a synthetic aperture by exploiting their motion. As a plat-
form moves along a direction (called azimuth direction), the sensor transmits
pulses at right angles (along range direction) and then records their echo from
the ground (see Fig.1).

Thanks to its synthetic aperture, SAR systems can acquire very long land
swaths organized in proper data structures. However, to form a comprehensible
final image, a processing procedure (focusing) is needed.

The focusing of a SAR image can be seen as an inherently space-variant
two-dimensional correlation of the received echo data with the impulse response

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_4

https://dx.doi.org/10.1007/978-3-030-50420-5_4


2 D. Romano

azimuth

direction

synthetic

aperture

radar

aperture

range
direction

platform

trajectory

Fig. 1. Representation of the synthetic aperture created by a moving platform provided
with a sensor.

of the system. Radar echo data and the resulting Single-Look Complex (SLC)
image are stored in matrices of complex numbers representing the in-phase and
quadrature (i/q) components of the SAR signal. Several processors are available,
based on three main algorithms: Range-Doppler, ωk, and Chirp Scaling [7].

Usually, this processing takes time and needs HPC algorithms in order to
process data quickly. Heretofore, considering the limited computing hardware
onboard, data had been transmitted to ground stations for further processing.
Nevertheless, the vast amount of acquired data and the severely limited down-
link transfer bandwidth imply that any SAR system also needs an efficient raw
data compression tool. Because of structures with apparent higher entropy, a
quasi-independence of in-phase and quadrature components showing histograms
with nearly Gaussian shape and identical variance, conventional image compres-
sion techniques are ill-suited, and resulting compression rates are low.

Thanks to advances in the development of avionic specialized computing
accelerators (GPUs) [12] [1], now the onboard SAR processing with real-time
GPU-parallel focusing algorithms is possible. These could improve sensor data
usability on both strategic and tactical points of view. For example, we can
think of an onboard computer provided with a GPU directly connected to both
a ground transmitter and a SAR sensor through GPUDirect [13] RDMA [5]
technology.

Several efforts have been made to implement GPU SAR processors for differ-
ent raw SAR data using CUDA Toolkit. In [4], the focusing of an ERS2 image
with 26, 880 × 4, 912 samples on an NVIDIA Tesla C1060 was obtained in 4.4
seconds using a Range-Doppler algorithm. A similar result is presented in [14],
where a COSMO-SkyMed image of 16, 384 × 8, 192 samples has been processed
employing both Range-Doppler and ωk algorithms in 6.7 seconds. Another im-
plementation of the ωk algorithm, described in [20], focused a Sentinel-1 image

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_4

https://dx.doi.org/10.1007/978-3-030-50420-5_4


The challenge of onboard SAR processing: a GPU opportunity 3

with 22, 018 × 18, 903 in 10.87 seconds on a single Tesla K40, and 6.48 seconds
in a two GPUs configuration. In [15], a ωk-based SAR processor implemented
in OpenCL and run on four Tesla K20 has been used to focus an ENVISAT
ASAR IM image of 30, 000 × 6, 000 samples in 8.5 seconds and a Sentinel-1 IW
image of 52, 500×20, 000 samples in 65 seconds. All these results have accurately
analyzed the ground station case, where one or more Tesla GPU products have
been used.

Our idea is to exploit the onboard avionic GPU computing resources, which
are usually more limited than the Tesla series. For example, on the one hand,
the avionic EXK107 GPU of the Kepler generation is provided with 2 Streaming
Multiprocessors (SMs), each with 192 CUDA core. On the other hand, the Tesla
K20c, of the same architecture generation, has 13 SMs, also with 192 CUDA
core each.

