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Abstract. Various approaches based on both computational science and
data science/machine learning have been proposed with the development
of observation systems and network technologies. Computation cost as-
sociated with computational science can be reduced by introducing the
methods based on data science/machine learning. In the present paper,
we focus on a method to estimate inner soil structure via wave prop-
agation analysis. It is regarded as one of the parameter optimization
approaches using observation data on the surface. This application is in
great demand to ensure better reliability in numerical simulations. Typi-
cal optimization requires many forward analyses; thus, massive computa-
tion cost is required. We propose an approach to substitute evaluation us-
ing neural networks for most cases of forward analyses and to reduce the
number of forward analyses. Forward analyses in the proposed method
are used for producing the training data for a neural network; thereby
they can be computed independently, and the actual elapsed time can be
reduced by using a large-scale supercomputer. We demonstrated that the
inner soil structure was estimated with the sufficient accuracy for prac-
tical damage evaluation. We also confirmed that the proposed method
achieved estimating parameters within a shorter timeframe compared to
a typical approach based on simulated annealing.

Keywords: Data-driven computing, finite element analysis, conjugate gradient
method, GPU computing

1 Introduction

The demand for exploiting the power of Big Data has been increasing due to
the rapid development of observation systems and network technologies (e.g.,
introduction of Internet of Things and 5th Generation networks). Thereafter,
integration of computational science, data science, and machine learning has
been proposed (Big Data & Extreme Computing (BDEC) [1]). The main pur-
pose of this project is to provide the available data to computer systems and to
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produce new information with social value by data processing and computations.
It is assumed that the data are supplied in real time; therefore, large amount
of computer power will be required. Several large-scale computer systems are
designed for data science and machine learning (e.g., AI Bridge Cloud Infras-
tructure (ABCI) [2]), and therefore, we can see that these approaches are being
expanded. From the perspective of computational science, computation cost such
as power consumption becomes a more important issue with the development of
computation environments. Introduction of data science and machine learning
can facilitate reducing the computation cost.

We focus on the estimation of the inner structure whose material proper-
ties vary by location. This problem has been discussed in various fields including
biomedicine [4] and gas and oil exploration [12], and it is also important for dam-
age evaluation in the case of earthquake disasters. Here, we estimate the inner
soil structure (boundary surfaces of soil layers) required in ground shaking anal-
ysis: in this problem, material properties of each ground layer in the domain are
relatively easy to estimate by geological survey. However, direct measurement of
the position of boundaries between soil layers with different material properties
is difficult. Reference [8] notes that the inner soil structure has significant effects
on the distribution of displacement on the ground surface and strain in under-
ground structures. The inner soil structure is not available with high resolution
or appropriate accuracy, which deteriorates the accuracy of simulations even if
numerical methods capable of modeling complex geometry is used.

One of the realistic ways to address this issue is to introduce an optimization
method using the observation data on the ground surface in the case of a small
earthquake. If we could generate many models and conduct wave propagation
analysis for each of them, it would be possible to select a model capable of repro-
ducing available observation data most accurately. The use of optimized models
may help increase reliability of damage evaluation. This procedure requires a
large number of forward analyses. Therefore, the challenge is an increase in the
computation cost for many analyses with the large number of degrees of freedom.

In our previous study [14], we proposed a simulated annealing method with
reduction in computation cost required in each forward analysis by overlapping
model generation on CPUs and finite element solver computations on GPUs. We
demonstrated that one boundary surface between two layers in the soil structure
was estimated by 1,500 wave propagation analyses using finite element models
with 3,000,000 degrees of freedom in 13 hours. However, in this application, we
have to estimate the three-dimensional inner soil structure using the data on
two-dimensional ground surface. In cases when we estimate multiple boundary
surfaces, the convergence of optimization methods can deteriorate, as the num-
ber of control parameters becomes much larger than the number of observation
points. Taking this into account, we note that practical estimation cannot be ma-
terialized by just accelerating each forward analysis. Reduction in the number
of forward analyses is another important issue to consider.

The approach to introduce data science or machine learning into compu-
tational science has been proposed aiming to reduce the number of forward
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analyses. For instance, [9] applied a machine learning-based methodology for
microstructure optimization and materials design. Generally, evaluation using
data science or machine learning is faster than forward analysis; therefore, more
trials can be evaluated within the same timeframe.

