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Abstract. Applications executing in heterogeneous parallel and/or dis-
tributed computing (PDC) environments are often prone to unpredictable
runtime due to variations in problem, algorithm, and system character-
istics. This serves as a key motivation towards a study of the robust-
ness of resource allocations required to maintain and guarantee a desired
level of performance. Performance modeling and evaluation is often uti-
lized to understand and predict the behavior of the application and the
computational system from a performance point of view. In prior work,
performance modeling for evaluating response times of static resource
allocations in PDC systems was introduced by the authors as a proof
of concept for validating the use of the performance evaluation process
algebra (PEPA) for analyzing the robustness of static resource alloca-
tions. Herein, the authors present numerical modeling of several static
resource allocations to evaluate their robustness in the presence of com-
pound perturbations generated as combinations of variations in applica-
tion workload and machine availability. The novelty of the approach is
to introduce the compound effect as the variability of both, application
workload and processor/machine availability, into the performance mod-
eling of the overall computational system. The performance is obtained
as a parallel execution time via a numerical analysis of the modeled exe-
cution of applications on non-dedicated parallel computational resources.
A significant improvement in the robustness value (up to 143%) among
the mappings yielding equal parallel execution times has been demon-
strated via the analysis of the results. This notable difference in the
robustness values strongly indicates the benefit of selecting one mapping
versus the other for guaranteeing the best execution performance.

Keywords: performance modeling and evaluation · robustness analysis
· process algebra.

1 Introduction

Often in parallel and distributed computing (PDC) environments, the applica-
tions are expected to undergo variations in workload, and the underlying com-
putational resource is considered to be non-dedicated at runtime. Therefore,
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appropriate initial resource allocation algorithms are required for an efficient
mapping of applications to machines. In addition to the traditional performance
metrics (execution time, speedup, efficiency, and others), there is a need for the
study of a metric of the robustness of resource allocations to guarantee a desired
level of performance. Performance modeling and evaluation is often utilized to
understand the behavior of concurrent and parallel computing and communi-
cation systems by identifying features of the system that are sensitive from a
performance point of view. When compared to direct experiments and simula-
tions, numerical models and the corresponding analyses are easier to reproduce,
do not incur any setup or installation costs, do not impose any prerequisites for
learning a simulation framework, and are not limited by the complexity of the
underlying infrastructure or simulation libraries. To the best of our knowledge,
performance modeling for evaluating response times of static resource allocations
in parallel and distributed computing systems and the related robustness analy-
sis remained an open problem until the authors introduced the first solution by
utilizing the performance evaluation process algebra (PEPA) [5] for analyzing
the robustness of static resource allocations [22][23][24].

The main contribution of this work is to study a number of static resource
allocations via a PEPA based numerical analysis of performance modeling of
the parallel execution of applications with varying workload on non-dedicated
parallel computing resources with varying machine availability. The robustness
of the resource allocations is evaluated against the compound effect, which is
defined as the combination of the impacts of the variations in the application
workload and those of machine availability on system performance. Note that
in this study, the terms processor availability and machine availability are used
interchangeably throughout the paper. Prior validation of our PEPA models,
and a confirmation of the similarity in results of our numerical analysis with the
experimental results of earlier reported research results available in the existing
literature [1] are illustrated in Figure 1. However, in our prior validation work [23]
only the variability in problem characteristics has been considered to mimic the
experiments in [1].

In this work, the robustness value for each resource allocation is calculated
as the minimum probability of the machines to finish before a desired makespan
goal. Based on the analysis of the results, a number of mappings yield equal
execution performance. However, a significant improvement in the robustness
value (up to 143%) among the mappings yielding equal parallel execution times
has been observed. Thus, this notable 2.43 times increase of robustness strongly
indicates the benefits of selecting one mapping versus the other for guaranteeing
the best execution performance. The work with PEPA can also be extended
to modeling a single utility function that includes metrics, such as robustness,
power consumption, and others. In general, this work is applicable to various
types of computing and communication environments.

