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Abstract. We present an extension of the earthquake simulation soft-
ware SeisSol to support seismic wave propagation in fully triclinic aniso-
tropic materials. To our best knowledge, SeisSol is one of the few open-
source codes that offer this feature for simulations at petascale perfor-
mance and beyond. We employ a Discontinuous Galerkin (DG) method
with arbitrary high-order derivative (ADER) time stepping. Here, we
present a novel implementation of fully physical anisotropy with a two-
sided Godunov flux and local time stepping. We validate our imple-
mentation on various benchmarks and present convergence analysis with
respect to analytic solutions. An application example of seismic waves
scattering around the Zugspitze in the Bavarian Alps demonstrates the
capabilities of our implementation to solve geophysics problems fast.

1 Introduction

To successfully model earthquakes and perform seismic simulations, accurate
models for the source dynamics and the propagation of seismic waves are needed.
For seismic wave propagation, acoustic, isotropic and anisotropic elastic, atten-
uating and poroelastic materials are the most important rheologies [21]. Seismic
anisotropy affects speed and scattering of seismic waves depending on the direc-
tion of propagation and can be found on all scales in the solid Earth. Anisotropy
can stem from finely layered or cracked materials, the internal crystal structure
of minerals or the alignment of ice crystals in glaciers. Anisotropic material be-
havior is observed in fault zones [16, 17] and accounted for on global scale in
refinements of the Preliminary Reference Earth Model [8]. Effective anisotropy
on the scales of seismic wavelengths can be modeled by assuming homogeneous
materials with directional dependent properties.

Anisotropy is one of the key seismic properties next to velocity and intrinsic
attenuation. Locally, at the scale of earthquake fault zones, large variations in
anisotropy reflect the strong material contrasts, extreme strains, and high dis-
sipation of damaged rock. At the global scale, variations in anisotropy provide
snapshots of our planet’s interior that inform our understanding of plate tecton-
ics. Imaging of anisotropy is also crucial in industry contexts such as exploration
or geothermal reservoir development and maintenance. All these applications re-
quire efficient forward solvers, ideally accounting for physical anisotropy together
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with the geometrical complexity of the geological subsurface. High-order accu-
racy is crucial to resolve small variations of anisotropy, which are often within
only a few percent variation of isotropic material, depending on tectonic context.

Anisotropic material behavior has been successfully included in Finite Dif-
ference schemes [11, 22], pseudo-spectral methods [5], Spectral Element codes
[13] and Discontinuous Galerkin (DG) schemes for the velocity–stress formu-
lation [20] and for the velocity–strain formulation [26]. Only few open-source
codes exist which are able to simulate seismic wave propagation in anisotropic
materials and which are also tailored to run efficiently on supercomputers. The
DG ansatz on unstructured grids allows us to include full physical anisotropy
as we do not encounter geometrical restrictions. The DG software SeisSol has
undergone end-to-end performance optimization over the last years [3, 10, 25].
However, anisotropic effects have been neglected thus far.

In this paper, we present a novel implementation of fully anisotropic wave
propagation that exploits SeisSol’s high-performance implementation of element-
local matrix operations and supports local time stepping. We first lay out the
physical model and state the governing equations (Sect. 2). In Sect. 3 these equa-
tions are discretized using the DG method combined with arbitrary high-order
derivative time stepping (ADER-DG). Our main numerics contribution is to in-
troduce a two-sided numerical flux of the Godunov type in conjunction with a
free-surface boundary condition based on solving an inverse Riemann problem.
We highlight details of how we implemented theses features into the existing code
base, and extended it to make use of local time stepping. Here, the key novelty
is a general approach to integrate a numerical eigenvalue solver in SeisSol that
replaces analytically derived formulas in the respective precomputation steps. In
Section 5 we verify our implementation against various analytical solutions and
community benchmark problems. We also present an updated reference solu-
tion for the AHSP1 benchmark [18], since our implementation revealed physical
inconsistencies in the previous community reference solution. To demonstrate
the capability of our code to solve real-world geophysical problems we model
anisotropically scattering seismic waves radiating from a point source under the
strong topography contrasts of Mount Zugspitze in the Bavarian Alps.

