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Abstract. Multi-criteria decision-making methods are tools that facili-
tate and help to make better and more responsible decisions. Their main
objective is usually to establish a ranking of alternatives, where the best
solution is in the first place and the worst in the last place. However,
using different techniques to solve the same decisional problem may re-
sult in rankings that are not the same. How can we test their similarity?
For this purpose, scientists most often use different correlation measures,
which unfortunately do not fully meet their objective.
In this paper, we identify the shortcomings of currently used coefficients
to measure the similarity of two rankings in decision-making problems.
Afterward, we present a new coefficient that is much better suited to
compare the reference ranking and the tested rankings. In our proposal,
positions at the top of the ranking have a more significant impact on the
similarity than those further away, which is right in the decision-making
domain. Finally, we show a set of numerical examples, where this new
coefficient is presented as an efficient tool to compare rankings in the
decision-making field.

Keywords: Decision analysis · decision making · decision theory · me-
asurment uncertainty · ranking .

1 Introduction

Decision making is an integral part of human life. Every day, every person is
faced with different kinds of decision-making problems, which can affect both
professional and private life. An example of a decision-making problem can be a
change of legal regulations in the state, choice of university, purchase of a new
car, determination of the amount of personal income tax, selection of a suitable
location for the construction of a nuclear power plant, adoption of a plan of
research, or the sale or purchase of stock exchange shares.

In the majority of cases, decision-making problems are based on many, often
contradictory, decision-making criteria. Therefore multi-criteria decision-analysis
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(MCDA) methods and decision support systems enjoy deep interest both in the
world of business and science. Almost in every case, a reliable decision requires
the analysis of many alternatives. Each of them should be assessed from the
perspective of all the criteria characterizing its acceptability. As the complexity
of the problem increases, it becomes more and more challenging to make the
optimal decision. An additional complication is that there is no complete ma-
thematical form depending on the criteria and the expected consequences. In
particularly important problems, the role of the decision-maker is entrusted to
an expert in a given field or to a group of experts who will help to identify the
best solution. We talk about individual or group decision making, respectively.
Even then, it can often be problematic for an individual expert as well as for
collegiate bodies to determine the right decision. In this case, MCDA methods
can be helpful.

MCDA methods are great tools to support the decision-maker in the decision-
making process. We can identify two main groups of MCDA methods, i.e., Ame-
rican and European schools [33]. Methods of the American school of decision
support are based on the utility or value function [5, 16]. The most important
methods belonging to this family are: analytic hierarchy process (AHP) [34],
analytic network process (ANP) [35], utility theory additive (UTA) [21], simple
multi-attribute rating technique (SMART) [28], technique for order preference
by similarity to ideal solution (TOPSIS) [3, 32], or measuring attractiveness by a
categorical based evaluation technique (MACBETH) [2]. Methods of European
school of decision support use outranking relation in the preference aggregation
process, where the most popular are ELECTRE family [1, 36] and PROME-
THEE methods [8, 15]. Additionally, we can indicate the set of techniques based
strictly on the rules of decision making. These methods use the fuzzy sets theory
(COMET) [12, 25–27] and the rough set theory (DRSA) [29].

Generally, MCDA methods help to create a ranking of decision variants where
the most preferred alternative comes first [4]. The problem arises when we use
more than one MCDA method, and the rankings obtained are not identical.
Then the question arises on how to compare the received rankings? Currently,
the most popular approach is the analysis based on the correlation between the
two or more rankings [7, 12, 19, 24]. However, we are going to show that this
analysis is insufficient in the decision support domain. An appropriate approach
should ensure that a better ranking in terms of the order can be identified. Then,
with a proper benchmark, it would be possible to assess the correctness of the
MCDA methods in terms of the rankings generated [22].

In this paper, we identify the shortcomings of currently used coefficients to
measure the similarity of two rankings. The most significant contribution is the
WS coefficient, which depends strictly on the position on which the difference in
the ranking occurred. Afterward, three linguistic terms are identified by using
trapezoidal fuzzy numbers, i.e., low, medium, and high similarity. We compare
the proposed coefficient with ρ Spearman, τ Kendall, and γ Goodman-Kruskal
coefficients, which are commonly used to measure rankings similarity in MCDA
problems [9, 12, 17, 18, 23]. In addition, the proposed approach is compared with
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the similar coefficients presented in [6, 10, 13]. For this purpose, numerical expe-
riments are discussed.