Historically, the development of SAR processors has been characteristic of
the industrial sector, and therefore there is little availability of open-source pro-
cessors. This work is based on the esarp processor within the GMTSAR pro-
cessing system [17], a focuser written in C and implementing a Range-Doppler
algorithm (Fig. 2) for ERS-1/2, ENVISAT, ALOS-1, TerraSAR-X, COSMOS-
SkyMed, Radarsat-2, Sentinel-1A/B, and ALOS-2 data. For testing convenience,
the GPU-parallel processor herein presented is limited to ENVISAT ASAR Im-
age Mode level 0 data [18], but with a reasonably little effort, it can be adapted
to other sensors raw data.

Single Look

Complex (SLC)

image

Raw Data

Range Compression on each radar echo

Patch processing of range compressed echo

Range migration of range compressed and 

processed patch

Azimuth compression along columns 

of range migrated patch

Parameters

Fig. 2. Range-Doppler Algorithm flow in esarp processor

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_4

https://dx.doi.org/10.1007/978-3-030-50420-5_4


4 D. Romano

This paper shares the experiences gathered during the testing of a proto-
type HPC platform, whose details are subject to a non-disclosure agreement
and therefore excluded from this presentation. However, several insights can be
useful to discuss new approaches in the design of SAR processing procedures and
strategies. Indeed, from previous experiences in GPU computing, which also in-
cluded special devices ([16] [9] [11] [8] [10]), we can make some assumptions.
Furthermore, the reasoning made when dealing with an off-the-shelf hardware
solution can be in some way translated to an avionic product, accepting that
the algorithmic logic does not change. In order to develop and test our algo-
rithm, with the intent to exploit the massive parallelism of GPUs, we applied
the approach proposed in [2].

In the next section, we provide a schematic description of the Range-Doppler
algorithm, and we focus on data-parallel kernels that can be efficiently imple-
mented on a GPU. Section 3 presents the actual kernels implemented and their
relative footprint in the perspective of avionic hardware. Testing is presented in
Sec. 4, with an estimation of the execution time on an avionic GPU. Finally, we
discuss results and conclude in Sec. 5.

2 Range-Doppler algorithm and identification of
Data-parallel kernels

The GMTSAR processing system relies on precise orbits (sub-meter accuracy)
to simplify the processing algorithms, and techniques such as clutterlock and
autofocus are not necessary to derive the orbital parameters from the data.

In the esarp focusing component, data are processed by patches in order not
to overload the computing platform. Each patch contains all the samples along
the range direction and a partial record along the azimuth direction. Several
patches are concatenated to obtain the image for the complete strip.

1. Range Compression – In the ENVISAT signal, there are 5681 points along
the range direction that must be recovered in a sharp radar pulse by decon-
volution with the chirp used during signal transmission. The operation is
done in the frequency domain: firstly, the chirp is transformed, then the
complex product of each row with the conjugate of the chirp is computed.
A Fast Fourier Transform (FFT) is therefore needed before and after the
product. In order to take advantage of the speed of radix-2 FFT, data are
zero-padded to the length of 8192. This procedure allows obtaining phase
information for a longer strip, which will be later reduced to 6144 points for
further processing.

2. Patch Processing – In order to focus the image in the azimuth direction,
data must be transformed in the range-doppler domain, which means in
the frequency domain for the azimuth direction, by applying an FFT on
the transposed matrix representing the range compressed image. For the
ENVISAT radar, the synthetic aperture is 2800 points long. Again, to exploit
the speed of radix-2 FFT, 4096 rows are loaded and processed, consisting of
a patch. The last 1296 rows are overlapped with the following patch.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_4

https://dx.doi.org/10.1007/978-3-030-50420-5_4


The challenge of onboard SAR processing: a GPU opportunity 5

3. Range Migration - As the platform moves along the flight path, the
distance between the antenna and a point target changes, and that point
appears as a hyperbolic-shaped reflection. To compensate for this effect,
we should implement a remapping of samples in the range-doppler domain
through a sort of interpolator. Such a migration path can be computed from
the orbital information required by the GMTSAR implementation and must
be applied to all the samples in the range direction.