2 Physical Model

Linear elastic materials are characterized by a stress–strain relation in the form

σij = cijklεkl for i, j ∈ {1, 2, 3}, (1)

with stress and strain tensors denoted by σ, ε ∈ R3×3. Symmetry considerations
reduce the 81 parameters cijkl to only 21 independent values [2]. Employing
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Voigt notation we can write the relation in a matrix–vector manner:
σ11
σ22
σ33
σ23
σ13
σ12

 =


c11 c12 c13 c14 c15 c16

c22 c23 c24 c25 c26
c33 c34 c35 c36

c44 c45 c46
sym c55 c56

c66


︸ ︷︷ ︸

=:H


ε11
ε22
ε33
2ε23
2ε13
2ε12

 . (2)

This constitutive relation can be combined with the equations of motion of
continuum mechanics which we write in the velocity–strain formulation, where

the vector Q =
(
σ11, σ22, σ33, σ13, σ23, σ13, u1, u2, u3

)T
defines the quantities

of interest. The combined equation reads:

∂Qp
∂t

+A1
pq

∂Qq
∂x1

+A2
pq

∂Qq
∂x2

+A3
pq

∂Qq
∂x3

= 0. (3)

The Jacobian matrices Ad, d = 1, 2, 3, can be deduced from the stress–strain
relation and have the form

Ad =

(
0 Cd
Rd 0

)
with, e.g., C1 =


−c11 −c16 −c15
−c21 −c26 −c25
−c31 −c36 −c35
−c61 −c66 −c65
−c41 −c46 −c45
−c51 −c56 −c55

 . (4)

We observe that the second index is constant for each column. To construct the
matrices C2 and C3 we replace these by 6, 2, 4 and 5, 4, 3 respectively. The blocks
Rd are the same as for the isotropic case and are detailed in [20]. The material
parameters can vary in space. For better readability the space dependence has
been dropped in Eq. (3). Isotropic material behavior can be seen as a special-
ization of anisotropy, where c11 = c22 = c33 = λ + 2µ, c12 = c13 = c23 = λ,
c44 = c55 = c66 = µ and all other parameters are zero.

3 Numerical approximation

De la Puente et al. [20] presented the numerics of including anisotropic material
effects into ADER-DG seismic wave propagation simulations. We here improve
the numerical scheme by a two-sided Godunov flux and a free-surface boundary
condition, as well as adaptions necessary for local time stepping with anisotropy.
A two-sided flux is physically more accurate and allows for coupling between
different rheologies. Local time stepping improves performance drastically.
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3.1 Spatial discretization

To solve Eq. (3), we follow a DG ansatz [7]. The underlying geometry is approx-
imated by a mesh of tetrahedral elements τm. For the discretization polynomial
ansatz functions Φl are defined on a reference element τref. On each element the
numerical solution Qmp is expanded in terms of the basis functions:

Qmp (x, t) = Q̂mpl(t)Ψ
m
l (x) = Q̂mpl(t)Φl(Ξ

m(x)). (5)

Here the function Ξm : τm → τref is an affine linear coordinate transformation.
By Ψml we denote the lth basis function transformed to the mth element.

On each element Eq. (3) is multiplied by a test function and integration by
parts is applied leading to a semi-discrete formulation:∫

τm

Ψmk
∂Q̂mpl
∂t

Ψml dV +

∫
∂τm

Ψmk (ndA
d
pqQq)

∗dS −
∫
τm

∂Ψmk
∂xd

AdpqQ̂
m
qlΨ

m
l dV = 0.

(6)
The Jacobians Adpq are element-wise constant. Also Q̂ and its time derivative
are constant on each cell. This allows us to pull these quantities out of the
integrals. Applying a change of variables to the reference element the integrals
can be precomputed. Together with an appropriate flux formulation this leads
to a quadrature-free numerical scheme.

3.2 Flux and Boundary Conditions

In DG schemes continuity across element boundaries is only enforced in a weak
sense, via the flux term (ndA

d
pqQq)

∗ in Eq. (6). Hence, a proper numerical flux,
which also takes the underlying physics into account, is essential. De la Puente et
al. [20] demonstrated anisotropy with one-sided Rusanov flux and discussed an
extension to Godunov fluxes for ADER-DG. Two-sided fluxes capture the correct
jump conditions of the Rankine-Hugoniot condition on both sides of the inter-
element boundaries. They have been introduced to SeisSol in [23] for acoustic
and (visco)elastic materials. In the following we give an overview over the most
important aspects of using two-sided flux formulations and on generalizing the
isotropic flux to a two-sided formulation for the anisotropic case.