The rest of the paper is organized as follows. A description of the robustness
of resource allocations in parallel and distributed computing systems and of the
performance modeling techniques for numerical analysis of performance in par-
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Fig. 1: A comparative analysis of the numerical results of performance modeling with
existing simulation results used for validation of approach in [23].

allel computing systems are given in Section 2. The design and the use of PEPA
for the numerical evaluation of the analytical models of resource allocations in
parallel computing systems are presented in Section 3. A comparison of the nu-
merical results of robustness of a number of resource allocations obtained via
analytical modeling using the PEPA tool, is discussed in Section 4. Conclusions
and possible future work are summarized in Section 5.

2 Background and Related Work

In general, the mapping problem, defined as finding the best allocation of in-
dependent tasks (or applications) onto a set of parallel processors, is known to
be NP-Complete [6][7][8]. A number of research efforts have been made towards
achieving robust mapping, or resource allocation techniques in parallel and dis-
tributed computing systems. Key work done in this area is being reviewed and is
presented in this section. In addition, a survey of the work in performance eval-
uation of computer and communication systems using analytical and numerical
modeling is also being discussed.

2.1 Robustness of Resource Allocation and Application Scheduling

The initial work on robust scheduling originated from job-shop application schedul-
ing frameworks [9]. A Standard branch and bound approach was used to solve
the NP-Hard robust scheduling problem (RSP) to obtain a robust schedule for
N independent jobs on a single machine [10]. A number of approaches have
been developed to obtain an initial robust resource allocation by utilizing op-
timization techniques such as, stochastic mixed integer programming [11], it-
erative integer programming [12], and others. In addition to designing robust
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resource allocations, robustness metrics have also been formulated to study the
performance guarantee of available static resource allocations against possible
inadequate or variable computational environmental factors. A general method-
ology, called the Feature Perturbation Impact Analysis (FePIA) procedure, for
developing robustness metrics for resource allocation has been presented by Ali
et al. [1]. The authors define a resource allocation to be robust with respect
to specific system performance features against perturbations (uncertainties) in
specified system parameters if degradation in these features is constrained when
limited perturbations occur [1][2]. To address this issue of investigating the ro-
bustness of scheduling techniques at the application level, together with studies
conducted at the system level for a holistic approach of robustness, research has
also been conducted towards analyzing the robustness of a number of dynamic
loop scheduling (DLS) algorithms, which are effective in dynamic scheduling
of scientific applications on large-scale parallel and distributed systems, in the
presence of varying processor loads (where robustness is quantified using the
flexibility metric) and processor failures (where robustness is quantified using
the resilience metric) [3][4].

2.2 Process Algebra for Performance Evaluation

Analytical and numerical modeling for performance evaluation allows derivation
of an expression of the performance feature of interest in terms of the input
parameters of the model. In case of a predictive analysis of a computing system,
analytical models generally provide the best insight into the effects of various
perturbation parameters on system performance, and are easier to replicate for
a comparative analysis of different systems. Markovian models have been shown
to be an effective tool for performance analysis of computer and communication
systems, where the system components are modeled as Markov processes, and the
overall performance (for example, throughput, resource utilization, and others)
is evaluated upon the numerical analysis of these Markov processes [15]. Process
algebras are abstract languages used for specification and design of such systems.

PEPA, a stochastic process algebra, has been used for performance modeling
and analysis of a wide range of concurrent systems. In a recent research study
related to the scheduling of pipeline applications on grid resources, the PEPA
workbench [16] has been used to solve the performance models of a schedul-
ing system to obtain relevant performance information required for enhancing
the execution performance of pipeline applications executing on the allocated
grid resources (processors and network links) [13][14]. The PEPA workbench is
used to calculate the performance feature, namely the throughput of executing
pipeline applications, which is obtained when employing the modeled mapping
for scheduling the pipeline applications onto grid resources [13][14].

Another important performance measure is the response time, which is promi-
nently used for analyzing the performance of a resource allocation or a task
scheduling system in parallel and distributed computing, where applications are
bound by time constraints (such as an execution deadline). A research direction
towards evaluating response time profiles has been given in the work performed
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on evaluating PEPA models via an ordinary differential equation (ODE) analy-
sis [14]. The functionality for evaluating response time profiles via passage time
analysis has been implemented in the Imperial PEPA Compiler (IPC) tool [18],
and in the PEPA workbench [16]. However, to the best of our knowledge, per-
formance modeling for evaluating the response times of resource allocations in
parallel and distributed computing systems and their related robustness anal-
ysis remained an open problem until the authors introduced the first solution
by utilizing PEPA for analyzing the robustness of static resource allocations
in [22][23].