The rest of the paper is organized as follows: In section 2, some basic preli-
minary concepts are discussed. Section 3 introduces a new coefficient of rankings
similarity in the decision-making problems. In Section 4, the practical feasibility
study of the WS coefficient is discussed. In Section 5, we present the summary
and conclusions.

2 Preliminaries

An important issue is how to compare the correctness of the order of the two
rankings. The simplest method is to check whether the rankings are consistent
or inconsistent. Such an approach is not sufficient and can be used almost exclu-
sively for 2 or 3 elementary rankings [27]. The much more common approach is
to use one of the coefficients of monotonous dependence of two variables, where
the obtained rankings for a set of considered alternatives are our variables. The
most commonly used symmetrical coefficient of such dependence is the Spear-
man’s coefficient [9, 18, 17, 23], which is expressed by the following formula (1):

rs = 1− 6 ·
∑
d2i

n · (n2 − 1)
(1)

where di is defined as the difference between the ranks di = Rxi −Ryi and n is
the number of elements in the ranking. The Spearman’s coefficient is interpreted
as a percentage of the rank variance of one variable, which is explained by the
other variable [31].

The most frequently used asymmetrical monotonous coefficients of two va-
riables are Kendall [12, 20] and Goodman-Kruskal coefficients [12, 14]. They are
expressed in formulas (2) and (3) respectively:

τ = 2 · Ns −Nd
n · (n− 1)

(2)

G =
Ns −Nd
Ns +Nd

(3)

where Ns is the number of compatible pairs, Nd is the number of non-compliant
pairs, and n is the number of all pairs. The Kendall and Goodman-Kruskal coeffi-
cients, unlike Spearman, are interpreted in terms of probability. They represent
the difference between the probability that the compared variables will be in
the same order for both variables and the probability that they will be in the
opposite order.

The presented coefficients are the most frequently used measures of the ana-
lysis of the rankings similarity in decision-making problems [9, 12, 17, 18, 23].
However, we want to indicate a significant shortcoming, which is related to the
place of difference occurrence. The idea of measuring the rankings similarity is
not new and has been the subject of many works [11, 30]. Particularly interesting
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in the context of the presented approach are works related to Blest’s measure of
rank correlation v and the weighted rank measure of correlation rw [6, 10, 13].
They are expressed in formulas (4) and (5) respectively:

rw = 1−
6
∑n
i=1 (Rxi −Ryi)2 ((n−Rxi + 1) + (n−Ryi + 1))

n4 + n3 − n2 − n
(4)

v = 1−
12
∑n
i=1(n+ 1−Rxi)2 ·Ryi − n(n+ 1)2(n+ 2)

n(n+ 1)2(n− 1)
(5)

The presented coefficients (1-3) are regardless of whether the error occurs at
the top or bottom; the values of the factors will be identical. In Table 1, the
simple example shows five rankings, including one reference (Rx) and four test
rankings (R(1)y −R(4)y ). The test rankings were created by a change in the correct
ranking of the two adjacent alternatives. We want to remind that the rankings are
determined to choose the best possible solution, and the value of the preferences
decreases with each position in the ranking. The difference at the top should be
more significant than an error at the bottom of the ranking. The exchange of
alternative locations from the first and second position is a more considerable
error than the swap of the second and third position. However, the values of the
coefficients indicate that similarity of the test rankings to the reference ranking
is the same for all test sets.

3 WS coefficient of rankings similarity

The new ranking similarity factor should be resistant to the situation described
in the previous section, and at the same time, should be sensitive to significant
changes in the ranking. Besides, this factor should be easy to interpret, and its
values should be limited to a specific interval.

We assumed that the new indicator should be strongly related to the diffe-
rence between two rankings on particular positions. An additional assumption
is that the top has a more significant influence on similarity than the bottom of
the ranking. Based on these assumptions, a new indicator was developed, which
can be presented as (6):

WS = 1−
n∑
i=1

(
2−Rxi · |Rxi −Ryi|

max{|1−Rxi|, |N −Rxi|}

)
(6)

where WS is a value of similarity coefficient, N is a length of ranking, Rxi and
Ryi mean the place in the ranking for i − th element in respectively ranking x
and ranking y.

The proof of convergence for the WS factor is quite simple. The formula (6)
can be divided into two main components. The first one (7) is responsible for
making the WS value dependent on the position in the reference ranking (Rx).