In Eq. (6), the surface integral over ∂τm can be dispatched into four integrals
over the four triangular faces of each element. We evaluate the flux for each face
individually, so we need to transform the quantities Q as well as the stress–
strain relation into face-aligned coordinate systems. For anisotropic materials
the stress–strain relation is represented by the matrix H, see Eq. (2). We can
express the constitutive behavior in the face-aligned coordinate system via the
matrix H̃ = N ·H·NT (cf. [4]), whereN is the so-called Bond matrix (cf. [20]). We
define the matrix Ã to have the same structure as the matrix A1 but with entries
c̃ij from the matrix H̃. At each face we have the Jacobians and approximations

on the inside Ã−, Q− and on the outside Ã+, Q+.
The Godunov flux approximates the solution at the element boundary by

solving a Riemann problem across the element interfaces. First the equations are
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transformed to a face-aligned coordinate system. The Rankine-Hugoniot condi-
tion states that discontinuities travel with wave speeds given via the eigenvalues
of the Jacobian. The differences between the quantities are the corresponding
eigenvectors. A detailed derivation can be found in [23,26].

We observe that the eigenvectors of the Jacobian Ã have the form

R =



r11 r
1
2 r

1
3 0 0 0 r13 r12 r11

r21 r
2
2 r

2
3 1 0 0 r23 r22 r21

r31 r
3
2 r

3
3 0 1 0 r33 r32 r31

r41 r
4
2 r

4
3 0 0 0 r43 r42 r41

r51 r
5
2 r

5
3 0 0 1 r53 r52 r51

r61 r
6
2 r

6
3 0 0 0 r63 r62 r61

r71 r
7
2 r

7
3 0 0 0 −r73 −r72 −r71

r81 r
8
2 r

8
3 0 0 0 −r83 −r82 −r81

r91 r
9
2 r

9
3 0 0 0 −r93 −r92 −r91


. (7)

The eigenvectors and corresponding eigenvalues resemble three incoming and
outgoing waves. To take different material values on the inside and outside into
account an eigendecomposition of both Jacobians Ã− and Ã+ is performed and
the matrix R is constructed taking the first three columns from R− and the last
three columns from R+. With indicator matrices I− = diag(1, 1, 1, 0, 0, 0, 0, 0, 0)
and I+ = diag(0, 0, 0, 0, 0, 0, 1, 1, 1), we can then compute the flux as:

F =
1

2
TÃ−(RI+R−1)T−1︸ ︷︷ ︸

G+

Q− +
1

2
TÃ−(RI−R−1)T−1︸ ︷︷ ︸

G−

Q+. (8)

Here T is a matrix that rotates Q from the global coordinate system to the face-
aligned coordinate system. We take into account that the first six components
of Q ∈ R9 represent a symmetric tensor and the last three components represent
a vector. Both parts can be rotated independently, so T combines the rotation
of tensorial and vectorial quantities.

Analogous to inter-element boundaries, we also impose boundary conditions
via a specialized flux. For a free surface boundary we want to impose s = σn = 0.
In Eq. (8) the term RI+R−1T−1Q− is identified with the state at the inside of
the inter-element boundary. We can use this fact to construct a flux which will
yield the free surface boundary. To do so we set the traction s to zero and
compute the velocity u consistently:(

sb

ub

)
=

(
0 0

−R21R
−1
11 I

)(
s−

u−

)
. (9)

Superscripts b denote values at the boundary. The values s− and u− are the
traction and velocity in the face-aligned coordinate system. The matrices R11

and R21 slice out the first three columns of R and the rows corresponding to
the traction respectively the velocity components. The flux is obtained as F =
TÃ−Qb. Note that we did not specify the non-traction components of σ. As these
lie in the null space of the Jacobian Ã the flux is not altered by their value.
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3.3 Time discretization

To integrate Eq. (6) in time SeisSol employs the ADER method [6]. ADER time
stepping expands each element solution locally in time as a Taylor series up
to a certain order. The time derivatives are replaced by the discretized spatial
derivatives following the Cauchy–Kowalewski theorem. To update one element
we therefore only need the values of the element itself and its four neighbors,
which fosters efficient parallelization.