4. Azimuth Compression– To complete the focusing in the azimuth direc-
tion, a procedure similar to the Range Compression is implemented. In the
range-doppler domain, a frequency-modulated chirp is created to filter the
phase shift of the target. This chirp depends on: the pulse repetition fre-
quency, the range, and the velocity along the azimuth direction. As before,
after the complex product, the result is inversely Fourier transformed back
to the spatial domain to provide the focused image.

In the four steps described above, many operations can be organized ap-
propriately, respecting their mutual independence [3]. As shown in Fig. 3, each
sub-algorithm corresponds to a GPU kernel exploiting possible data parallelism.
The several planned FFTs can be efficiently implemented through cuFFT batch-
ing. If the raw data matrix is memorized in a 1-dimensional array with row-major
order, all the FFTs in range direction can be executed in efficient batches [19].
When the FFTs runs in the azimuth direction, a pre- and post-processing matrix
transpose becomes necessary.

Range Compression

Patch processing

Range migration

Azimuth compression

Frequency domain transformation in Range direction (FFT)

Deconvolution (row-wise complex product of samples by chirp) 

Spatial domain transformation in Range direction (IFFT)

Scaling

Range-doppler domain transformation in Azimuth direction (FFT)

Remapping of the samples in the Range direction (interpolation)

Filtering (point-wise complex product of samples by chirp) 

Spatial domain transformation in Azimuth direction (IFFT)

Scaling

Batched cuFFT FW

Point-wise Matrix operations

Batched cuFFT INV

Point-wise Matrix operations

Batched cuFFT FW

Point-wise Matrix operations

Point-wise Matrix operations

Batched cuFFT INV

Point-wise Matrix operations

STEPS GPU

Fig. 3. Steps of the Range-Doppler Algorithm and correspondence with possible data-
parallel GPU operations

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_4

https://dx.doi.org/10.1007/978-3-030-50420-5_4


6 D. Romano

The filtering sub-algorithms can be easily organized as point-wise matrix
operations, assuming that the chirps are available in the device memory for
reading. This step is efficiently achievable by building the range chirp directly
on the GPU, as it consists of a mono-dimensional array with spatial properties,
and by subsequently transforming it in the frequency domain through a proper
FFT. Similarly, the azimuth chirp can be built and transformed directly on the
GPU, but this time it is a 2-D array.

About the mapping of the samples in the Range direction, assuming enough
memory is available for storing the migrated samples, it can be seen as point-wise
matrix operation, as each sample corresponds to a previously patch processed
data subject to operations involving orbital information.

3 GPU kernels and memory footprint

In order to evaluate the feasibility of onboard processing, we present an analysis
of the resources needed.

Firstly, let us observe that cuFFT proposes a convenient function to get an
accurate estimate of the additional work area size needed to run a batched plan.
Since the dimensions used in the Range-Doppler algorithm for ENVISAT data
are a power of 2, that is 8192 complex numbers of 8 bytes each in the range
direction for 4096 rows, the additional work area consists of 256 MBytes for the
batches in the range direction. Similarly, in the azimuth direction, the batches
are organized in 6144 columns of 4096 points, and the additional work area
required is about 192 MBytes.

In Alg. 1, a GPU-parallel pseudo-code presents the kernels and the cuFFT
runs of the GPU-parallel version of esarp. In the following, we analyze the ker-
nels with their possible sources of Algorithmic Overhead [3] and their memory
footprint.

– d orbit coef : in order to remap the range samples and to compensate plat-
form movement within the range migration step, for each sample in the
range, there are 8 parameters describing the orbit characteristics and their
influence on the migration. These parameters are the same for each row of
the patch, and they are scaled considering the position in the synthetic aper-
ture, that is the position in the azimuth direction. They are also useful to
put up the chirp in the azimuth direction. To save useless recomputing, this
kernel precomputes 8 arrays of 6144 elements with a corresponding memory
footprint of 384 KBytes. Their values can be computed independently by
6144 threads in an appropriate thread-block configuration that takes into
account the number of SMs in the GPU.