2−Rxi (7)
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Table 1. Summary of the test with reference ranking (Rx) and four test rankings
(R(1)y − R(4)y ) with the calculated correlation factors and proposed WS coefficient for
the set of five alternatives (A1 −A5), each having a different position in the ranking.

Ai Rx R
(1)
y R

(2)
y R

(3)
y R

(4)
y

A1 1 2 1 1 1
A2 2 1 3 2 2
A3 3 3 2 4 3
A4 4 4 4 3 5
A5 5 5 5 5 4

co
effi

ci
en

ts

rs 0.9000 0.9000 0.9000 0.9000
τ 0.8000 0.8000 0.8000 0.8000
G 0.8000 0.8000 0.8000 0.8000
rw 0.8500 0.8833 0.9167 0.9500
v 0.8500 0.8833 0.9167 0.9500
WS 0.7917 0.8542 0.9167 0.9714

We are dealing with a geometric series which is convergent. As proof, we can
calculate a trivial limit.

lim
n→∞

n∑
i=1

(2)−Rxi = 1 (8)

The second component (9) determines to what extent the difference in rankings
affects the similarity of rankings. This value can be obtained from zero (the
positions are identical) to one.

|Rxi −Ryi|
max{|1−Rxi|, |N −Rxi|}

(9)

If we multiply the (7) by (9) then this series cannot be higher than one. Therefore,
it is clear that the WS coefficient can only take values from zero to one. We can
compare all coefficients for a simple example in Table 1. The WS, rw, and v
coefficients take into account the position of the error occurrence, and the rest
of them remain the same regardless of where the error occurs. In the next section,
other tests comparing the performance of the indicators will be presented and
discussed.

4 Results and Discussion

4.1 Analysis of five-element rankings

The first experiment here presents tied ranks, i.e., the same values in the ranking.
It happens when two alternatives get the same place. For example, if two decision
variants receive the first place together, the ranking will contain a value of 1.5 for
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Table 2. Summary of the test with reference ranking (Rx) and four test rankings
(R(1)y − R(4)y ) with the calculated correlation factors and proposed WS coefficient for
the set of five alternatives (A1 − A5), where one pair has the same position in the
ranking.

Ai Rx R
(1)
y R

(2)
y R

(3)
y R

(4)
y

A1 1 1.5 1 1 1
A2 2 1.5 2.5 2 2
A3 3 3 2.5 3.5 3
A4 4 4 4 3.5 4.5
A5 5 5 5 5 4.5

co
effi

ci
en

ts

rs 0.9747 0.9747 0.9747 0.9747
τ 0.9487 0.9487 0.9487 0.9487
G 1.0000 1.0000 1.0000 1.0000
rw 0.9625 0.9708 0.9792 0.9875
v 0.9250 0.9417 0.9583 0.9750
WS 0.8958 0.9271 0.9583 0.9857

both (the average of their positions). Table 2 shows the results of calculations for
the five-element ranking, where the different location of tied pairs is considered.

One more again, WS, rw, and v coefficients show the change of value together
with the change of position on which there are the tied pairs. It is a property
that was identified as a significant drawback of the currently used methods, i.e.,
ρ Spearman, τ Kendall, and γ Goodman-Kruskal. Ranking R(4)y is more similar
than R(1)y because full correctness occurs on the first three positions and not on
the last three.

Another simple experiment consists in creating test rankings, where succes-
sive rankings differ from the base ranking by the alternative indicated as the
best. The results for the five-element ranking are shown in Table 3. Replacing
the best option with the worst in all coefficients results in a negative value result
(except WS). It means a negative correlation, which is not trivial to interpret
in decision-making problems. Besides, interesting is the case of the R(3)y ranking
because it obtained a total lack of correlation (for τ and G coefficients). It me-
ans that the order of the base and second rankings is utterly unrelated to each
other. It is a confirmation that these classical rank coefficients do not examine
the similarity of the two rankings thoroughly. In general, all coefficients assess
test rankings against the base ranking in a somewhat similar way. The rationale
for this is that the three positions in the ranking have been indicated flawlessly.

The last example in this subsection examines the rw coefficients in two cases,
i.e., for test rankings R(1)y −−R(2)y and R(3)y −−R(4)y ). Once again, the Rx ranking
is used as a reference point. The detailed results are presented in Table 4.