ADER time stepping inherently supports local time stepping [7]: Smaller
elements or elements with high wave speeds will be updated more often than
large elements or elements with low wave speeds. Local time stepping is thus
crucial for performant applications that use strong adaptive mesh refinement or
where meshes suffer from badly shaped elements. Setups with a heterogeneous
material can also benefit substantially from local time stepping.

Each element has to satisfy the stability criterion ∆tm < 1
2N+1

lm

vm for the
time step size ∆tm, where lm and vm denote the in-sphere diameter and maxi-
mum wave speed of element τm, N is the order of the method.

In anisotropic materials the wave speeds depend on the direction of propaga-
tion. This has not been considered in previous work (e.g. [7]). For a fixed direction
d we define the matrix M(d)ij = dkcikljdl. We calculate the wave speeds in di-

rection d from the eigenvalues λi of the matrix M(d) via vi =
√
λi/ρ resulting in

a primary and two secondary waves (cf. [4]). The element-wise maximum wave
speed is the maximum of these speeds over all directions d.

4 Implementation

SeisSol’s ADER-DG discretization is implemented via element-local matrix chain
multiplications, which allows for high performance on modern CPUs [10, 25].
All required matrices are precomputed in the initialization phase and opti-
mized kernels are generated for the matrix chain operations [24]. In the fol-
lowing we present the most important choices we made for our implementation
of anisotropy. Concerning the matrices, the compute kernels of the isotropic case
can be reused, just the assembly of the Jacobians and flux matrices differs.

4.1 Storage requirements

For each element we store the material values. In comparison to isotropic materi-
als 22 instead of 3 values have to be stored. This overhead is negligible compared
to the storage required for the degrees of freedoms. For example, a discretization
of order 6 requires 504 degrees of freedom per element.

Concerning the storage of the precomputed matrices, only the Jacobians A
and the flux matrices G+ and G− change between the isotropic and the aniso-
tropic case. Based on the sparsity pattern of a matrix, the biggest rectangular
non-zero block of the matrix is stored. We store the matrices A, G+ and G− as
full 9 × 9 matrices for the isotropic as well as for the anisotropic case, thus no
overhead is produced. The underlying data structures are not changed.
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4.2 Calculation of the flux term

Unlike as with isotropic materials the eigenstructure of the Jacobians given in
Eq. (7) is hard to express analytically. In the applied scheme the eigendecom-
position has to be calculated once for every element. We use the open source
software package Eigen3 [9] to obtain the eigenvectors numerically. We chose
this approach for three reasons:

(i) Even if an analytic expression for the eigenvalues is available it is lengthy
and hence the implementation is error-prone.

(ii) From a software engineering point of view the use of the numerical eigen-
value solver replaces a lot of code that was previously needed for each material
model individually. We unified the formulation of the Riemann solver for all
material models (isotropic, anisotropic and viscoelastic). We use templating to
distinguish the assembly of the Jacobians for each model. From then on we can
use the same code to precalculate G+ and G−. We expect that these software
engineering choices make it easy to include additional material models into Seis-
Sol in the future. Also coupling between different material models within the
same simulation can be obtained with little overhead.

(iii) The question of accuracy and stability of the numerical solver may arise.
But stability of an analytically derived formula is also not guaranteed. Round-off
errors and cancellation could drastically influence the accuracy of the derived
eigenvectors. With our choice for using a stable numerical solver instead, we
circumvent this problem.

4.3 Maximal wave speeds for local time stepping

Local time stepping is implemented with a clustered scheme to meet the require-
ments of modern supercomputers [3]. To cluster the elements the required time
step for each element has to be known in advance. To obtain the maximum wave
speed for one element, we would have to find the maximum wave speed over all
directions. This boils down to solving an optimization problem which involves
the calculation of eigenvalues of arbitrary matrices. Solving this optimization
problem analytically results in lengthy calculations. In practice, the time step is
relaxed by a security factor to meet the CFL condition, so the maximum wave
speed does not have to be computed exactly. We sample the wave speeds for
several directions d and take their maximum as the maximum wave speed vm.