3 Methodology: Performance Modeling using PEPA for
Robustness Analysis

The target applications for this study are considered to be independent parallel
applications waiting in a job queue for execution. Definitions of the notations
used in the following description of the methodology are given in Table 1.

Notation Definition

A set of parallel applications

ai a parallel application ∈ A
λi initial workload for ai

λ̂i perturbed/varied workload for ai at runtime, where λi 6= λ̂i
M a set of parallel machines

Mj a parallel machine ∈M
ηj computational availability of machine Mj

η̂j perturbed/varied computational availability of Mj at runtime, where ηj 6= η̂j
βmaxi user defined makespan goal for ai

Fi(Mj(η̂j), λ̂i) Finishing time of machine Mj

ψ robustness value of a mapping. See Equation 1

Tp parallel execution time for a mapping calculation using PEPA passage time analysis

Tij actual time to compute ai on Mj . Calculated as λ̂i × η̂j
ri ideal activity rate defined as λi

Tij
, where λ̂i = λi

pi perturbed activity rate defined λi
Tij

, where λ̂i 6= λi

Table 1: Table of Notations

Each application receives a data set generated by three heterogeneous sen-
sors that produce the workloads (λ1, λ2, and λ3). The underlying computational
system consists of parallel machines (that contain K heterogeneous processors,
where K varies from machine to machine). Each machine has an associated
availability factor (ηi), which is the computational availability of the allocated
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machine for executing an application. Further, a set of possible resource allo-
cations are considered to be available for an initial mapping of applications to
machines based on an expected time to compute (ETC) matrix. In general, in
a parallel and distributed computing environment, it is realistic to assume that
the ETC values of applications on all the available machines are known a pri-
ori. Often, these estimates are derived from application profiling and machine
benchmarking, from the previous executions of an application on a machine, or
are provided by the user [19][20]. All applications in the job queue are assumed
to start executing at time t = 0 seconds. In this work, the perturbation param-
eter considered for the robustness analysis of resource allocations is defined as
the compound effect of perturbations generated from runtime variations in both,
application workload and processor availability of a machine.

Given, A: a set of parallel applications, ai ∈ A: a parallel application, λi:
the workload of application ai, β

max
i : a user defined makespan goal for ai, M :

a set of parallel machines, Mj ∈ M : the machine allocated to ai, λ̂i: a pertur-
bation parameter defined as the workload variation from the initial workload
(λi) for an application ai, η̂j : a perturbation parameter defined as the machine
availability variation from the initial machine availability (ηj) for an application

ai, Fi(Mj(η̂j), λ̂i): the finishing time of application ai on machine Mj , then the
robustness (ψ) of a mapping is formulated as in Equation 1.

ψ = min
∀i∈A

Pr[Fi(Mj(η̂j), λ̂i) ≤ βmax
i ] (1)

The goal of the robustness analysis is to find a resource allocation that maximizes
the robustness of the execution of the applications on the allocated parallel
machines. An example PEPA model of a mapping system for two applications
(a1, a2) and five processors (P0, P1, P2, P3, P4) distributed among two machines
(M1,M2) has been described below. For reference, a detailed description of the
PEPA language and the language operators can be found in [17][5].