– d ref rng: this kernel populates an array with the chirp in range direction
based on the pulse emitted by the sensor. The array is also zero-padded to the
length of the nearest power of 2 to exploit subsequent radix-2 FFT efficiency.
For the ENVISAT data, the array consists of 8192 complex numbers of 8
bytes each, i.e., 64 Kbytes. The workload of this kernel is proportional to

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_4

https://dx.doi.org/10.1007/978-3-030-50420-5_4


The challenge of onboard SAR processing: a GPU opportunity 7

Algorithm 1: esarp on GPU

Result: SAR focused image

initialization;
d orbit coef(coef) ; // kernel to create arrays with orbital info

d ref rng(r ref) ; // kernel to set up range chirp

cuFFT(r ref,FW) ; // transform range chirp in frequency domain

d ref az(a ref) ; // kernel to set up azimuth chirp

cuFFT(a ref,FW) ; // transform azimuth chirp in frequency domain

while patches to be focused do
receive patch;

// Range compression

cuFFT(patch,FW) ; // transf. freq. in range direction

d mul r(patch,r ref) ; // kernel for deconvolution in range dir.

cuFFT(patch,INV) ; // transform back in spatial domain

d scale(patch) ; // kernel for scaling partial results

// Patch processing

d trans mat(patch) ; // kernel to transpose patch

cuFFT(patch,FW) ; // transf. freq. in azimuth direction

// Range migration

d intp tot(patch,coef) ; // kernel to remap samples in range dir.

// Azimuth Compression

d mul a(patch,a ref) ; // kernel for filtering in azimuth dir.

cuFFT(patch,INV) ; // transform back in spatial domain

d scale(patch) ; // kernel for scaling results

d trans mat(patch) ; // kernel to transpose patch

end

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_4

https://dx.doi.org/10.1007/978-3-030-50420-5_4


8 D. Romano

the number of elements in the array. Moreover, each element can be processed
independently of the others, meaning that the workload can be split among
threads. If those are organized in a number of blocks, which is multiple of the
number of SMs present in the GPU, we can have a good occupancy of the
devices. Also, the divergence induced by the zero-padding can be minimized
during thread-block configuration.

– d ref az: by using previously calculated orbital parameters, a 2-D array
of the same size of the patch is populated with the chirp in the azimuth
direction, which is different for each column. Hence, the memory footprint
is 6144 · 4096 · 8 = 192 MBytes. Beforehand, the array is reset to zero values
since not all the samples are involved in the filtering. To limit divergence,
each element in the array can be assigned to a thread that populates the
array if necessary, or it waits for completion. Since the same stored orbital
parameters are used for each row, the threads can be arranged in blocks
with column-wise memory access in mind in order to limit collisions among
different SMs. Hence, the execution configuration can be organized in a 2-D
memory grid with blocks of threads on the same column.

– d mul r: implements a point-wise multiplication of each row of the patch
by the conjugate of the chirp in the frequency domain. The workload can be
assigned to independent threads with coalescent memory accesses. Following
reasoning similar to d ref az, with the idea of limiting memory collisions,
each thread in a block can compute one column of the patch in a for cycle,
realizing a coalesced write of the results with the other threads in the same
warp. This kernel does not require additional memory occupation.

– d scale: after the inverse FFT needed to transform the patch back to the
spatial domain, a point-wise scaling is needed. As before, independent threads
can work with coalescent memory accesses, and efficient workload assign-
ments can be configured.

– d trans mat: this kernel follows the highly efficient sample proposed in [6].
In this case, the memory footprint corresponds to a new array with the same
dimension of the patch, i.e., 192 MBytes.