5 Validation and Performance

5.1 Convergence analysis

Planar wave analytic descriptions are widely used in wave propagation problems.
Here we present a numerical convergence study to analyze the correct implemen-
tation to confirm its expected convergence properties. To this end, we verify our
implementation solving the 3-D, anisotropic, seismic wave equations in the form
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of periodic, sinusoidal waves in a unit-cube as explained in [19]. The computa-
tional domain is the unit cube [−1, 1]3 with periodic boundary conditions. The
ansatz for our plane-wave solution is

Qp(x, t) = Re
(
Q0
pe
i(ωt−k·x)

)
(10)

where ω denotes the frequency and k is the vector of wave numbers. When we
combine this with Eq. (3) we see that the initial condition Q0 has to be a solution
of the eigenvalue problem

AdpqkdQ
0
q = ωQ0

p. (11)

In the case of linear elasticity there is a zero eigenvalue with multiplicity 3. The
other eigenvalues appear pairwise with different signs and to the P wave and two
S waves. For isotropic materials the two S waves coincide, whereas for anisotropic
media a slow and a fast S wave can be distinguished.

For linear PDEs a linear combination of several solutions is a solution again.
To take the directional dependence of anisotropic materials into account we
superimpose three planar waves with wave number vectors k1 =

(
π, 0, 0

)
, k2 =(

0, π, 0
)

and k3 =
(
0, 0, π

)
. For each direction a P wave traveling in the direction

of kl and an S wave traveling in the opposite direction has been chosen. When
we denote the eigenvectors of the matrix Adkld with Rl and the corresponding
eigenvalues with ωl, the analytic solution can be written as

Qp(x, t) =

3∑
l=1

Re
(
Rlp2e

i(ωl
2t−k

l·x)) +Rlp9e
i(ωl

9t−k
l·x)
)
. (12)

The computational domain is discretized into cubes of edge length h = 1
2 ,

1
4 ,

1
8 ,

1
16 .

Each cube is split up into five tetrahedrons. The material is given by density
ρ = 1.00 kg

m3 and the elastic tensor cij = 0 except for

c11 = 192 Pa c12 = 66.0 Pa c13 = 60.0 Pa

c22 = 160 Pa c23 = 56.0 Pa c33 = 272 Pa

c44 = 60.0 Pa c55 = 62.0 Pa c66 = 49.6 Pa.

(13)

We compare the numerical solution to the analytic solution at time t = 0.02.
Fig. 1 shows the convergence behavior for the stress component σ11 in the L2-
norm. We clearly observe the expected convergence orders. The plots for the
L1- and L∞-norm are comparable. All other quantities also show the expected
convergence rates.

5.2 Isotropy via Anisotropy: Layer Over Halfspace (LOH1)

The community benchmark LOH1 [18] is designed for isotropic elastic materials.
We here use it to validate backwards compatibility, as isotropic elasticity is a
special case of anisotropic elasticity. The setup consists of a layered half space
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Fig. 1. 3D unit cube plane wave test case. Visualization of convergence behavior of the
stress component σ11. The L2 error is shown versus the mesh spacing h.

with a free surface boundary on top. The top layer is 1 km thick with material pa-
rameters ρ = 2600 kg

m3 , µ = 10.4 GPa and λ = 20.8 GPa. The half space below has

material parameters ρ = 2700 kg
m3 , µ = λ = 32.4 GPa. The source is a double cou-

ple point source with the only non-zero moment Mxy located in 2 km depth. The
moment rate time history is given by the function Mxy(t) = M0

t
T 2 exp

(
− t
T 2

)
with maximal moment M0 = 1018 Nm and onset time t = 0.1 s.

We compare the velocities at the free surface to the given reference solutions.
There are nine receivers located along three different lines through the origin.
The domain is the cuboid [−40000, 40000]× [−40000, 40000]× [0, 32500] m3. On
all other surfaces than the free surface (x3 = 0) we impose absorbing boundary
conditions. The mesh is refined around the source and coarsened away from it.
The characteristic length is approximately 300 m in the vicinity of the source
and grows up to 2000 m towards the boundary. In total the mesh consists of
2.57 million cells. The mesh is large enough that waves do not leave the domain
during the computational time and we do not observe problems with artificial
reflections. At the same time we keep the computational effort reasonable due
to the coarsening towards the absorbing boundaries.