We examine the applicability of the data-driven approach to estimation of
the inner soil structure. To address this problem, we combine the wave prop-
agation analysis and neural network methodology. We conduct many forward
analyses and use these results as the training data for a neural network. By
implementing the neural network that takes control parameters as input and
outputs error levels of models, we can extract the parameters that are expected
to reproduce observation data more accurately from many samples. Computa-
tion cost is reduced by replacing forward analysis with inference using neural
networks. In addition, forward analyses can be computed independently; there-
fore, we can reduce the actual elapsed time by using large-scale supercomputers.
In the application example, we demonstrate that the inner soil structure has a
considerable effect on the strain distribution, and that the proposed method can
estimate the soil structure with the sufficient accuracy for damage estimation
within a shorter timeframe compared with a typical approach based on simulated
annealing.

2 Methodology

In the present paper, we propose a method that estimates the inner soil structure
of the target domain by conducting a large number of wave propagation analyses
and choosing the inner structure with the maximum likelihood. Here, we esti-
mate boundary surfaces of the domains with different material properties. For
simplicity, we assume that the target domain has a stratified structure, and that
the target parameters considered for optimization are elevations of the bound-
ary surfaces on control points which are located at regular intervals in x and y
directions. The set of control parameters is denoted by α. Boundary surfaces are
generated in the target domain by interpolating elevations at the control points
using bi-cubic functions. We employ the time history of waves on the ground
surface vref

iobs
(iobs = 1, ..., nobs), where nobs is the number of observation points.

In addition, we assume that these waves do not contain noise. We define an error
between a generated and a reference model as follows:

E =

√∑nobs

iobs=1

∑nt

it=1 ∥viobs,it − vref
iobs,it

∥2∑nobs

iobs=1

∑nt

it=1 ∥vref
iobs,it

∥2
, (1)

where it is each time step, and viobs,it is the velocity on iobs-th observation point
at the it-th time step, which can be computed from the parameters α and the
known input waves obtained by pullback analysis. We assume that the models
that reproduce the observation data closely have smaller error E. Therefore, we
search α that minimizes E. There are several gradient-based methods applied
to optimization, for example, three-dimensional crustal structure optimization
proposed in [11]. These methods have the advantage that the number of trials
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is small; however, it may be difficult to escape from a local solution if control
parameters have a low sensitivity to the error function. Simulated annealing [7] is
one of the most robust approaches; however, the convergence rate is not high for
problems with many control parameters. If we obtain viobs,it by forward analysis
for each parameter, a large number of forward analyses are required. Reduction
in the number of cases to compute and introduction of parallel computations of
forward analyses are essential to conduct the target estimation within a realistic
timeframe. Accordingly, we introduce an approach based on machine learning
employing the results of forward analyses. We define the neural networks that
can be used to estimate the error E based on the input parameters α. The details
about the neural networks and forward analysis are described in the following
subsections.

2.1 Introduction of neural networks

The proposed algorithm based on neural networks is described as Algorithm 1.
Firstly, we conduct n0 forward analyses to generate the adequate training data
(Algorithm 1, lines 3-4). We have to use the parameter sets that are scattered in
the control parameter space. In the present study, a random number retrieved
from the normal distribution is added up to initial elevation of one control point.
We fluctuate elevations under the constraint that the order of layers is consistent
in all of the models. We obtain errors for all parameters by performing forward
analyses with generated models. Each case can be computed independently;
therefore, elapsed time is reduced when we use a large-scale computer system.

Next, we implement neural networks to estimate error E roughly (Algorithm
1, line 5). Here, input parameters of neural networks consist of the fluctuation
amount of elevation at each control point. To improve the performance, we nor-
malize these values, so that the value of −3σ is set equal to 0, and the value of
3σ is set equal to 1. Here, we generate the classifiers instead of regression mod-
els, as suggested by [6], due to the fact that the number of samples constrained
by the massive computation cost is limited for modeling complex modes of the
error function. We classify errors into 10 levels that are equally divided between
the maximum and minimum errors in n0 sets of parameters. We define one clas-
sifier for each observation point so that contribution of each point to the error
becomes clearer. We define the point-wise error based on the original error in
Eq. (1) as follows:

Eiobs
=

√∑nt

it=1 ∥viobs,it − vref
iobs,it

∥2∑nt

it=1 ∥vref
iobs,it

∥2
. (2)

We divide the range of the possible values of Eiobs into ten levels (1−10) equally,
and the implemented neural networks learn the classification of these levels. A
final evaluation value for each parameter set is obtained by summation across
levels in all neural networks. We assume that the parameters with smaller evalua-
tion values provide smaller E. We have to define a neural network per observation
point in this procedure; however, associated computation cost is insignificant, as
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each network can be trained independently, and the number of the training data
elements is at most 103.