– d intp tot: the remapping of the samples is carried on in a point-wise proce-
dure. The output patch must be in a different memory location, and therefore
the memory footprint consists again of an additional 192 MBytes. Making
similar reasoning on the memory accesses as we did for the d ref az ker-
nel, we can configure the execution to minimize global memory collisions,
optimizing block dimensions for occupancy.

– d mul a: this kernel filters the patch to focus the final image in the frequency
domain. The operations consist of element-wise matrix products and do not
need additional work area in memory. An efficient thread-block configuration
can follow the reasoning made for the previous kernel.

To summarize the analysis of the memory footprint for the whole procedure
to focus a patch: 192×2 MBytes are necessary to swap the patch for transposing
and remapping data in several kernels, 256 MBytes are necessary for the most
demanding FFT, and the preliminary computing of chirps and orbit data require

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_4

https://dx.doi.org/10.1007/978-3-030-50420-5_4


The challenge of onboard SAR processing: a GPU opportunity 9

≈ 192.5 MBytes. The total is less than 1 GByte of memory, which is a fair amount
available on every GPU.

4 Testing on workstation and reasoning on avionic
platform

As mentioned in the introduction, we had access to a prototype avionic platform
for testing purposes, and we had the opportunity to run our algorithm repeat-
edly. Even if we cannot disclose details about platform architecture and testing
outcomes due to an NDA, we can refer to the GPU installed, which is an Nvidia
EXK107 with Kepler architecture.

In this section, we will present the results collected on a workstation with a
Kepler architecture GPU (see Tab. 1), to propose some reasoning on the avionic
platform with the help of a scale factor, and on another workstation with a
Turing architecture GPU (see Tab. 2) to evaluate the running time on a more
recent device.

Table 1. Workstation used for testing on Kepler architecture

Workstation Kepler

OS Ubuntu 18.04
CPU Intel Core i5 650 @3.20GHz
RAM 6 GB DDR3 1333 MT/s
GPU GeForce GTX 780 (12 SMs with 192 cores each)

Let us consider the execution time of our GPU version of the esarp processor,
excluding any memory transfer between host and device, i.e., considering data
already on the GPU memory. Such is a fair assumption since all the focusing
steps are executed locally without memory transfers between host and device. In
an avionic setting, only two RDMA transfers happen: the input of a raw patch
from the sensor, the output of a focused patch to the transmitter (Fig. 4).

If we call twk the execution time for focusing a patch on the Workstation Ke-
pler, and ta the execution time to focus a patch on an avionic platform provided
with an EXK107 GPU, from our testing we noticed a constant scale factor:

sf =
twk

ta
= 0.23

It should not be considered a universal scale factor for whatever kernel run on
both devices. However, it is a constant behavior on the total execution time to
focus whatever patch from ENVISAT ASAR IM data using our GPU-parallel
version of the esarp processor. Therefore sf is useful to estimate the time needed
to focus a swath on an avionic platform using such application.

To verify the functionalities of the focusing algorithm, we used data freely
available from http://eo-virtual-archive4.esa.int. Measures presented in

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_4

http://eo-virtual-archive4.esa.int
https://dx.doi.org/10.1007/978-3-030-50420-5_4


10 D. Romano

Table 2. Workstation used for testing on Turing architecture

Workstation Turing

OS CentOS 7.6
CPU Gold Intel Xeon 5215
RAM 94 GB
GPU Quadro RTX 6000 (72 SMs with 64 cores each)

this section are relative to the processing of the image in Fig.5 subdivided in 9
patches.

In tab.3 we present the execution times of the GPU-esarp software, rela-
tively to the steps of the Range-Doppler algorithm, on Workstation Kepler. The
preliminary processing step, which includes the creation of arrays containing or-
bital information and chirps in both range and azimuth direction, is executed
just for the first patch, as the precomputed data do not change for other patches
within the same swath. The total execution time needed to focus the whole im-
age is twk = 1.12 seconds, excluding input-output overhead and relative memory
transfers between host and device.