We ran the simulation with convergence order 6 up to a final time of 5 s
and compared our solutions to the reference solution using envelope and pulse
misfit [14]. We recorded the velocities at all nine receivers. In Tab. 1 we present
the results for the third, sixth and ninth receiver, which are farthest away from
the source (the longer the wave is propagated, the less accurately it is typically
resolved due to numerical dissipation and dispersion). With a maximal envelope
misfit of 1.32% and a maximal phase misfit of 0.20% we are well within the high-
est level of accuracy defined in the LOH1 benchmark description. To investigate
the computational overhead of incorporating anisotropic effects, we compare the
execution times for the setup executed with the isotropic and the anisotropic im-
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Table 1. Envelope and pulse misfits for the different velocity components

Receiver EM PM

x y z x y z

3 1.32% 0.06% 0.06% 0.15% 0.00% 0.00%

6 0.79% 0.79% 1.04% 0.12% 0.10% 0.12%

9 0.99% 1.04% 0.83% 0.14% 0.10% 0.10%

plementation. We ran each simulation 5 times on 100 nodes of SuperMUC-NG
(Intel Skylake Xeon Platinum 8174, 48 cores per node) and average the total
wall time. The average runtime of the anisotropic implementation was 185.0 s,
which is only a little slower than the isotropic implementation, which averaged
at 184.6 s. The difference between the runtimes may be explained by the more
complicated initialization phase for the anisotropic case. We also point out that
the deviation in run times in between different runs was larger than the difference
between the averages. The computations achieved an average of 990.3 GFLOP/s
in the isotropic case and 994.7 GFLOP/s in the anisotropic case.

5.3 Anisotropic Homogeneous Space (AHSP, SISMOWINE)

The SISMOWINE test suite [18] proposes the following test case for seismic wave
propagation in anisotropic materials: The geometry is a homogeneous full space.
The homogeneous material has a density of ρ = 2700 kg

m3 . The elastic response is
characterized by the elastic tensor cij = 0 expect for

c11 = 97.2 GPa c12 = 10.0 GPa c13 = 30.0 GPa

c22 = 97.2 GPa c23 = 30.0 GPa c33 = 70.0 GPa

c44 = 32.4 GPa c55 = 32.4 GPa c66 = 43.6 GPa.

(14)

The source is identical to the LOH1 benchmark. We again refine the mesh around
the source with a characteristic edge length of about 300 m and coarsen away
from the source. This results in a total of 3.98 million cells. To simulate a full
space, absorbing boundary conditions are imposed on all six surfaces. Just as for
the LOH1 test case we do not encounter artificial reflections from the boundaries.

Fig. 2 shows an exemplary comparison between our new implementation and
the reference solution of SISMOWINE. One can clearly see that the reference
solution does not feature a second shear wave whereas our implementation does.
Since shear wave splitting is a well-known physical feature of wave propagation
in anisotropic media [2] we assume an error in the proposed reference solution.
The correctness of our calculation is confirmed in comparison to an analytical
reference: We used the open source tool christoffel [12] to compute the wave
speeds for the given material depending on the direction of wave propagation.
The shown receiver 6 is located at (7348, 7348, 0), 10392 m away from the source.
The calculated arrival time for the P wave is 1.73 s, the slow and the fast S wave
arrive after 2.59 s and 3.00 s respectively. We observe that the arrival times align
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Fig. 2. Comparison of velocity component in x direction for receiver 6

very well with the results calculated by the new SeisSol implementation. In
agreement with the original authors and the maintainers of the SISMOWINE
project, our here presented solution has been accepted as the new reference
solution due to its physical plausibility.

5.4 Tilted transversally isotropic medium

For transversally isotropic materials analytical solutions can be found along the
axis of symmetry [5]. As mentioned earlier the representation of the elastic tensor
depends on the chosen coordinate system. By tilting the symmetry axis of the
transversally isotropic material we can generate an almost densely filled elastic
tensor. We take the material characterized by the tensor cij = 0 except for

c11 = 66.6 GPa c12 = 19.7 GPa c13 = 39.4 GPa

c22 = 66.6 GPa c23 = 39.4 GPa c33 = 39.9 GPa

c44 = 10.9 GPa c55 = 10.9 GPa c66 = 23.6 GPa.