We perform inference using the generated neural networks. A dataset con-
sisting of n1(≫ n0) cases is inputted into the neural networks (Algorithm 1,
lines 6-7). We extract n0 cases that have the lowest estimated error levels and
compute actual errors E by using forward analyses. Parameters that achieves
the smallest E are chosen in Algorithm 1, lines 8-10. Further improvement can
be achieved by iterating the same procedures using the estimated parameters as
required (Algorithm 1, line 11).

Algorithm 1: Algorithm based on neural networks for estimation of the
inner structure.

1 Data: initial parameters αbase, observation data vref
iobs

(iobs = 1, ..., nobs),
counter itrial = 1

2 for itrial ≤MaxTrialNumber do
3 generate n0 samples based on αbase to produce TrainingDatasetitrial
4 for each α in TrainingDatasetitrial do

compute actual error Eiobs

5 for each observation point iobs do
produce classifier of Eiobs for given α

6 generate n1(≫ n0) samples based on αbase to produce
InferenceDatasetitrial

7 for each α in InferenceDatasetitrial do
estimate Eiobs

using classifiers

8 choose n0 samples from InferenceDatasetitrial which provides the
lowest E to construct SuperiorDatasetitrial

9 for each α in SuperiorDatasetitrial do
compute actual error E

10 choose αbest, which provides the lowest E
11 update αbase ← αbest, itrial ← itrial + 1

2.2 Finite element analyses

In the proposed scheme, more than 103 finite element analyses are required;
therefore, it is important to conduct them in a shorter time possible. We assume
that we use the observation data in the case of an earthquake small enough to
ignore nonlinearity for estimation of the inner structure. Therefore, we focus
on linear wave propagation analysis. The target equation is defined as follows:(

4
dt2M+ 2

dtC+K
)
uit = fit + Cvit−1 + M

(
ait−1 +

4
dtvit−1

)
, where u, v, a,

and f are displacement, velocity, acceleration, and force vector, respectively;
and M, C, and K are mass, damping, and stiffness matrix, respectively. In
addition, dt denotes the time increment, and it is the number of time steps.
For the damping matrix C, we apply Rayleigh damping and compute it by
linear combination as follows: C = αM + βK. Coefficients α and β are set

so that
∫ fmax

fmin
(h − 1

2 (
α

2πf + 2πfβ))2df is minimized, where fmax, fmin, and h

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_1

https://dx.doi.org/10.1007/978-3-030-50420-5_1


6

are maximum/minimum targeting frequency and damping ratio. We apply the
Newmark-β method with β = 1/4 and δ = 1/2 for time integration. Vectors
vit and ait can be described as follows: vit = −vit−1 + 2

dt (uit − uit−1) and
ait = −ait−1− 4

dtvit−1+
4

dt2 (uit −uit−1). We obtain displacement vector uit by
solving the linear equation and updating vectors vit and ait accordingly. Gen-
eration of finite element models and computation of the finite element solver
are the most computationally expensive parts. We automatically generate fi-
nite element models using the method proposed by [5]. This method applies
CPU computations using OpenMP. In the solver part, we apply the OpenACC-
accelerated solver based on the conjugate gradient method described in our previ-
ous study [13]. The solver combines the conjugate gradient method with adaptive
preconditioning, geometric multigrid method, and mixed precision arithmetic
to reduce the amount of arithmetic counts and the data transfer size. In the
solver, sparse matrix vector multiplication is computed by using the Element-
by-Element method. It is applied to compute the element matrix on-the-fly and
allows reducing the memory access cost. Specifically, the multiplication of matrix
A and vector x is defined as y =

∑nelem

i=1 (Q(i)T (A(i)(Q(i)x))), where y is the re-
sulting vector, and nelem is the number of elements in the domain; Q(i) is a map-
ping matrix to make a transition from the local node numbers in the i-th element
to the global node numbers; and A(i) is the i-th element matrix that satisfies the
following: A =

∑nelem

i=1 Q(i)TA(i)Q(i), where A(i) = 4
dt2M

(i)+ 2
dtC

(i)+K(i). The
solver proposed by [13] originally includes the procedure to extract parts with
bad convergence to be extensively solved in the preconditioning part; however,
we skip it for simplicity. In addition, only single and double precision numbers
are used, and the custom data type FP21 is not used in the computations.