We can, therefore, expect that the execution time needed on the avionic
platform is:

ta =
twk

sf
= 4.87 secs

which is less than the ENVISAT stripmap acquisition time tin ≈ 16 seconds for
the relative dataset. Moreover, if each sample of the resulting image consists of
a complex number of 16 bits, the total size of the output is ≈ 295 MBytes. In a
pipelined representation of a hypothetical avionic system, as pictured in Fig. 4,
all data transfers are subject to their respective connection bandwidth. Consid-
ering that the payload communication subsystem of the ENVISAT mission had
a dedicated bandwidth for SAR equipment of 100 Mbit/s, the time necessary to
transmit the result to the ground would be tout ≈ 24 seconds. That is, we can
suppose that:

ta < tin < tout

hence, we have an expected GPU-parallel focusing algorithm able to satisfy real-
time requirements on an EXK107 device.

If we consider the execution times on Workstation Turing (Tab. 4), we see
that the total time needed to focus the whole image is twt = 0.208 seconds,
excluding input-output transfers, which is very promising for the next genera-
tion of avionic GPUs. Moreover, considering the spare time available for further
processing during down-link transmission, we can think about computing Az-
imuth FM rate and Doppler Centroid estimators. Those algorithms are useful
to provide parameters for Range Migration, and Azimuth Compression steps in
case of non-uniform movements of the platform, as it happens on airborne SAR.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_4

https://dx.doi.org/10.1007/978-3-030-50420-5_4


The challenge of onboard SAR processing: a GPU opportunity 11

Data�Link

Satellite

Fig. 4. Transfer data rates in an avionic system: sensors are usually connected to the
computer unit through Optical Fibre, which allow rates of the Gbit/s magnitude or
more; within the Avionic Computer, GPUs allows transfers at rates with a magnitude
of Gbit/s; at the end of this pipeline, a data-link connection to the ground station can
transfer with a maximum rate of 100 Mbit/s with current technology.

Fig. 5. Focused SAR image of Napoli area, consisting of 6144 samples in the range
direction and 25200 samples in the azimuth direction. The sampled area is 106 × 129
Km2, with an Azimuth resolution of 5 meters. For rendering purposes, here the image
is proposed with vertical range direction and with the azimuth direction squeezed to
map on square pixels.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_4

https://dx.doi.org/10.1007/978-3-030-50420-5_4


12 D. Romano

Table 3. Execution times in milliseconds for each step of the GPU-esarp software on
the Workstation Kepler

Execution time in milliseconds

Preliminary
Processing

21.7

Range
Compression

46.9 46.2 46.2 46.1 46.3 46 45.8 45.9 46

Patch
Processing

4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.7 4.7

Range
Migration

47.8 47.1 46.9 46.9 47.2 46.9 47.1 47.2 47.3

Azimuth
Compression

24.4 24.1 24.1 24.2 24.3 24.2 24.8 24.1 24.1

Total
(excl. I/O)

145.4 122.2 122 122 122.6 121.9 122.5 121.9 122.1

Patch 1 2 3 4 5 6 7 8 9

Table 4. Execution times in milliseconds of the GPU-esarp software on the Worksta-
tion Turing

Execution time in milliseconds

Total
(excl. I/O)

28.5 24.3 22.9 22.3 22.3 22.2 22 22 22

Patch 1 2 3 4 5 6 7 8 9

5 Conclusions

When thinking about SAR sensing, a common approach is to consider it as an
instrument for delayed operational support. Usually, SAR raw data are com-
pressed, down-linked, and processed in the ground stations to support several
earth sciences research activities, as well as disaster relief and military opera-
tions. In some cases, timely information could be advisable, and onboard pro-
cessing is becoming an approach feasible thanks to advances in GPU-technology
with reduced power consumption.