(15)

and density ρ = 2590 kg
m3 and tilt it around the x axis about 30◦. We consider the

computational domainΩ = [0, 2500]3. The source is placed at (1250, 1562.5, 937.5)
and a receiver is placed at (1250, 1198.05, 1568.75), which is along the symme-
try axis of the tilted material 728.9 m away from the source. The source either
acts along the axis of symmetry or orthogonal to the axis. The time history is a
Ricker wavelet with dominant frequency f0 = 16.0 Hz and onset time t0 = 0.07 s.
The whole simulation was run for 0.6 s on a mesh which is refined in a sphere
around the source and in a cylinder along the axis of symmetry. In the most
refined region the characteristic length is 5 m and grows towards the boundary.
In total the mesh consisted of 6.10 million elements.

We compare our solution obtained at the receiver with the analytic solution
using envelope and pulse misfit. For the horizontal source we obtained a maximal
envelope misfit of 2.09% and a pulse misfit of 0.49%. For the vertical source the
misfits were 2.16% and 0.28% respectively. For both source types the numerical
solution fits the analytic solution very well.
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Fig. 3. Isotropic (left) vs. anisotropic (right) seismic wave field scattered at the strong
topography free surface of Mount Zugspitze at t = 3 s simulation time.

5.5 Application example: Mount Zugspitze

Accurate numerical simulation of scattering seismic waves by complex geometries
are critical for assessing and quantifying seismic hazards. In the context of re-
gional scale seismology wave propagation simulations, many numerical methods
are challenged by geometric restrictions or low-order accuracy. We here spatially
discretize the surface topography around Mount Zugspitze [1] in an unstructured
tetrahedral computational mesh of size 90 km× 90 km up to 70 km depth with a
resolution of 600 m at the surface. The mesh contains 1.47 million cells. We chose
a discretization of order 6 which results in 740 million degrees of freedom. This
means we can resolve frequencies up to 4.2 Hz with an estimated envelope misfit
smaller than 1% [15]. A kinematic point source source with the same parameters
as for the LOH1 test case is placed in the center of the domain at 10 km depth.
We visually compare the wave field scattered by topography in an isotropic
material with parameters ρ = 2670 kg

m3 , λ = 36.4 GPa, µ = 29.8 GPa with an
anisotropic material. The elastic tensor is chosen such that in EW-direction the
P wave speed is 6000m

s for both materials. To illustrate the effects of anisotropy
the P wave speed in NS-direction of the anisotropic material is 5% lower.

In Fig. 3 snapshots of the vertical velocity field on the free surface are plotted.
A circular shape for the isotropic example and an elliptic shape for the aniso-
tropic part illustrate the effects of anisotropic materials on wave propagation
under strong velocity contrast. We compare this simulation with and without
local time stepping: moving from global to local time stepping drastically re-
duced the execution time from 5990 s to 210 s. The simulation was run on 50
nodes of SuperMUC-NG. The computational more intense version with global
time stepping achieved 1.414 TFLOP/s, the version with local time stepping
achieved 1.015 TFLOP/s. This shows that local time stepping is crucial to ob-
tain fast simulations when the element sizes vary a lot, such as in the case of
surface topography.
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6 Conclusion

The earthquake simulation code SeisSol has been successfully extended to take
general anisotropic materials into account. A two-sided Godunov flux for aniso-
tropic media has been derived and implemented. Together with the formulation
of the free-surface boundary condition as the solution of an inverse Riemann
problem it fits well with the other rheological models. Necessary changes to
include local time stepping have been described and implemented.

The scheme has been validated against various benchmarks. The expected
convergence rates are demonstrated in comparison to analytic solutions. The
mismatch between our results on a community benchmark have been discussed
with the maintainers and led to an update of the reference solution.

As anisotropy is non-neglectable to describe the Earth’s subsurface struc-
ture we expect a wide range of applications. Besides the importance of seismic
anisotropy for exploration purposes, earthquake fault zones may be characterised
by pervasive anisotropy. Earthquake monitoring and forecasting can be built
upon this observation.
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