3 Application Example

3.1 Definition of the considered problem

We apply the developed method to estimate the soil structure, aiming to verify
its efficiency. The supercomputer ABCI [2], operated by the National Institute of
Advanced Industrial Science and Technology, is used for each forward analysis.
Each compute node of ABCI has four NVIDIA Tesla V100 GPUs and two Intel
Xeon Gold 6148 CPUs (20 cores). The GPUs in each compute node are connected
via NVLink, with a bandwidth of 50GB/s in each direction. We conduct each
forward analysis using one compute node of ABCI. We assign one GPU for the
finite element solver using MPI and use all CPU cores for generating models with
OpenMP. Moreover, a GPU cluster composed of the IBM Power System AC922,
which has four NVIDIA Tesla V100 GPUs and two IBM Power9 CPUs (16 cores)
per compute node, is used for learning and inference of neural networks.

The target domain has four layers, and we define their boundary surfaces.
In the case of this problem, material properties of the soil structure are deter-
ministic. These properties are described in Table 1. The target domain is of the
following size: 0m ≤ x ≤ 500m, 0m ≤ y ≤ 400m, and −50m ≤ z ≤ 1.62m. A
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Table 1: Material properties of the target domain. Vp, Vs, and ρ are primary and
secondary wave velocity, and density, respectively. h is the damping ratio.

Vp(m/s) Vs(m/s) ρ (kg/m3) h

1st layer 1500 130 1700 0.02
2nd layer 1600 220 1800 0.02
3rd layer 1600 160 1700 0.02
4th layer 2000 400 2000 0.001

500 m
400 m

50 m

𝑥𝑦 𝑧
(a) Entire model (b) Close-up view

Fig. 1: One of finite element models in the analysis.

finite element model with approximately 1,400,000 degrees of freedom is gener-
ated. Figure 1 represents one of the finite element models used in the analysis.
The resolution was 5 m at maximum.

Twelve observation points are located at points (x, y) = (100i, 100j) (i=1-4,
j=1-3) on the ground surface. We assume that the observation data at these
points are available without noise. In fact, we target the low frequency band up
to 2.5 Hz; therefore, the influence of noise is small. The control points are located
at regular intervals in x and y directions. We denote the elevation of the k-th
layer on points (x, y) = (100i, 100j) (i=0-5, j=0-4) as αk

ij(m). The points x = 0,

x = 500, y = 0, and y = 400 are the edges of the domain, and we assume that αk
ij

are constant among these points for each layer. Boundary surfaces with reference
parameters are represented in Fig. 2. We input the observed small earthquake
wave for 80 seconds to the bottom surface of our target model. Within the current
problem settings, the target frequency is as much as 2.5 Hz, so we apply a band-
pass filter to remove unnecessary frequency bands. Time increment used in the
analysis is 0.01 seconds; therefore, each wave propagation analysis comprises
8,000 times steps.

We perform testing on the two cases of the control parameters. The details
are provided in Table 2. In case 1, we only estimate the elevation of the 4th layer.
The elevations of other layers are known. In case 2, we estimate the elevations of
the 2nd, 3rd, and 4th layers. The elevation of the 1st layer, which is the ground
surface, is known. It should be noted that in case 2, there are more control
parameters.

3.2 Estimation by a typical approach

First, we apply the approach proposed by [14] for parameter estimation, which
is based on very fast simulated annealing [7]. Each control parameter is changed
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Fig. 2: Distribution of actual elevation (m) of each layer. The value of control param-
eters αk

ij are also described.

Table 2: Problem settings for the control points.

control parameters # of parameters

case 1 αk
ij(i=1-4, j=1-3, k=4) 12

case 2 αk
ij(i=1-4, j=1-3, k=2-4) 36

by multiplication of the difference between the lower and the upper limit values
of the target parameter and the ratio r. r is computed as follows: sgn(u −
0.5)Ti

[
(1 + 1/Ti)

|2u−1| − 1
]
, where u is extracted from the uniform distribution

between [0.0, 1.0], and Ti is a temperature parameter in simulated annealing.
The temperature at i-th trial is defined using initial temperature T0 and the
number of control points D as follows: Ti = T0exp(−ci