a1
def
= (compute1,>).RETURN

a2
def
= (compute2,>).RETURN

P0
def
= (compute1, r1).RETURN

P1
def
= (compute1, r1).RETURN

P2
def
= (compute2, r2).RETURN

P3
def
= (compute2, r2).RETURN

P4
def
= (compute2, r2).RETURN

M1
def
= P0 ‖ P1

M2
def
= P2 ‖ P3 ‖ P4

Mapping
def
= (a1 ‖ a2) BC

L
(M1 ‖M2)

where L = {compute1, compute2}
The two applications (a1 and a2) engage in their compute activities. In the

above model, the first two statements model the two applications when they are
not allocated to any processor. > is a predefined symbol in PEPA that denotes
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an unknown rate for an activity. This symbol is used in situations when a system
is carrying out some action (or sequence of actions) whose rate is unavailable at
the given time. Later when the processors are modeled, a processor engages in
the compute activities of all the applications mapped to this processor. At this
point, the unknown activity rate (>) is converted to actual activity rates (r1
and r2 in our example). The rate (r1 or r2) of the compute activity is calculated
as a function of the speed of the processors in the machine allocated to the
application and the workload for that application.

The PEPA model is provided as an input to the PEPA workbench [16] in
a *.pepa file format. Each application and machine PEPA component in the
model is translated into an underlying mathematical Markovian model by the
PEPA workbench. A more detailed description of the functionality of the PEPA
workbench for our study can be found in [21]. The robustness of the modeled re-
source allocation is obtained as a probability of attaining a predefined makespan
value, which is calculated by a passage time analysis [18] of the computational
activities of all the machine components in the generated Markovian model. The
passage time analysis generates a Cumulative Distribution Function (CDF) of
the passage time (Tp) from a source state (Ss) into a non-empty set of target
states (ST ), such that,

Tp = inf{u > 0 : Ss(u) ∈ ST |Ss(0) = initial state} (2)

The CDF is generated by a convolution of the state holding times over all pos-
sible paths from state i ∈ Ss into any of the states in the set ST [18]. For the
passage time analysis, the stop time is analogous to the user specified makespan
goal, βmax

i . The solution is obtained as a cumulative distribution function (CDF)
of the probability of machine finishing times for the modeled resource allocation.
The robustness, as formulated in Equation 1, of the resource allocation is ob-
tained from the generated CDFs, as the minimum probability of achieving a user
defined makespan goal.

4 Results and Analysis: Robustness Analysis via
Numerical Modeling of Resource Allocations

In this study, a number of PEPA models have been generated for several feasible
mappings of applications onto parallel heterogeneous machines. The variations
in the workload values are sampled from a uniform probability distribution for
all the applications. For this study, the Python function, random.uniform(a,b)
has been used, with different values of a and b resulting in different mappings
for a given number of applications and machines. The variations in application
workload and machine availability can be sampled from any probability distri-
bution model that can capture the static features of real workloads and machine
characteristics at a particular point in time.

In PEPA, a choice operator permits a model component to exist in one of
the many possible states of the component [5]. For example, for a component
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P := P1 + P2, P can only exist in state P1 or P2. In this work, the left
hand side of the + operator models the ideal execution scenario in the absence
of perturbations in the sensor workload and the machine availabilities, where
λ̂i = λi,∀i ∈ {1, 2, 3} and η̂j = ηj , for all machines. The right hand side of
the + operator models the perturbed execution scenario generated by a com-
pound effect of variations in application workload and machine availabilities.
The compound effect is modeled as simultaneous equal variations in one or more
sensor workload(s) across all applications, where λ̂i 6= λi, and equal variations
in processor availability across all applications, where η̂j 6= ηj . The rates of the
compute activities are calculated as a function of λi and the actual computation
times Tij of each application on the machine where it is mapped. Further, Tij
is calculated as a function of the estimated variation in application workload
(λ̂i) and the estimated variation in the machine availabilities (η̂j), as defined in
Table 1. The values of initial rates (r1, r2, · · · ), which remain constant during
runtime, are calculated as a function of the initial machine availability factor
(ηj), as described later in Section 4.1. The values of perturbed rates (p1, p2, · · · ),
which vary during runtime, are calculated as a function of the varied application
workload (λ̂i) and the varied machine availability factor (η̂j), as described later
in Section 4.2.