Rankings R(1)y and R(2)y have equal values for most of the coefficients, where
only WS and v are exceptions. Ranking R(1)y is significantly better than ranking
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Table 3. Summary of the test with reference ranking (Rx) and four test rankings
(R(1)y − R(4)y ) with the calculated correlation factors and proposed WS coefficient for
the set of five alternatives (A1−A5), where each ranking has a different position error.

Ai Rx R
(1)
y R

(2)
y R

(3)
y R

(4)
y

A1 1 2 3 4 5
A2 2 1 2 2 2
A3 3 3 1 3 3
A4 4 4 4 1 4
A5 5 5 5 5 1

co
effi

ci
en

ts

rs 0.9000 0.6000 0.1000 -0.6000
τ 0.8000 0.4000 0.0000 -0.4000
G 0.8000 0.4000 0.0000 -0.4000
rw 0.8500 0.4667 -0.0500 -0.6000
v 0.8500 0.4667 -0.0500 -0.6000
WS 0.7917 0.6250 0.5625 0.4688

R
(2)
y . Even though the A5 alternative has been identified as the best in R

(1)
y .

The rest of this ranking has been correctly identified according to the right
order. However, in the R(2)y , the best alternative was wrongly rated as the worst.
Therefore, the best alternative (A1) has a chance to be chosen in the first case
and not in the second. These rankings cannot be evaluated as being the same.
This shows the superiority of WS and v coefficients in decision-making ranks
analysis. Rankings R(3)y and R(4)y show greater variability of coefficients, i.e., the
ranking R

(3)
y has a coefficient value less, equal to or greater than the ranking

R
(4)
y . It all depends on which coefficient is taken into account, but WS and v

again point to the superiority of the ranking R(3)y .

4.2 Influence of a ranking size on coefficients

In this subsection, we want to indicate the impact of the ranking size on the
achieved value of the indicator. Figure 1 shows comparisons of WS, rs, rw, and
v coefficients. Only alternatives on the first and second positions have been re-
placed. It is a consequence of the conclusion drawn from Table 1. We take into
account the rankings with the number from 5 to 50 elements. We can observe
that with the increased ranking size, the similarity with the assumed assump-
tions increases. The Ws coefficient is characterized by the greatest variability,
depending on the size of the ranking. Figure 2 shows the changes in the WS
value when replacing the best elements with the second, third, fourth, and fifth
ones (the position of one adjacent pair is swapped). As we can see, the WS
values decrease accordingly, as the quality of the rankings decreases as the best
solution moves away from the top of the ranking.
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Table 4. Summary of the test with reference ranking (Rx) and four test rankings
(R(1)y − R(4)y ) with the calculated correlation factors and proposed WS coefficient for
the set of five alternatives (A1 −A5), where the change of coefficients is investigated

Ai Rx R
(1)
y R

(2)
y R

(3)
y R

(4)
y

A1 1 2 5 2 4
A2 2 3 1 3 2.5
A3 3 4 2 5 1
A4 4 5 3 4 5
A5 5 1 4 1 2.5

co
effi

ci
en

ts

rs 0.0000 0.0000 -0.1000 -0.0513
τ 0.2000 0.2000 0.0000 -0.1054
G 0.2000 0.2000 0.0000 -0.1111
rw 0.0000 0.0000 -0.0667 -0.0667
v 0.1667 -0.1667 0.0833 -0.1083
WS 0.6771 0.3225 0.6354 0.4180

5 10 15 20 25 30 35 40 45 50

n

0.75

0.8

0.85

0.9

0.95

1

c
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e
ff
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ie

n
ts

 v
a
lu

e
s

WS

r
s

r
w

Fig. 1. The value of the coefficients depending on the length of the ranking (n), where
occurs one error (change of the first and second position in the ranking) and the
converted positions in the ranking.
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1 2
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1 4

1 5

Fig. 2. The value of the WS coefficient depending on the length of the ranking (n) and
the converted positions in the ranking.