1
D ), where parameter

c is defined by T0, D, lowest temperature Tf , and the number of trials if as
Tf = T0exp(−m), if = expn, and c = mexp(− n

D ). Here, D = 12 in case 1 and
D = 36 in case 2. We set the number of trials if = 1000; and c = 8.18 in case 1
and c = 12.00 in case 2, respectively. These parameters satisfy the requirement
that the parameters that increase the value of the error function by ∆E are
adopted with the probability of 80% at the initial temperature, where ∆E is
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Fig. 3: History of the error E calculated by Eq. (1) in simulated annealing.

the value of the error function obtained in the initial model. In addition, the
parameters which increase the value of the error function by ∆E × 10−5 are
adopted with the probability of 0.1% at the lowest temperature. These settings
for c, T0, and Tf are the same as those in [14].

The histories of the error value for both cases are presented in Fig. 3. In case
1, the parameters are updated at 100-trial intervals, on average. In contrast,
the parameters are rarely updated in case 2. The final value of E is 39.7% of
the initial parameters in case 1 and 122.2% in case 2. Fig. 4 describes the time
history of velocity on point (x, y, z) = (400, 300,−0.08) when conducting wave
propagation analysis with both estimated parameters. Analyzing these results,
for case 1, we can see that the obtained wave has come close to that of the refer-
ence model to some extent. For case 2, the result obtained using the estimated
model completely differs from that of the reference model. We assume that a
much larger number of trials would be required for case 2.

3.3 Estimation by the proposed method

Next, we apply the proposed method for case 2, which is presumed to be more
difficult. We introduce neural networks for classification of error Eiobs in Eq. (2)
according to the problem settings described above. We add random numbers fol-
lowing the normal distribution with 3σ = 5m to the control parameters αk

ij . We
generate n0 = 1000 parameter sets and conduct forward analysis for each case.
Here, we assign 800 cases for the training data and 200 cases for the test data.
We produce twelve neural networks for each of the twelve observation points in
the target domain. We employ Pytorch [10] to develop neural networks. Learning
and inference are accelerated by GPUs. We consider fully connected layers for
the neural networks. The number of units, the number of layers, and dropout
rate, which are representative hyperparameters in neural networks, are optimized
using optuna [3]. This framework searches hyperparameters that minimizes the

summation of |Lref−L|
Lref in the test data, where L is the level of error judged by

a neural network (1 ≤ L ≤ 10), and Lref is the actual level of error derived by
forward analysis (1 ≤ Lref ≤ 10). We use this index aiming to obtain more accu-
rate classification for lower levels of error. The number of units, the number of
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Fig. 4: x component of velocity at (x, y) = (400, 300) on the ground surface in the
analysis (blue lines). Differences with the results of the reference model are
also represented in (b) to (e) as red lines.

layers, and dropout rate are fluctuated within the range of 6-72, 3-8, and 0.1-0.9,
respectively. The number of trials is set to 50. We use a rectified linear unit for
the activation function. In addition, we use Adam as the optimizer. Here, the
batch size is set to 300, and the number of epochs is set to 1,000.

Optimized neural networks output correct levels with the probability of 71%
and levels with an error of no more than plus/minus one level with the probability
of 99% on average. We infer the error for n1 =2,000,000 parameter sets using the
generated neural networks and extract n0 =1,000 cases that have lower estimated
error levels. Next, we compute the actual error for the extracted parameter
sets (SuperiorDataset1 in Algorithm 1) by forward analyses. As a result, error
E is generally reduced compared to the original dataset (TrainingDataset1
in Algorithm 1), as represented in Fig. 5. This figure also includes the result
obtained by repeating the same procedure once again (SuperiorDataset2). The
error distribution is shifted to the left side of the previous distribution. Analyzing
this figure, we can confirm that the approach based on neural network is effective
for extracting parameters that provide smaller errors. By using neural networks
twice, the error E is reduced to 21% with respect to that of the initial parameters,
as shown in Table 3.

For confirmation of the accuracy of the estimated model, we conduct wave
propagation analysis using the estimated parameters. Figure 6 describes the time
history of velocity on point (x, y, z) = (400, 300,−0.08), and Fig. 7 represents
the distribution of displacement on the ground surface at time t = 30.00 s. We
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Fig. 5: Histogram of the error E for initial dataset (TrainingDataset1 in Algo-
rithm 1) and datasets extracted by using neural networks (SuperiorDataset1,
SuperiorDataset2). Each dataset includes 1,000 sets of parameters.