The modeling generated for this study represents a resource allocation sys-
tem that has a higher load imbalance factor at runtime when compared to the
analysis in our prior work in [21][22][23][24]. Herein, the authors have analyzed
the robustness of several mappings to study the impact of heightened load im-
balance in computational systems with (i) 16 applications and 4 machines, (ii)
20 applications and 5 machines (for validation against our prior work), and (iii)
32 applications and 8 machines. Due to the state space explosion limitation of
the CTMC analysis in PEPA, the authors successfully modeled only systems of
less than 8 machines. Research work is ongoing to explore different implementa-
tions of PEPA that will improve the scalability of the numerical modeling and
analysis of the robustness of resource allocations for larger PDC systems and
applications.

4.1 Deriving PEPA activity rates in an ideal computing
environment (λ̂i = λi and η̂j = ηj)

The calculation for the rate is given in Equation 3, where Tij is the actual time to
compute an application i on machine j with initial availability (ηj) that remains
constant at runtime, and λi is calculated as a function of the initial sensor loads
λ1, λ2, λ3.

ri =
λi
Tij

∀i, j, where Tij = λi × ηj (3)

Tij is calculated as a product of the runtime workload for that application
(λi), and the machine availability factor (ηj). Rate ri is calculated as a ratio of

the application workload λi and Tij . In the ideal execution scenario, λ̂i = λi,∀i ∈
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{1, 2, 3}. Therefore, Ti is equal to the initial ETC values and consequently, the
rates, (r1, r2, · · · ), are only calculated using the initial machine availability (ηj).

4.2 Deriving PEPA activity rates in a perturbed computing
environment (λ̂ 6= λ and η̂j 6= ηj)

The calculation of the perturbed rate is given in Equation 4, where Tij is the
actual time to compute an application i on machine j with the varied runtime
availability (η̂j), and λ̂i is calculated as a function of the varying sensor loads

λ̂1, λ̂2, λ̂3, and λi is calculated as a function of the initial sensor loads λ1, λ2, λ3.

pi =
λi
Tij

∀i, j, where Tij = λ̂i × η̂j (4)

Tij is calculated as a product of the estimated runtime application workload (λ̂),
and the runtime machine availability factor (η̂j). Henceforth, pi is calculated as
a ratio of the initial application workload λi and Tij .

4.3 Numerical Analysis of Performance Modeling of Resource
Allocations using the PEPA Workbench

The *.pepa model file is compiled and solved using the PEPA workbench tool.
The state space derived using the Markovian analysis provided by the PEPA
workbench represents the continuous time Markov chain (CTMC) processes for
each component of the modeled resource allocation.

Once the state space of all the components (CTMC processes of applications
and machines) of the PEPA model are generated, the tool allows the modeler
to specify the type of Markovian analysis that needs to be used for solving the
generated Markov models to derive performance measures [5][21]. In this work,
we choose the passage time analysis that is used to solve the Markov models using
the timing information associated with the activity rates to derive performance
measures, such as, makespan and response time [18]. In this study, the passage
time analysis of the Markov models for the resource allocations yields CDFs of
the machine finishing times, Fi(Mj(η̂j), λ̂i), as passage times between the states
associated with applications assigned to a machine. An example of the CDF of
the finishing time of machine M1 in one of our randomly generated resource
allocation model is shown in Figure 2. A comparison of the finishing times of
each machine with respect to the four mappings (selected from a larger set of
generated mappings due to space constraints) is illustrated in Figure 3 for two
different execution scenarios, (i) 16 applications and 4 heterogenous machines,
and (ii) 20 applications and 5 heterogenous machines.

A key benefit resulting from the performance modeling and analysis in this
work is to identify the most robust resource allocation among the ones deliver-
ing equal execution performance. The robustness metric ψx is calculated using
Equation 5. For this study, the makespan goal is set as βmax

i = 45 seconds.
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Fig. 2: Cumulative distribution function (CDF) of the finishing time of machine M1

for a resource allocation mapping 20 applications onto 5 machines.

(a) (b)

Fig. 3: A comparative analysis of the finishing times of each machine derived from the
execution of 4 different mappings of (a) 16 applications onto 4 heterogeneous machines,
and (b) 20 applications onto 5 heterogeneous machines

ψx = min
∀i,j in Mappingx,

Pr[Fi(Mj(η̂j), λ̂i) ≤ 45] (5)

The robustness value for each machine is calculated as the probability of that
machine to finish before the makespan goal. A comparison of the robustness
values of all the machines for each of the four mappings of (i) 16 applications to
4 heterogeneous machines, and (ii) 20 applications to 5 heterogeneous machines
is illustrated in Figure 4.