4.3 Distribution of coefficients values

In the next step, we attempted to visualize the distributions for three indica-
tors. Figure 3 presents the distribution of the τ Kendall factor for all possible
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Fig. 3. Sorted distribution of all values of the Kednall coefficient in relation to the
length of the ranking (n).
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Fig. 4. Sorted distribution of all values of the Spearman coefficient in relation to the
length of the ranking (n).
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Fig. 5. Sorted distribution of all values of the WS coefficient in relation to the length
of the ranking (n).

permutations of the sets of five, six, seven, eight, nine, and ten elements. Fi-
gures 4 and 5 show the distribution of the ρ Spearman coefficient and the WS
coefficient, respectively. The shape of the ρ Spearman values is smoother than
the τ Kendall. Both indicators have a symmetrical distribution, unlike the WS
coefficient. The problem may be the interpretation of the WS value, because it
is a new approach. However, the question arises when the similarity of the WS
coefficient is low, medium, and high. A statistical analysis of the distribution of
the WS should be carried out to define three appropriate linguistic terms and
answer on this research question.

4.4 Definition of rankings similarity

All possible permutations and values of the WS coefficient are determined for
ranks of the size from 3 to 10 elements. Based on the obtained values, we calcula-
ted basic statistics, which are presented in Table 5. For larger rankings, statistics
are based on random samples of 100,000 rankings. Both population and random
sampling data are used. Note the convergence of the arithmetic mean, standard
deviation, and typical value ranges. The biggest differences concern the arithme-
tic mean, and it is equal to 0.207 (for a ranking of 10 and 1000 elements). Based
on the analysis of typical values, i.e. interval of [x̄ − Sx; x̄ + Sx], we identified
the linguistic terms low, medium and high similarity of rankings.

It can indeed be said that if the WS is less than 0.234, then the similarity is
low. If the value is higher than 0.808, then the similarity is high. The medium of
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Table 5. A summary of the basic statistics of the WS coefficient for all possible per-
mutations, where n length of the ranking.

n x̄ Sx x̄− Sx x̄+ Sx xmin xmax
3 0.5208 0.2869 0.2339 0.8077 0.1875 1.0000
4 0.5313 0.2164 0.3149 0.7477 0.2083 1.0000
5 0.5135 0.1938 0.3197 0.7073 0.1510 1.0000
6 0.5195 0.1817 0.3378 0.7012 0.1656 1.0000
7 0.5164 0.1757 0.3407 0.6921 0.1383 1.0000
8 0.5197 0.1721 0.3476 0.6918 0.1314 1.0000
9 0.5193 0.1700 0.3493 0.6893 0.1252 1.0000
10 0.5208 0.1688 0.3520 0.6896 0.1144 1.0000

0.234 0.352 0.689 0.808 1

WS coefficient

0.2

0.4

0.6

0.8

1
low medium high

Fig. 6. The definitions of three linguistic terms, i.e., low, medium, and high similarity
of rankings by using trapezoidal fuzzy numbers.

likeness, which corresponds to a typical value, belongs to the range from 0.352
to 0.689. The remaining values are values where we can talk about a partial
belonging to linguistic concepts according to the theory of fuzzy sets, or just
low/medium and medium/high concept can be used. Detailed definitions are
presented in Figure 6. Linguistic values are important because they can be used
to evaluate the adjustment of the reference and test rankings.

5 Conclusions

The main contribution of the paper is a proposal of the new coefficient of the
rankings similarity. For this purpose, the short analysis of classical factors are
presented, and some of their shortcomings are emphasized. The most critical is
the equality of the values of the classical coefficients in case the ranking error
concerns the replacement of a pair of adjacent alternatives (Table 1). The paper
presents a theoretical foundation of proposed WS coefficient, which ensures that
a new factor is free of identified shortcomings.

The results of numerical experiments compare all analyzed coefficients and
their correctness, i.e., ρ Spearman, τ Kendall, G Goodman-Kruskal, and WS co-
efficients. Then, the distributions of τ Kendall, ρ Spearman, and WS coefficients
were compared. WS values can be used to measure similarity of rankings.
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Finally, three linguistic concepts were formulated for the low, medium, and
high similarity of the two rankings. The properties of the WS coefficient indicate
that it is a useful tool for comparing the similarity of rankings and is better suited
for this purpose than the currently used correlation coefficients.

During the research, some improvement areas have been identified. The fu-
ture work directions should concentrate on:

– further comparing between existing coefficients and the proposed WS;
– testing the use of the WS coefficient in real-life examples;
– detection and correction of WS coefficient shortcomings;
– adaptation of the proposed coefficient to uncertain (fuzzy) rankings.

Acknowledgments: The work was supported by the National Science Centre,
Decision number UMO-2018/29/B/HS4/02725.
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