In this work, we developed a GPU-parallel algorithm based on the Range-
Doppler algorithm as implemented in the open-source GMTSAR processing sys-
tem. The results, in terms of execution time on off-the-shelf graphics cards, are
encouraging if scaled to proper avionic products. Even if we did not present ac-
tual results on an avionic GPU, thanks to some insights acquired during testing
of a prototype avionic computing platform and a constant scale factor, we showed
that onboard processing is possible when an efficient GPU-parallel algorithm is
employed.

Since this result is based on the algorithmic assumption that orbital informa-
tion is available, some processing techniques such as clutterlock and autofocus
have been avoided. That is the case for many satellite SAR sensors, but further

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_4

https://dx.doi.org/10.1007/978-3-030-50420-5_4


The challenge of onboard SAR processing: a GPU opportunity 13

experiments must be carried on to verify the feasibility of onboard processing
on airborne platforms, where parameters like altitude and velocity may slightly
change during data acquisition. In this sense, as future work, we plan to imple-
ment a GPU-parallel algorithm for parameters estimation.

References

1. GRA112 graphics board (Jul 2018), https://www.abaco.com/products/

gra112-graphics-board
2. D’Amore, L., Laccetti, G., Romano, D., Scotti, G., Murli, A.: Towards a parallel

component in a GPU-–CUDA environment: a case study with the L–BFGS har-
well routine. International Journal of Computer Mathematics 92(1), 59–76 (2015).
https://doi.org/10.1080/00207160.2014.899589

3. D’Amore, L., Mele, V., Romano, D., Laccetti, G.: Multilevel algebraic approach
for performance analysis of parallel algorithms. Computing and Informatics 38(4),
817–850 (2019)

4. di Bisceglie, M., Di Santo, M., Galdi, C., Lanari, R., Ranaldo, N.: Synthetic aper-
ture radar processing with gpgpu. IEEE Signal Processing Magazine 27(2), 69–78
(March 2010). https://doi.org/10.1109/MSP.2009.935383

5. Franklin, D.: Exploiting gpgpu rdma capabilities overcomes performance limits.
COTS Journal 15(4), 16–20 (2013)

6. Harris, M.: An efficient matrix transpose in cuda c/c (Feb 2013), https://

devblogs.nvidia.com/efficient-matrix-transpose-cuda-cc/
7. Hein, A.: Processing of SAR Data: Fundamentals, Signal Processing, Interferome-

try. Springer Publishing Company, Incorporated, 1st edn. (2010)
8. Laccetti, G., Lapegna, M., Mele, V., Montella, R.: An adaptive algo-

rithm for high-dimensional integrals on heterogeneous cpu-gpu systems. Con-
currency and Computation: Practice and Experience 31(19), e4945 (2019).
https://doi.org/10.1002/cpe.4945, https://onlinelibrary.wiley.com/doi/abs/

10.1002/cpe.4945, e4945 cpe.4945
9. Laccetti, G., Lapegna, M., Mele, V., Romano, D.: A study on adaptive algorithms

for numerical quadrature on heterogeneous GPU and multicore based systems.
In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) Parallel
Processing and Applied Mathematics. pp. 704–713. Springer Berlin Heidelberg,
Berlin, Heidelberg (2014)

10. Marcellino, L., Montella, R., Kosta, S., Galletti, A., Di Luccio, D., Santopietro,
V., Ruggieri, M., Lapegna, M., D’Amore, L., Laccetti, G.: Using gpgpu acceler-
ated interpolation algorithms for marine bathymetry processing with on-premises
and cloud based computational resources. In: International Conference on Parallel
Processing and Applied Mathematics. pp. 14–24. Springer (2017)

11. Montella, R., Giunta, G., Laccetti, G.: Virtualizing high-end GPGPUs on ARM
clusters for the next generation of high performance cloud computing. Cluster
Computing 17(1), 139–152 (Mar 2014). https://doi.org/10.1007/s10586-013-0341-
0