Table 3: Error calculated by Eq. (1) in the proposed method. Results when generating
AI once (itrial = 1 in Algorithm 1) and twice (itrial = 2) are listed.

initial parameters
estimated parameters

itrial = 1 itrial = 2

E 0.358594 0.165238 0.077423
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Fig. 6: x component of velocity at (x, y) = (400, 300) on the ground surface using
the model estimated by the proposed method (blue line). Differences with the
results of the reference model are also represented by the red line.

confirm that the results obtained by the estimated model and reference model
are sufficiently consistent.

Finally, we computed the distribution of maximum principal strain, which
can be utilized for screening of underground structures which might be dam-
aged. Reference [8] notes that strain should be taken into consideration rather
than velocity for damage estimation of buried pipelines, which is a typical type
of underground structure. Figure 8 represents the strain distribution on the sur-
face at z = −1.2m. We confirm that the distribution of strain is estimated with
sufficient accuracy by our proposed method. These strain distributions obtained
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Fig. 7: Norm distribution of displacement (cm) on the ground surface at t = 30.00s in
the analysis.
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Fig. 8: Norm distribution of max principal strain on the plane z = −1.2 in the analysis.

by using the estimated model and those obtained by the initial model are con-
siderably different, including areas with high strain. The obtained result shows
that the proposed estimation is important to assure the reliability of evaluation.

3.4 Evaluation of computation cost

In this study, we evaluate the computation cost for case 2. In the approach based
on simulated annealing, we computed 1,000 forward analyses sequentially. Each
trial took twelve min to complete; and therefore, the total elapsed time was 12
min × 1,000 cases = 12,000 min ≃ 8 days. In fact, the greater number of trials
would be necessary, as the value of error remained high. In the proposed method,
we set MaxTrialNumber in Algorithm 1 to be 2 and iterated the generation of a
neural network with 1,000 forward analyses and computation of top 1,000 cases
extracted by neural networks twice. In total, we constructed neural networks
twice and conducted 4,000 forward analyses. It required 30 min to define each
neural network; therefore, one hour was required for training the neural networks
in total. We used the supercomputer ABCI to perform wave propagation anal-
ysis. About 200 nodes were simultaneously available on average, although the
number of available compute nodes depended on the utilization of the system.
As we computed 200 cases in parallel, the elapsed time for forward analyses was
12 min × (4,000 cases / 200 cases) = 240 min = 4 hours. Computation cost in
other parts was negligible; therefore, the total elapsed time was approximately
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1 hours + 4 hours = 5 hours. Although the number of the computed cases was
larger than that of simulated annealing, the actual elapsed time was reduced
owing to parallel computations. As a result of this comparison, we confirmed the
effectiveness of the proposed method.

4 Conclusion

Introduction of data science and machine learning is one of the effective ap-
proaches to reduce the computation cost associated with computational science.
In the present paper, we focus on estimation of the inner soil structure via wave
propagation analysis. This estimation of the inner structure is important to im-
prove reliability in numerical simulations. However, massive computation cost is
required, as typical optimization requires many forward analyses.

We applied the data-driven approach to this problem aiming to reduce the
computation cost. The proposed method combined neural networks and wave
propagation analysis. We generated the training data by executing many for-
ward analyses on a large-scale supercomputer. We implemented a neural network
that took the parameters of inner structures as input and outputted error levels
based on the observation data. Applying the neural network, we extracted the
parameter sets expected to reproduce the observation data closely. Computation
cost required in inference was negligible; therefore, many cases could be roughly
evaluated in a shorter time.

In the application example, we estimated the soil structure using the obser-
vation data with a total of 4,000 wave propagation analyses. We confirmed that
the estimated model had the sufficiently consistent results compared with the
reference model via evaluation of a strain distribution. Each forward analysis re-
quired in the proposed method was computed in parallel; and thereby the actual
elapsed time was reduced by using a large-scale supercomputer. We confirmed
the effectiveness of the proposed method via performance comparison with the
typical approach based on very fast simulated annealing. It is future task to
examine validity of our proposed method for more complex models.

The demand for utilization of Big Data will continue to increase further,
and the development of computation environments, observation systems, and
network technologies will follow accordingly. In the present paper, we outlined
the importance of developing an algorithm that enables capacity computing and
maximizes utilization of computer resources for processing the large quantity of
data and obtaining new information within a realistic timeframe.
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