The results illustrated in Figures 5a and 5b indicate that for both test cases
of resource allocations modeled, one for a PDC system with 16 applications
and 4 heterogeneous machines, and the other for a PDC system with 20 ap-
plications and 5 heterogeneous machines, resource allocations promising better
parallel execution time over the others can be identified. Moreover, the faster
resource allocations that deliver equal execution makespan also differ vastly in
their degrees of robustness. For example, in the case of mappings 20A5Mmap3 and
20A5Mmap4 in Figure 5b, both mappings deliver equal execution performance in
terms of system makespan. However, Mapping 20A5Mmap4 is 2.43 times more ro-
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(a) (b)

Fig. 4: A comparative analysis of the robustness values obtained for each machine for
the four mappings of (a) 16 applications onto 4 heterogeneous machines, and (b) 20
applications onto 5 heterogeneous machines. The makespan goal is set as βmaxi = 45
seconds.

bust that Mapping 20A5Mmap3. Therefore, the value of robustness for 20A5Mmap4
significantly increases by 143% over 20A5Mmap3. For highly critical applications,
this substantial improvement in robustness, enables a more informed decision
for selecting the most appropriate mapping that can withstand the runtime
perturbations in application and system parameters in a parallel computing en-
vironment, and can guarantee the best execution performance. For example, in
this modeling study, Mapping 20A5Mmap4 is a more robust choice for an initial
allocation in terms of achieving a set makespan goal in the presence of run-
time perturbations caused by a compound effect from variations in application
workload and machine availability.

(a) (b)

Fig. 5: A comparison between the robustness values and the performance in terms of
the system makespan of the four mappings of (a) 16 applications onto 4 heterogeneous
machines, and (b) 20 applications onto 5 heterogeneous machines.
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5 Conclusions and Future Work

The analytical study performed in this work to obtain the robustness of static re-
source allocations, which are analytically modeled and numerically solved using
PEPA, provides a useful tool that can be incorporated in the design phase of a
resource allocation system in a parallel and distributed computing environment.
Although the analysis is limited to static resource allocations, a key benefit of
this study is learning that, in the case of resource allocations promising equal
execution performance, the numerical evaluation of the PEPA models enables
a selection of the most robust resource allocation in the presence of runtime
perturbations caused by a compound effect arising from dynamic variations in
application workload and machine availability. For each of the several modeled
resource allocations, a numerical analysis of the PEPA models yields the ex-
ecution performance as the parallel execution time. The robustness value for
each mapping is calculated as the minimum probability of the machines to fin-
ish before a desired makespan goal. The results presented in Section 4 indicate
that two or more different mappings yield equal execution performance. How-
ever, a significant improvement (up to 143%) in the robustness value among the
mappings yielding equal parallel execution times has been observed. Thus, this
substantial increase in robustness strongly suggests the selection of one mapping
versus the other for guaranteeing the best execution performance.

To the best of our knowledge, this work is the first effort towards modeling
the execution of applications on heterogeneous machines by simultaneously in-
corporating variations in both application workload and machine availabilities,
considered together as a compound perturbation. To facilitate and ease the re-
producibility of our research, we provide a Singularity container of the PEPA
Workbench that has been validated to produce identical results to the non-
containerized version of the PEPA Workbench [25]. The PEPA model and build
recipe for the Singularity container are available at
https://github.com/williamssanders/pepa, and the container is publicly avail-
able at https://www.singularity-hub.org/collections/2351.

In the future, the authors plan to continue this study towards performance
modeling of resource allocations and numerical evaluation of their robustness
on larger scale PDC systems and data sets from real scientific applications.
To facilitate a scalable evaluation, the authors plan to investigate a number of
other existing implementations of PEPA that are not limited by state space
explosion. Further, the authors also plan to explore an integration of the PEPA
models into a runtime scheduler/controller in a model-based framework, where
the embedded models can be re-evaluated with minimal overhead when a system
parameter changes at runtime.
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