12. Munir, A., Ranka, S., Gordon-Ross, A.: High-performance energy-efficient multi-
core embedded computing. IEEE Transactions on Parallel and Distributed Systems
23(4), 684–700 (April 2012). https://doi.org/10.1109/TPDS.2011.214

13. NVIDIA Corporation: Developing a Linux Kernel Module Using RDMA
for GPUDirect (2019), http://docs.nvidia.com/cuda/gpudirect-rdma/index.

html, version 10.1

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_4

https://www.abaco.com/products/gra112-graphics-board
https://www.abaco.com/products/gra112-graphics-board
https://doi.org/10.1080/00207160.2014.899589
https://doi.org/10.1109/MSP.2009.935383
https://devblogs.nvidia.com/efficient-matrix-transpose-cuda-cc/
https://devblogs.nvidia.com/efficient-matrix-transpose-cuda-cc/
https://doi.org/10.1002/cpe.4945
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4945
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4945
https://doi.org/10.1007/s10586-013-0341-0
https://doi.org/10.1007/s10586-013-0341-0
https://doi.org/10.1109/TPDS.2011.214
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://dx.doi.org/10.1007/978-3-030-50420-5_4


14 D. Romano

14. Passerone, C., Sansoè, C., Maggiora, R.: High performance sar focusing algorithm
and implementation. In: 2014 IEEE Aerospace Conference. pp. 1–10 (March 2014).
https://doi.org/10.1109/AERO.2014.6836383

15. Peternier, A., Boncori, J.P.M., Pasquali, P.: Near-real-time focusing of
envisat asar stripmap and sentinel-1 tops imagery exploiting opencl
gpgpu technology. Remote Sensing of Environment 202, 45 – 53 (2017).
https://doi.org/https://doi.org/10.1016/j.rse.2017.04.006, big Remotely Sensed
Data: tools, applications and experiences

16. Rea, D., Perrino, G., di Bernardo, D., Marcellino, L., Romano, D.: A gpu al-
gorithm for tracking yeast cells in phase-contrast microscopy images. The Inter-
national Journal of High Performance Computing Applications 33(4), 651–659
(2019). https://doi.org/10.1177/1094342018801482

17. Sandwell, D., Mellors, R., Tong, X., Wei, M., Wessel, P.: Gmtsar: An insar pro-
cessing system based on generic mapping tools (2011)

18. Schättler, B.: ASAR level 0 product analysis for image, wide-swath and wave mode.
In: Proceedings of the Envisat Calibration Review. Citeseer (2002)

19. Střelák, D., Filipovič, J.: Performance analysis and autotuning setup of
the cufft library. In: Proceedings of the 2nd Workshop on AutotuniNg
and ADaptivity AppRoaches for Energy Efficient HPC Systems. ANDARE
’18, Association for Computing Machinery, New York, NY, USA (2018).
https://doi.org/10.1145/3295816.3295817, https://doi.org/10.1145/3295816.

3295817

20. Tiriticco, D., Fratarcangeli, M., Ferrara, R., Marra, S.: Near real-time multi-gpu
ωk algorithm for sar processing. In: Agency-ESRIN, E.S. (ed.) Big Data from
Space (BiDS). pp. 277–280 (October 2014). https://doi.org/10.2788/1823, http:
//dx.doi.org/10.2788/1823

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_4

https://doi.org/10.1109/AERO.2014.6836383
https://doi.org/https://doi.org/10.1016/j.rse.2017.04.006
https://doi.org/10.1177/1094342018801482
https://doi.org/10.1145/3295816.3295817
https://doi.org/10.1145/3295816.3295817
https://doi.org/10.1145/3295816.3295817
https://doi.org/10.2788/1823
http://dx.doi.org/10.2788/1823
http://dx.doi.org/10.2788/1823
https://dx.doi.org/10.1007/978-3-030-50420-5_4

